Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Surface Nano-patterning of Polymers for Mass-Sensitive Biodetection

Identifieur interne : 000E35 ( Istex/Corpus ); précédent : 000E34; suivant : 000E36

Surface Nano-patterning of Polymers for Mass-Sensitive Biodetection

Auteurs : Adnan Mujahid ; Franz L. Dickert

Source :

RBID : ISTEX:2E03EE6A3E785FAA2FE4CC070B1EAA69DA6D13B2

Abstract

Abstract: The crafting of sensor material of desired features has always remained a challenging task in the field of material designing and predominantly becomes more interesting when analyte belongs to biospecies. Label-free detection of different bioanalytes such as enzymes, viruses, microorganisms, and blood groups through mass-sensitive transducers has gained considerable importance in the development of modern biosensors. Analyte molecules interact with the surface of sensitive layer coated on these devices and as a result of this interaction, the frequency change is determined, which provides quantitative information about the mass of analyte. One of the most vital elements of these detection systems is to design selective sensor coatings through control surface structuring at nanoscale. Molecular imprinting has proven to be a highly suitable technique to generate selective surfaces that are capable of detecting different analytes, quantitatively and qualitatively as well. The tailor-made synthetic antibody cavities are rigid and stable, which are not immediately collapsed upon analyte interaction; moreover, the different bioanalytes do not undergo any phase change and maintain their original identity during analysis. This chapter will discuss the contribution of imprinting methods to design optimized surfaces for mass-sensitive detection of diverse biological species.

Url:
DOI: 10.1007/978-1-4419-6169-3_3

Links to Exploration step

ISTEX:2E03EE6A3E785FAA2FE4CC070B1EAA69DA6D13B2

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Surface Nano-patterning of Polymers for Mass-Sensitive Biodetection</title>
<author>
<name sortKey="Mujahid, Adnan" sort="Mujahid, Adnan" uniqKey="Mujahid A" first="Adnan" last="Mujahid">Adnan Mujahid</name>
<affiliation>
<mods:affiliation>Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, A-1090, Vienna, Austria</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dickert, Franz L" sort="Dickert, Franz L" uniqKey="Dickert F" first="Franz L." last="Dickert">Franz L. Dickert</name>
<affiliation>
<mods:affiliation>Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, A-1090, Vienna, Austria</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: franz.dickert@univie.ac.at</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2E03EE6A3E785FAA2FE4CC070B1EAA69DA6D13B2</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1007/978-1-4419-6169-3_3</idno>
<idno type="url">https://api.istex.fr/ark:/67375/HCB-BKQ6KHZS-R/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E35</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000E35</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Surface Nano-patterning of Polymers for Mass-Sensitive Biodetection</title>
<author>
<name sortKey="Mujahid, Adnan" sort="Mujahid, Adnan" uniqKey="Mujahid A" first="Adnan" last="Mujahid">Adnan Mujahid</name>
<affiliation>
<mods:affiliation>Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, A-1090, Vienna, Austria</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dickert, Franz L" sort="Dickert, Franz L" uniqKey="Dickert F" first="Franz L." last="Dickert">Franz L. Dickert</name>
<affiliation>
<mods:affiliation>Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, A-1090, Vienna, Austria</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: franz.dickert@univie.ac.at</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The crafting of sensor material of desired features has always remained a challenging task in the field of material designing and predominantly becomes more interesting when analyte belongs to biospecies. Label-free detection of different bioanalytes such as enzymes, viruses, microorganisms, and blood groups through mass-sensitive transducers has gained considerable importance in the development of modern biosensors. Analyte molecules interact with the surface of sensitive layer coated on these devices and as a result of this interaction, the frequency change is determined, which provides quantitative information about the mass of analyte. One of the most vital elements of these detection systems is to design selective sensor coatings through control surface structuring at nanoscale. Molecular imprinting has proven to be a highly suitable technique to generate selective surfaces that are capable of detecting different analytes, quantitatively and qualitatively as well. The tailor-made synthetic antibody cavities are rigid and stable, which are not immediately collapsed upon analyte interaction; moreover, the different bioanalytes do not undergo any phase change and maintain their original identity during analysis. This chapter will discuss the contribution of imprinting methods to design optimized surfaces for mass-sensitive detection of diverse biological species.</div>
