Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evidence for emergence of an amphibian iridoviral disease because of human‐enhanced spread

Identifieur interne : 001A74 ( Istex/Checkpoint ); précédent : 001A73; suivant : 001A75

Evidence for emergence of an amphibian iridoviral disease because of human‐enhanced spread

Auteurs : J. K. Jancovich ; E. W. Davidson ; N. Parameswaran ; J. Mao ; V. G. Chinchar ; J. P. Collins ; B. L. Jacobs ; A. Storfer [États-Unis]

Source :

RBID : ISTEX:C4C186DB3DB878A8AFEBB9D2D50F421D62CD5826

English descriptors

Abstract

Our understanding of origins and spread of emerging infectious diseases has increased dramatically because of recent applications of phylogenetic theory. Iridoviruses are emerging pathogens that cause global amphibian epizootics, including tiger salamander (Ambystoma tigrinum) die‐offs throughout western North America. To explain phylogeographical relationships and potential causes for emergence of western North American salamander iridovirus strains, we sequenced major capsid protein and DNA methyltransferase genes, as well as two noncoding regions from 18 geographically widespread isolates. Phylogenetic analyses of sequence data from the capsid protein gene showed shallow genetic divergence (< 1%) among salamander iridovirus strains and monophyly relative to available fish, reptile, and other amphibian iridovirus strains from the genus Ranavirus, suggesting a single introduction and radiation. Analysis of capsid protein sequences also provided support for a closer relationship of tiger salamander virus strains to those isolated from sport fish (e.g. rainbow trout) than other amphibian isolates. Despite monophyly based on capsid protein sequences, there was low genetic divergence among all strains (< 1.1%) based on a supergene analysis of the capsid protein and the two noncoding regions. These analyses also showed polyphyly of strains from Arizona and Colorado, suggesting recent spread. Nested clade analyses indicated both range expansion and long‐distance colonization in clades containing virus strains isolated from bait salamanders and the Indiana University axolotl (Ambystoma mexicanum) colony. Human enhancement of viral movement is a mechanism consistent with these results. These findings suggest North American salamander ranaviruses cause emerging disease, as evidenced by apparent recent spread over a broad geographical area.

Url:
DOI: 10.1111/j.1365-294X.2004.02387.x


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:C4C186DB3DB878A8AFEBB9D2D50F421D62CD5826

