Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Groundwater arsenic removal using granular TiO2: integrated laboratory and field study.

Identifieur interne : 000E23 ( Main/Exploration ); précédent : 000E22; suivant : 000E24

Groundwater arsenic removal using granular TiO2: integrated laboratory and field study.

Auteurs : Jinli Cui [République populaire de Chine] ; Jingjing Du ; Siwu Yu ; Chuanyong Jing ; Tingshan Chan

Source :

RBID : pubmed:25516251

Descripteurs français

English descriptors

Abstract

High concentrations of arsenic (As) in groundwater pose a great threat to human health. The motivation of this study was to provide a practical solution for As-safe water in As geogenic areas using granular TiO2 (GTiO2). The kinetics results indicated that the As (III/V) adsorption on GTiO2 conformed to the Weber-Morris (WM) intraparticle diffusion model. The Langmuir isotherm results suggested that the adsorption capacities for As (III) and As (V) were 106.4 and 38.3 mg/g, respectively. Ion effect study showed that cationic Ca and Mg substantially enhanced As (V) adsorption, whereas no significant impact was observed on As (III). Silicate substantially decreased As (V) adsorption by 57 % and As (III) by 50 %. HCO3 (-) remarkably inhibited As (V) adsorption by 52 %, whereas it slightly reduced As (III) adsorption by 8 %. Field column results demonstrated that ∼700 μg/L As was removed at an empty bed contact time (EBCT) of 1.08 min for 968 bed volumes before effluent As concentration exceeded 10 μg/L, corresponding to 0.96 mg As/g GTiO2. Two household filters loaded with 110 g GTiO2 in the on-off operational mode can provide 6-L/day As-safe drinking water up to 288 and 600 days from the groundwater containing ∼700 μg/L As and ∼217 μg/L As, respectively. Integration of batch experiments and column tests with systematic variation of EBCTs was successfully achieved using PHREEQC incorporating a charge distribution multisite complexation (CD-MUSIC) model and one-dimensional reactive transport block.