</front>
</TEI>
<istex>
<corpusName>springer-ebooks</corpusName>
<editor>
<json:item>
<name>Sandro Carrara</name>
<affiliations>
<json:string>Fac. Informatique et Communications, Labo. Systèmes Intégrés (LSI), EPFL, 1015, Lausanne, Switzerland</json:string>
<json:string>E-mail: sandro.cararra@epfl.ch</json:string>
</affiliations>
</json:item>
</editor>
<author>
<json:item>
<name>Adnan Mujahid</name>
<affiliations>
<json:string>Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, A-1090, Vienna, Austria</json:string>
</affiliations>
</json:item>
<json:item>
<name>Franz L. Dickert</name>
<affiliations>
<json:string>Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, A-1090, Vienna, Austria</json:string>
<json:string>E-mail: franz.dickert@univie.ac.at</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/HCB-BKQ6KHZS-R</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>chapter</json:string>
</originalGenre>
<abstract>Abstract: The crafting of sensor material of desired features has always remained a challenging task in the field of material designing and predominantly becomes more interesting when analyte belongs to biospecies. Label-free detection of different bioanalytes such as enzymes, viruses, microorganisms, and blood groups through mass-sensitive transducers has gained considerable importance in the development of modern biosensors. Analyte molecules interact with the surface of sensitive layer coated on these devices and as a result of this interaction, the frequency change is determined, which provides quantitative information about the mass of analyte. One of the most vital elements of these detection systems is to design selective sensor coatings through control surface structuring at nanoscale. Molecular imprinting has proven to be a highly suitable technique to generate selective surfaces that are capable of detecting different analytes, quantitatively and qualitatively as well. The tailor-made synthetic antibody cavities are rigid and stable, which are not immediately collapsed upon analyte interaction; moreover, the different bioanalytes do not undergo any phase change and maintain their original identity during analysis. This chapter will discuss the contribution of imprinting methods to design optimized surfaces for mass-sensitive detection of diverse biological species.</abstract>
<qualityIndicators>
<score>9.316</score>
<pdfWordCount>13350</pdfWordCount>
<pdfCharCount>85367</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>38</pdfPageCount>
<pdfPageSize>439.37 x 666.142 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractWordCount>193</abstractWordCount>
<abstractCharCount>1397</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Surface Nano-patterning of Polymers for Mass-Sensitive Biodetection</title>
<chapterId>
<json:string>3</json:string>
<json:string>b978-1-4419-6169-3_3</json:string>
</chapterId>
<genre>
<json:string>chapter</json:string>
</genre>
<host>
<title>Nano-Bio-Sensing</title>
<language>
<json:string>unknown</json:string>
</language>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1007/978-1-4419-6169-3</json:string>
</doi>
<eisbn>
<json:string>978-1-4419-6169-3</json:string>
</eisbn>
<bookId>
<json:string>978-1-4419-6169-3</json:string>
</bookId>
<isbn>
<json:string>978-1-4419-6168-6</json:string>
</isbn>
<pages>
<first>45</first>
<last>82</last>
</pages>
<genre>
<json:string>book</json:string>
</genre>
<editor>
<json:item>
<name>Sandro Carrara</name>
<affiliations>
<json:string>Fac. Informatique et Communications, Labo. Systèmes Intégrés (LSI), EPFL, 1015, Lausanne, Switzerland</json:string>
<json:string>E-mail: sandro.cararra@epfl.ch</json:string>
</affiliations>
</json:item>
</editor>
<subject>
<json:item>
<value>Engineering</value>
</json:item>
<json:item>
<value>Engineering</value>
</json:item>
<json:item>
<value>Circuits and Systems</value>
</json:item>
<json:item>