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evidence for emergence of an amphibian iridoviral disease because of human‐enhanced spread</title>
<author>
<name sortKey="Jancovich, J K" sort="Jancovich, J K" uniqKey="Jancovich J" first="J. K." last="Jancovich">J. K. Jancovich</name>
</author>
<author>
<name sortKey="Davidson, E W" sort="Davidson, E W" uniqKey="Davidson E" first="E. W." last="Davidson">E. W. Davidson</name>
</author>
<author>
<name sortKey="Parameswaran, N" sort="Parameswaran, N" uniqKey="Parameswaran N" first="N." last="Parameswaran">N. Parameswaran</name>
</author>
<author>
<name sortKey="Mao, J" sort="Mao, J" uniqKey="Mao J" first="J." last="Mao">J. Mao</name>
</author>
<author>
<name sortKey="Chinchar, V G" sort="Chinchar, V G" uniqKey="Chinchar V" first="V. G." last="Chinchar">V. G. Chinchar</name>
</author>
<author>
<name sortKey="Collins, J P" sort="Collins, J P" uniqKey="Collins J" first="J. P." last="Collins">J. P. Collins</name>
</author>
<author>
<name sortKey="Jacobs, B L" sort="Jacobs, B L" uniqKey="Jacobs B" first="B. L." last="Jacobs">B. L. Jacobs</name>
</author>
<author>
<name sortKey="Storfer, A" sort="Storfer, A" uniqKey="Storfer A" first="A." last="Storfer">A. Storfer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C4C186DB3DB878A8AFEBB9D2D50F421D62CD5826</idno>
<date when="2005" year="2005">2005</date>
<idno type="doi">10.1111/j.1365-294X.2004.02387.x</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-49K5RRZ6-C/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000F31</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000F31</idno>
<idno type="wicri:Area/Istex/Curation">000F31</idno>
<idno type="wicri:Area/Istex/Checkpoint">001A74</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001A74</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Evidence for emergence of an amphibian iridoviral disease because of human‐enhanced spread</title>
<author>
<name sortKey="Jancovich, J K" sort="Jancovich, J K" uniqKey="Jancovich J" first="J. K." last="Jancovich">J. K. Jancovich</name>
<affiliation></affiliation>
<affiliation>
<wicri:noCountry code="subField"></wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Davidson, E W" sort="Davidson, E W" uniqKey="Davidson E" first="E. W." last="Davidson">E. W. Davidson</name>
<affiliation>
<wicri:noCountry code="subField"></wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Parameswaran, N" sort="Parameswaran, N" uniqKey="Parameswaran N" first="N." last="Parameswaran">N. Parameswaran</name>
<affiliation>
<wicri:noCountry code="subField"></wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Mao, J" sort="Mao, J" uniqKey="Mao J" first="J." last="Mao">J. Mao</name>
<affiliation>
<wicri:noCountry code="subField"></wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Chinchar, V G" sort="Chinchar, V G" uniqKey="Chinchar V" first="V. G." last="Chinchar">V. G. Chinchar</name>
<affiliation>
<wicri:noCountry code="subField"></wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Collins, J P" sort="Collins, J P" uniqKey="Collins J" first="J. P." last="Collins">J. P. Collins</name>
<affiliation>
<wicri:noCountry code="subField"></wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Jacobs, B L" sort="Jacobs, B L" uniqKey="Jacobs B" first="B. L." last="Jacobs">B. L. Jacobs</name>
<affiliation>
<wicri:noCountry code="subField"></wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Storfer, A" sort="Storfer, A" uniqKey="Storfer A" first="A." last="Storfer">A. Storfer</name>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Molecular Ecology</title>
<title level="j" type="alt">MOLECULAR ECOLOGY</title>
<idno type="ISSN">0962-1083</idno>
<idno type="eISSN">1365-294X</idno>
<imprint>
<biblScope unit="vol">14</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="213">213</biblScope>
<biblScope unit="page" to="224">224</biblScope>
<biblScope unit="page-count">12</biblScope>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2005-01">2005-01</date>
</imprint>
<idno type="ISSN">0962-1083</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0962-1083</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Ambystoma</term>
<term>Ambystoma mexicanum</term>
<term>Ambystoma tigrinum</term>
<term>Ambystoma tigrinum stebbinsi</term>
<term>Ambystoma tigrinum virus</term>
<term>American ranaviruses</term>
<term>Amphibian</term>
<term>Amphibian declines</term>
<term>Appropriate model</term>
<term>Aquatic organisms</term>
<term>Arizona state university</term>
<term>Assistant professor</term>
<term>Axolotl ranavirus</term>
<term>Bait</term>
<term>Bait salamanders</term>
<term>Bait shop</term>
<term>Bayesian</term>
<term>Bayesian analyses</term>
<term>Biological inferences</term>
<term>Blackwell publishing</term>
<term>Bootstrap</term>
<term>Bootstrap replicates</term>
<term>Bootstrap support values</term>
<term>Bottom numbers</term>
<term>Capsid</term>
<term>Capsid protein</term>
<term>Capsid protein sequences</term>
<term>Cellular biology</term>
<term>Chinchar</term>
<term>Clade</term>
<term>Clade analyses</term>
<term>Clade analysis</term>
<term>Cladistic analysis</term>
<term>Colonization</term>
<term>Colorado strains</term>
<term>Complete lineage</term>
<term>Concatenated sequences</term>
<term>Consistency index middle numbers</term>
<term>Contiguous range expansion</term>
<term>Deletion</term>
<term>Disease emergence</term>
<term>Disjunct distribution</term>
<term>Divergence</term>
<term>Ecology</term>
<term>Epinephelus tauvina</term>
<term>European catfish virus</term>
<term>Family iridoviridae</term>
<term>Fish diseases</term>
<term>Frog</term>
<term>Frog virus</term>
<term>Genbank</term>
<term>Genbank accession numbers</term>
<term>Gene flow</term>
<term>Genetic divergence</term>
<term>Genome</term>
<term>Genomic sequence</term>
<term>Genus ranavirus</term>
<term>Geographical distances</term>
<term>Geographical distribution</term>
<term>Grand canyon</term>
<term>Haplotype</term>
<term>Haplotype network</term>
<term>High homology</term>
<term>Historical spread</term>
<term>Host switch</term>
<term>Human involvement</term>
<term>Hyatt</term>
<term>Incomplete lineage</term>