<value>Nanotechnology and Microengineering</value>
</json:item>
<json:item>
<value>Biomaterials</value>
</json:item>
</subject>
</host>
<ark>
<json:string>ark:/67375/HCB-BKQ6KHZS-R</json:string>
</ark>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1007/978-1-4419-6169-3_3</json:string>
</doi>
<id>2E03EE6A3E785FAA2FE4CC070B1EAA69DA6D13B2</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-BKQ6KHZS-R/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-BKQ6KHZS-R/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/HCB-BKQ6KHZS-R/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="m" type="main">Nano-Bio-Sensing</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Springer New York</publisher>
<pubPlace>New York, NY</pubPlace>
<availability>
<licence>Springer Science+Business Media, LLC</licence>
</availability>
<date when="2011">2011</date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="other" source="Monograph" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-7474895G-0">other</note>
<note type="publication-type" subtype="book" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-5WTPMB5N-F">book</note>
</notesStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Surface Nano-patterning of Polymers for Mass-Sensitive Biodetection</title>
<author>
<persName>
<forename type="first">Adnan</forename>
<surname>Mujahid</surname>
</persName>
<affiliation>
<orgName type="department">Department of Analytical Chemistry</orgName>
<orgName type="institution">University of Vienna</orgName>
<address>
<street>Waehringer Strasse 38</street>
<postCode>A-1090</postCode>
<settlement>Vienna</settlement>
<country key="AT">AUSTRIA</country>
</address>
</affiliation>
</author>
<author role="corresp">
<persName>
<forename type="first">Franz</forename>
<forename type="first">L.</forename>
<surname>Dickert</surname>
</persName>
<email>franz.dickert@univie.ac.at</email>
<affiliation>
<orgName type="department">Department of Analytical Chemistry</orgName>
<orgName type="institution">University of Vienna</orgName>
<address>
<street>Waehringer Strasse 38</street>
<postCode>A-1090</postCode>
<settlement>Vienna</settlement>
<country key="AT">AUSTRIA</country>
</address>
</affiliation>
</author>
<idno type="istex">2E03EE6A3E785FAA2FE4CC070B1EAA69DA6D13B2</idno>
<idno type="ark">ark:/67375/HCB-BKQ6KHZS-R</idno>
<idno type="DOI">10.1007/978-1-4419-6169-3_3</idno>
</analytic>
<monogr>
<title level="m" type="main">Nano-Bio-Sensing</title>
<idno type="DOI">10.1007/978-1-4419-6169-3</idno>
<idno type="book-id">978-1-4419-6169-3</idno>
<idno type="ISBN">978-1-4419-6168-6</idno>
<idno type="eISBN">978-1-4419-6169-3</idno>
<idno type="chapter-id">b978-1-4419-6169-3_3</idno>
<editor>
<persName>
<forename type="first">Sandro</forename>
<surname>Carrara</surname>
</persName>
<email>sandro.cararra@epfl.ch</email>
<affiliation>
<orgName type="department">Fac. Informatique et Communications, Labo. Systèmes Intégrés (LSI)</orgName>
<orgName type="institution">EPFL</orgName>
<address>
<settlement>Lausanne</settlement>
<postCode>1015</postCode>
<country key="CH">SWITZERLAND</country>
</address>
</affiliation>
</editor>
<imprint>
<biblScope unit="page" from="45">45</biblScope>
<biblScope unit="page" to="82">82</biblScope>
<biblScope unit="chapter-count">9</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en">
<head>Abstract</head>
<p>The crafting of sensor material of desired features has always remained a challenging task in the field of material designing and predominantly becomes more interesting when analyte belongs to biospecies. Label-free detection of different bioanalytes such as enzymes, viruses, microorganisms, and blood groups through mass-sensitive transducers has gained considerable importance in the development of modern biosensors. Analyte molecules interact with the surface of sensitive layer coated on these devices and as a result of this interaction, the frequency change is determined, which provides quantitative information about the mass of analyte. One of the most vital elements of these detection systems is to design selective sensor coatings through control surface structuring at nanoscale. Molecular imprinting has proven to be a highly suitable technique to generate selective surfaces that are capable of detecting different analytes, quantitatively and qualitatively as well. The tailor-made synthetic antibody cavities are rigid and stable, which are not immediately collapsed upon analyte interaction; moreover, the different bioanalytes do not undergo any phase change and maintain their original identity during analysis. This chapter will discuss the contribution of imprinting methods to design optimized surfaces for mass-sensitive detection of diverse biological species.</p>