<term>Indiana university</term>
<term>Indiana university axolotl colony</term>
<term>Infectious diseases</term>
<term>Inference chain</term>
<term>Internal nodes</term>
<term>Internal tree nodes</term>
<term>Iridovirus</term>
<term>Iridoviruses</term>
<term>Isotype</term>
<term>Jancovich</term>
<term>Largemouth bass</term>
<term>Longdistance colonization</term>
<term>Major capsid protein</term>
<term>Majority rule consensus</term>
<term>Manitoba</term>
<term>Manitoba virus</term>
<term>Methyltransferase</term>
<term>Methyltransferase gene</term>
<term>Methyltransferase genes</term>
<term>Molecular biology</term>
<term>Molecular characterization</term>
<term>Molecular clock</term>
<term>Molecular ecology</term>
<term>Molecular evolution</term>
<term>Monophyletic clade</term>
<term>Monophyly</term>
<term>Multiple introductions</term>
<term>Mutational</term>
<term>Mutational step</term>
<term>Mutational steps</term>
<term>National academy</term>
<term>Nebulosum</term>
<term>Noncoding regions</term>
<term>Other amphibian</term>
<term>Other ranaviruses</term>
<term>Other strains</term>
<term>Parsimony analysis</term>
<term>Particular clade</term>
<term>Partition homogeneity tests</term>
<term>Pathogen</term>
<term>Perca fluviatilis</term>
<term>Permutation tests</term>
<term>Phylogenetic</term>
<term>Phylogenetic analyses</term>
<term>Phylogeographical</term>
<term>Phylogeographical analyses</term>
<term>Population history</term>
<term>Potential causes</term>
<term>Potential treatment strategies</term>
<term>Rainbow trout</term>
<term>Ranavirus</term>
<term>Ranaviruses</term>
<term>Range expansion</term>
<term>Recent spread</term>
<term>Redfin perch</term>
<term>Regina ranavirus</term>
<term>Salamander</term>
<term>Salamander iridoviruses</term>
<term>Salamander mortalities</term>
<term>Salamander ranavirus</term>
<term>Salamander ranaviruses</term>
<term>Salamander viruses</term>
<term>Saskatchewan</term>
<term>Sequence alignment</term>
<term>Sequence analysis</term>
<term>Sequence data</term>
<term>Shallow divergence</term>
<term>Single introduction</term>
<term>Single mutation</term>
<term>Single substitution</term>
<term>Southern arizona</term>
<term>Sport fish</term>
<term>Statistical phylogeography</term>
<term>Structural gene</term>
<term>Templeton</term>
<term>Testudo hermanni</term>
<term>Tiger salamander</term>
<term>Tiger salamander iridovirus</term>
<term>Tiger salamander ranavirus</term>
<term>Tiger salamander virus strains</term>
<term>Tigrinum</term>
<term>Tougaloo college</term>
<term>Type ranavirus</term>
<term>Upper numbers</term>
<term>Viral</term>
<term>Virology</term>
<term>Virus</term>
<term>Virus strains</term>
<term>Washington state university</term>
<term>Wildlife diseases</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Our understanding of origins and spread of emerging infectious diseases has increased dramatically because of recent applications of phylogenetic theory. Iridoviruses are emerging pathogens that cause global amphibian epizootics, including tiger salamander (Ambystoma tigrinum) die‐offs throughout western North America. To explain phylogeographical relationships and potential causes for emergence of western North American salamander iridovirus strains, we sequenced major capsid protein and DNA methyltransferase genes, as well as two noncoding regions from 18 geographically widespread isolates. Phylogenetic analyses of sequence data from the capsid protein gene showed shallow genetic divergence (< 1%) among salamander iridovirus strains and monophyly relative to available fish, reptile, and other amphibian iridovirus strains from the genus Ranavirus, suggesting a single introduction and radiation. Analysis of capsid protein sequences also provided support for a closer relationship of tiger salamander virus strains to those isolated from sport fish (e.g. rainbow trout) than other amphibian isolates. Despite monophyly based on capsid protein sequences, there was low genetic divergence among all strains (< 1.1%) based on a supergene analysis of the capsid protein and the two noncoding regions. These analyses also showed polyphyly of strains from Arizona and Colorado, suggesting recent spread. Nested clade analyses indicated both range expansion and long‐distance colonization in clades containing virus strains isolated from bait salamanders and the Indiana University axolotl (Ambystoma mexicanum) colony. Human enhancement of viral movement is a mechanism consistent with these results. These findings suggest North American salamander ranaviruses cause emerging disease, as evidenced by apparent recent spread over a broad geographical area.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chinchar, V G" sort="Chinchar, V G" uniqKey="Chinchar V" first="V. G." last="Chinchar">V. G. Chinchar</name>
<name sortKey="Collins, J P" sort="Collins, J P" uniqKey="Collins J" first="J. P." last="Collins">J. P. Collins</name>
<name sortKey="Davidson, E W" sort="Davidson, E W" uniqKey="Davidson E" first="E. W." last="Davidson">E. W. Davidson</name>
<name sortKey="Jacobs, B L" sort="Jacobs, B L" uniqKey="Jacobs B" first="B. L." last="Jacobs">B. L. Jacobs</name>
<name sortKey="Jancovich, J K" sort="Jancovich, J K" uniqKey="Jancovich J" first="J. K." last="Jancovich">J. K. Jancovich</name>
<name sortKey="Mao, J" sort="Mao, J" uniqKey="Mao J" first="J." last="Mao">J. Mao</name>
<name sortKey="Parameswaran, N" sort="Parameswaran, N" uniqKey="Parameswaran N" first="N." last="Parameswaran">N. Parameswaran</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Storfer, A" sort="Storfer, A" uniqKey="Storfer A" first="A." last="Storfer">A. Storfer</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Istex/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A74 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd -nk 001A74 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Istex
   |étape=   Checkpoint
   |type=    RBID
   |clé=     ISTEX:C4C186DB3DB878A8AFEBB9D2D50F421D62CD5826
   |texte=   Evidence for emergence of an amphibian iridoviral disease because of human‐enhanced spread
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021