</abstract>
<textClass ana="abbreviation">
<keywords scheme="abbreviations">
<list>
<head>Abbreviations</head>
<item>
<term>AIDS</term>
<desc> Acquired immune deficiency syndrome </desc>
</item>
<item>
<term>AFM</term>
<desc> Atomic force microscopy </desc>
</item>
<item>
<term>BLV</term>
<desc> Bovine leukemia virus </desc>
</item>
<item>
<term>BAW</term>
<desc> Bulk acoustic wave </desc>
</item>
<item>
<term>BG</term>
<desc> Blood group </desc>
</item>
<item>
<term>BSA</term>
<desc> Bovine serum albumin </desc>
</item>
<item>
<term>DVB</term>
<desc> Divinyl benzene </desc>
</item>
<item>
<term>ELISA</term>
<desc> Enzyme-linked immuno sorbent assay </desc>
</item>
<item>
<term>ESA</term>
<desc> Electrostatic self assembly </desc>
</item>
<item>
<term>FBAR</term>
<desc> Film bulk acoustic resonators </desc>
</item>
<item>
<term>FMDV</term>
<desc> Foot and mouth disease viruses </desc>
</item>
<item>
<term>HPLC</term>
<desc> High performance liquid chromatography </desc>
</item>
<item>
<term>HRV</term>
<desc> Human rhinovirus </desc>
</item>
<item>
<term>HSA</term>
<desc> Human serum albumin </desc>
</item>
<item>
<term>HRP</term>
<desc> Horseradish peroxidase </desc>
</item>
<item>
<term>IAA</term>
<desc> Indole-3-acetic acid </desc>
</item>
<item>
<term>IBA</term>
<desc> Indole-3-butyric acid </desc>
</item>
<item>
<term>IET</term>
<desc> Indole-3-ethanol </desc>
</item>
<item>
<term>LBL</term>
<desc> Layer-by-layer </desc>
</item>
<item>
<term>MAA</term>
<desc> meth acrylic acid </desc>
</item>
<item>
<term>MIP</term>
<desc> Molecular imprinted polymer </desc>
</item>
<item>
<term>PET</term>
<desc> Poly ethylene terephthalate </desc>
</item>
<item>
<term>PCR</term>
<desc> Polymerized chain reaction </desc>
</item>
<item>
<term>QCM</term>
<desc> Quartz crystal microbalance </desc>
</item>
<item>
<term>RBC</term>
<desc> Red blood cells </desc>
</item>
<item>
<term>SAW</term>
<desc> Surface acoustic wave </desc>
</item>
<item>
<term>STW</term>
<desc> Shear transverse wave </desc>
</item>
<item>
<term>SAM</term>
<desc> Self-assembled monolayers </desc>
</item>
<item>
<term>SEM</term>
<desc> Scanning electron microscopy </desc>
</item>
<item>
<term>SPR</term>
<desc> Surface plasmon resonance </desc>
</item>
<item>
<term>SARS</term>
<desc> Severe acute respiratory syndrome </desc>
</item>
<item>
<term>TMV</term>
<desc> Tobacco mosaic virus </desc>
</item>
</list>
</keywords>
</textClass>
<textClass ana="subject">
<keywords scheme="book-subject-collection">
<list>
<label>SUCO11647</label>
<item>
<term>Engineering</term>
</item>
</list>
</keywords>
</textClass>
<textClass ana="subject">
<keywords scheme="book-subject">
<list>
<label>SCT</label>
<item>
<term type="Primary">Engineering</term>
</item>
<label>SCT24068</label>
<item>
<term type="Secondary" subtype="priority-1">Circuits and Systems</term>
</item>
<label>SCT18000</label>
<item>
<term type="Secondary" subtype="priority-2">Nanotechnology and Microengineering</term>
</item>
<label>SCZ13000</label>
<item>
<term type="Secondary" subtype="priority-3">Biomaterials</term>
</item>
</list>
</keywords>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-BKQ6KHZS-R/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus springer-ebooks not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Springer New York</PublisherName>
<PublisherLocation>New York, NY</PublisherLocation>
</PublisherInfo>
<Book Language="En" OutputMedium="All">
<BookInfo BookProductType="Monograph" ContainsESM="No" Language="En" MediaType="eBook" NumberingDepth="3" NumberingStyle="ChapterContent" OutputMedium="All" TocLevels="1">
<BookID>978-1-4419-6169-3</BookID>
<BookTitle>Nano-Bio-Sensing</BookTitle>
<BookDOI>10.1007/978-1-4419-6169-3</BookDOI>
<BookTitleID>191213</BookTitleID>
<BookPrintISBN>978-1-4419-6168-6</BookPrintISBN>
<BookElectronicISBN>978-1-4419-6169-3</BookElectronicISBN>
<BookChapterCount>9</BookChapterCount>
<BookCopyright>
<CopyrightHolderName>Springer Science+Business Media, LLC</CopyrightHolderName>
<CopyrightYear>2011</CopyrightYear>
</BookCopyright>
<BookSubjectGroup>
<BookSubject Code="SCT" Type="Primary">Engineering</BookSubject>
<BookSubject Code="SCT24068" Priority="1" Type="Secondary">Circuits and Systems</BookSubject>
<BookSubject Code="SCT18000" Priority="2" Type="Secondary">Nanotechnology and Microengineering</BookSubject>
<BookSubject Code="SCZ13000" Priority="3" Type="Secondary">Biomaterials</BookSubject>
<SubjectCollection Code="SUCO11647">Engineering</SubjectCollection>
</BookSubjectGroup>
</BookInfo>
<BookHeader>
<EditorGroup>
<Editor AffiliationIDS="AffID1">
<EditorName DisplayOrder="Western">
<GivenName>Sandro</GivenName>
<FamilyName>Carrara</FamilyName>
</EditorName>
<Contact>
<Phone>21693-0915</Phone>
<Email>sandro.cararra@epfl.ch</Email>
</Contact>
</Editor>
<Affiliation ID="AffID1">
<OrgDivision>Fac. Informatique et Communications, Labo. Systèmes Intégrés (LSI)</OrgDivision>
<OrgName>EPFL</OrgName>
<OrgAddress>
<City>Lausanne</City>
<Postcode>1015</Postcode>
<Country>Switzerland</Country>
</OrgAddress>
</Affiliation>
</EditorGroup>
</BookHeader>
<Chapter ID="b978-1-4419-6169-3_3" Language="En" OutputMedium="All">
<ChapterInfo ChapterType="OriginalPaper" ContainsESM="No" Language="En" NumberingDepth="3" NumberingStyle="ChapterContent" OutputMedium="All" TocLevels="0">
<ChapterID>3</ChapterID>
<ChapterNumber>Chapter 3</ChapterNumber>
<ChapterDOI>10.1007/978-1-4419-6169-3_3</ChapterDOI>
<ChapterSequenceNumber>3</ChapterSequenceNumber>
<ChapterTitle Language="En">Surface Nano-patterning of Polymers for Mass-Sensitive Biodetection</ChapterTitle>
<ChapterFirstPage>45</ChapterFirstPage>
<ChapterLastPage>82</ChapterLastPage>
<ChapterCopyright>
<CopyrightHolderName>Springer Science+Business Media, LLC</CopyrightHolderName>
<CopyrightYear>2011</CopyrightYear>
</ChapterCopyright>
<ChapterHistory>
<RegistrationDate>
<Year>2010</Year>
<Month>7</Month>
<Day>3</Day>
</RegistrationDate>
<OnlineDate>
<Year>2010</Year>
<Month>10</Month>
<Day>19</Day>
</OnlineDate>
</ChapterHistory>
<ChapterContext>
<BookID>978-1-4419-6169-3</BookID>
<BookTitle>Nano-Bio-Sensing</BookTitle>
</ChapterContext>
</ChapterInfo>
<ChapterHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff1_3">
<AuthorName DisplayOrder="Western">
<GivenName>Adnan</GivenName>
<FamilyName>Mujahid</FamilyName>
</AuthorName>
</Author>
<Author AffiliationIDS="Aff1_3" CorrespondingAffiliationID="Aff1_3">
<AuthorName DisplayOrder="Western">
<GivenName>Franz</GivenName>
<GivenName>L.</GivenName>
<FamilyName>Dickert</FamilyName>
</AuthorName>
<Contact>
<Email>franz.dickert@univie.ac.at</Email>
</Contact>
</Author>
<Affiliation ID="Aff1_3">
<OrgDivision>Department of Analytical Chemistry</OrgDivision>
<OrgName>University of Vienna</OrgName>
<OrgAddress>
<Street>Waehringer Strasse 38</Street>
<Postcode>A-1090</Postcode>
<City>Vienna</City>
<Country>Austria</Country>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract ID="Abs1_3" Language="En" OutputMedium="Online">
<Heading>Abstract</Heading>
<Para>The crafting of sensor material of desired features has always remained a challenging task in the field of material designing and predominantly becomes more interesting when analyte belongs to biospecies. Label-free detection of different bioanalytes such as enzymes, viruses, microorganisms, and blood groups through mass-sensitive transducers has gained considerable importance in the development of modern biosensors. Analyte molecules interact with the surface of sensitive layer coated on these devices and as a result of this interaction, the frequency change is determined, which provides quantitative information about the mass of analyte. One of the most vital elements of these detection systems is to design selective sensor coatings through control surface structuring at nanoscale. Molecular imprinting has proven to be a highly suitable technique to generate selective surfaces that are capable of detecting different analytes, quantitatively and qualitatively as well. The tailor-made synthetic antibody cavities are rigid and stable, which are not immediately collapsed upon analyte interaction; moreover, the different bioanalytes do not undergo any phase change and maintain their original identity during analysis. This chapter will discuss the contribution of imprinting methods to design optimized surfaces for mass-sensitive detection of diverse biological species.</Para>
</Abstract>
<AbbreviationGroup>
<Heading>Abbreviations</Heading>
<DefinitionList>
<DefinitionListEntry>
<Term>AIDS</Term>
<Description>
<Para>Acquired immune deficiency syndrome</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>AFM</Term>
<Description>
<Para>Atomic force microscopy</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>BLV</Term>
<Description>
<Para>Bovine leukemia virus</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>BAW</Term>
<Description>
<Para>Bulk acoustic wave</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>BG</Term>
<Description>
<Para>Blood group</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>BSA</Term>
<Description>
<Para>Bovine serum albumin</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>DVB</Term>
<Description>
<Para>Divinyl benzene</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>ELISA</Term>
<Description>
<Para>Enzyme-linked immuno sorbent assay</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>ESA</Term>
<Description>
<Para>Electrostatic self assembly</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>FBAR</Term>
<Description>
<Para>Film bulk acoustic resonators</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>FMDV</Term>
<Description>
<Para>Foot and mouth disease viruses</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>HPLC</Term>
<Description>
<Para>High performance liquid chromatography</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>HRV</Term>
<Description>
<Para>Human rhinovirus</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>HSA</Term>
<Description>
<Para>Human serum albumin</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>HRP</Term>
<Description>
<Para>Horseradish peroxidase</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>IAA</Term>
<Description>
<Para>Indole-3-acetic acid</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>IBA</Term>
<Description>
<Para>Indole-3-butyric acid</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>IET</Term>
<Description>
<Para>Indole-3-ethanol</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>LBL</Term>
<Description>
<Para>Layer-by-layer</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>MAA</Term>
<Description>
<Para>meth acrylic acid</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>MIP</Term>
<Description>
<Para>Molecular imprinted polymer</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>PET</Term>
<Description>
<Para>Poly ethylene terephthalate</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>PCR</Term>
<Description>
<Para>Polymerized chain reaction</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>QCM</Term>
<Description>
<Para>Quartz crystal microbalance</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>RBC</Term>
<Description>
<Para>Red blood cells</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>SAW</Term>
<Description>
<Para>Surface acoustic wave</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>STW</Term>
<Description>
<Para>Shear transverse wave</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>SAM</Term>
<Description>
<Para>Self-assembled monolayers</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>SEM</Term>
<Description>
<Para>Scanning electron microscopy</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>SPR</Term>
<Description>
<Para>Surface plasmon resonance</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>SARS</Term>
<Description>
<Para>Severe acute respiratory syndrome</Para>
</Description>
</DefinitionListEntry>
<DefinitionListEntry>
<Term>TMV</Term>
<Description>
<Para>Tobacco mosaic virus</Para>
</Description>
</DefinitionListEntry>
</DefinitionList>
</AbbreviationGroup>
</ChapterHeader>
<NoBody></NoBody>
</Chapter>
</Book>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Surface Nano-patterning of Polymers for Mass-Sensitive Biodetection</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Surface Nano-patterning of Polymers for Mass-Sensitive Biodetection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adnan</namePart>
<namePart type="family">Mujahid</namePart>
<affiliation>Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, A-1090, Vienna, Austria</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart type="given">Franz</namePart>
<namePart type="given">L.</namePart>
<namePart type="family">Dickert</namePart>
<affiliation>Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, A-1090, Vienna, Austria</affiliation>
<affiliation>E-mail: franz.dickert@univie.ac.at</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sandro</namePart>
<namePart type="family">Carrara</namePart>
<affiliation>Fac. Informatique et Communications, Labo. Systèmes Intégrés (LSI), EPFL, 1015, Lausanne, Switzerland</affiliation>
<affiliation>E-mail: sandro.cararra@epfl.ch</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="chapter" displayLabel="chapter" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-CGT4WMJM-6"></genre>
<originInfo>
<publisher>Springer New York</publisher>
<place>
<placeTerm type="text">New York, NY</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011</dateIssued>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract lang="en">Abstract: The crafting of sensor material of desired features has always remained a challenging task in the field of material designing and predominantly becomes more interesting when analyte belongs to biospecies. Label-free detection of different bioanalytes such as enzymes, viruses, microorganisms, and blood groups through mass-sensitive transducers has gained considerable importance in the development of modern biosensors. Analyte molecules interact with the surface of sensitive layer coated on these devices and as a result of this interaction, the frequency change is determined, which provides quantitative information about the mass of analyte. One of the most vital elements of these detection systems is to design selective sensor coatings through control surface structuring at nanoscale. Molecular imprinting has proven to be a highly suitable technique to generate selective surfaces that are capable of detecting different analytes, quantitatively and qualitatively as well. The tailor-made synthetic antibody cavities are rigid and stable, which are not immediately collapsed upon analyte interaction; moreover, the different bioanalytes do not undergo any phase change and maintain their original identity during analysis. This chapter will discuss the contribution of imprinting methods to design optimized surfaces for mass-sensitive detection of diverse biological species.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Nano-Bio-Sensing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sandro</namePart>
<namePart type="family">Carrara</namePart>
<affiliation>Fac. Informatique et Communications, Labo. Systèmes Intégrés (LSI), EPFL, 1015, Lausanne, Switzerland</affiliation>
<affiliation>E-mail: sandro.cararra@epfl.ch</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<genre type="book" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-5WTPMB5N-F">book</genre>
<originInfo>
<publisher>Springer</publisher>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
<issuance>monographic</issuance>
</originInfo>
<subject>
<genre>Book-Subject-Collection</genre>
<topic authority="SpringerSubjectCodes" authorityURI="SUCO11647">Engineering</topic>
</subject>
<subject>
<genre>Book-Subject-Group</genre>
<topic authority="SpringerSubjectCodes" authorityURI="SCT">Engineering</topic>
<topic authority="SpringerSubjectCodes" authorityURI="SCT24068">Circuits and Systems</topic>
<topic authority="SpringerSubjectCodes" authorityURI="SCT18000">Nanotechnology and Microengineering</topic>
<topic authority="SpringerSubjectCodes" authorityURI="SCZ13000">Biomaterials</topic>
</subject>
<identifier type="DOI">10.1007/978-1-4419-6169-3</identifier>
<identifier type="ISBN">978-1-4419-6168-6</identifier>
<identifier type="eISBN">978-1-4419-6169-3</identifier>
<identifier type="BookTitleID">191213</identifier>
<identifier type="BookID">978-1-4419-6169-3</identifier>
<identifier type="BookChapterCount">9</identifier>
<part>
<date>2011</date>
<detail type="chapter">
<number>Chapter 3</number>
<caption>chapter</caption>
</detail>
<extent unit="pages">
<start>45</start>
<end>82</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Springer Science+Business Media, LLC, 2011</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">2E03EE6A3E785FAA2FE4CC070B1EAA69DA6D13B2</identifier>
<identifier type="ark">ark:/67375/HCB-BKQ6KHZS-R</identifier>
<identifier type="DOI">10.1007/978-1-4419-6169-3_3</identifier>
<identifier type="ChapterID">3</identifier>
<identifier type="ChapterID">b978-1-4419-6169-3_3</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Springer Science+Business Media, LLC, 2011</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-RLRX46XW-4">springer</recordContentSource>
<recordOrigin>Springer Science+Business Media, LLC, 2011</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-BKQ6KHZS-R/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>xml</extension>
<original>true</original>
<mimetype>application/xml</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-BKQ6KHZS-R/annexes.xml</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E35 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000E35 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:2E03EE6A3E785FAA2FE4CC070B1EAA69DA6D13B2
   |texte=   Surface Nano-patterning of Polymers for Mass-Sensitive Biodetection
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021