DOI: 10.1007/s11356-014-3955-8
PubMed: 25516251


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Groundwater arsenic removal using granular TiO2: integrated laboratory and field study.</title>
<author>
<name sortKey="Cui, Jinli" sort="Cui, Jinli" uniqKey="Cui J" first="Jinli" last="Cui">Jinli Cui</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085</wicri:regionArea>
<wicri:noRegion>100085</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Du, Jingjing" sort="Du, Jingjing" uniqKey="Du J" first="Jingjing" last="Du">Jingjing Du</name>
</author>
<author>
<name sortKey="Yu, Siwu" sort="Yu, Siwu" uniqKey="Yu S" first="Siwu" last="Yu">Siwu Yu</name>
</author>
<author>
<name sortKey="Jing, Chuanyong" sort="Jing, Chuanyong" uniqKey="Jing C" first="Chuanyong" last="Jing">Chuanyong Jing</name>
</author>
<author>
<name sortKey="Chan, Tingshan" sort="Chan, Tingshan" uniqKey="Chan T" first="Tingshan" last="Chan">Tingshan Chan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25516251</idno>
<idno type="pmid">25516251</idno>
<idno type="doi">10.1007/s11356-014-3955-8</idno>
<idno type="wicri:Area/Main/Corpus">000E64</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E64</idno>
<idno type="wicri:Area/Main/Curation">000E64</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E64</idno>
<idno type="wicri:Area/Main/Exploration">000E64</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Groundwater arsenic removal using granular TiO2: integrated laboratory and field study.</title>
<author>
<name sortKey="Cui, Jinli" sort="Cui, Jinli" uniqKey="Cui J" first="Jinli" last="Cui">Jinli Cui</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085</wicri:regionArea>
<wicri:noRegion>100085</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Du, Jingjing" sort="Du, Jingjing" uniqKey="Du J" first="Jingjing" last="Du">Jingjing Du</name>
</author>
<author>
<name sortKey="Yu, Siwu" sort="Yu, Siwu" uniqKey="Yu S" first="Siwu" last="Yu">Siwu Yu</name>
</author>
<author>
<name sortKey="Jing, Chuanyong" sort="Jing, Chuanyong" uniqKey="Jing C" first="Chuanyong" last="Jing">Chuanyong Jing</name>
</author>
<author>
<name sortKey="Chan, Tingshan" sort="Chan, Tingshan" uniqKey="Chan T" first="Tingshan" last="Chan">Tingshan Chan</name>
</author>
</analytic>
<series>
<title level="j">Environmental science and pollution research international</title>
<idno type="eISSN">1614-7499</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adsorption (MeSH)</term>
<term>Arsenic (chemistry)</term>
<term>Bicarbonates (chemistry)</term>
<term>Calcium (chemistry)</term>
<term>Filtration (MeSH)</term>
<term>Groundwater (chemistry)</term>
<term>Kinetics (MeSH)</term>
<term>Magnesium (chemistry)</term>
<term>Models, Theoretical (MeSH)</term>
<term>Silicates (chemistry)</term>
<term>Titanium (chemistry)</term>
<term>Water Pollutants, Chemical (chemistry)</term>
<term>Water Purification (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adsorption (MeSH)</term>
<term>Arsenic (composition chimique)</term>
<term>Calcium (composition chimique)</term>
<term>Cinétique (MeSH)</term>
<term>Filtration (MeSH)</term>
<term>Hydrogénocarbonates (composition chimique)</term>
<term>Magnésium (composition chimique)</term>
<term>Modèles théoriques (MeSH)</term>
<term>Nappe phréatique (composition chimique)</term>
<term>Polluants chimiques de l'eau (composition chimique)</term>
<term>Purification de l'eau (méthodes)</term>
<term>Silicates (composition chimique)</term>
<term>Titane (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Arsenic</term>
<term>Bicarbonates</term>
<term>Calcium</term>
<term>Magnesium</term>
<term>Silicates</term>
<term>Titanium</term>
<term>Water Pollutants, Chemical</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Groundwater</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Arsenic</term>
<term>Calcium</term>
<term>Hydrogénocarbonates</term>
<term>Magnésium</term>
<term>Nappe phréatique</term>
<term>Polluants chimiques de l'eau</term>
<term>Silicates</term>
<term>Titane</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Water Purification</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Purification de l'eau</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adsorption</term>
<term>Filtration</term>
<term>Kinetics</term>
<term>Models, Theoretical</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adsorption</term>
<term>Cinétique</term>
<term>Filtration</term>
<term>Modèles théoriques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">High concentrations of arsenic (As) in groundwater pose a great threat to human health. The motivation of this study was to provide a practical solution for As-safe water in As geogenic areas using granular TiO2 (GTiO2). The kinetics results indicated that the As (III/V) adsorption on GTiO2 conformed to the Weber-Morris (WM) intraparticle diffusion model. The Langmuir isotherm results suggested that the adsorption capacities for As (III) and As (V) were 106.4 and 38.3 mg/g, respectively. Ion effect study showed that cationic Ca and Mg substantially enhanced As (V) adsorption, whereas no significant impact was observed on As (III). Silicate substantially decreased As (V) adsorption by 57 % and As (III) by 50 %. HCO3 (-) remarkably inhibited As (V) adsorption by 52 %, whereas it slightly reduced As (III) adsorption by 8 %. Field column results demonstrated that ∼700 μg/L As was removed at an empty bed contact time (EBCT) of 1.08 min for 968 bed volumes before effluent As concentration exceeded 10 μg/L, corresponding to 0.96 mg As/g GTiO2. Two household filters loaded with 110 g GTiO2 in the on-off operational mode can provide 6-L/day As-safe drinking water up to 288 and 600 days from the groundwater containing ∼700 μg/L As and ∼217 μg/L As, respectively. Integration of batch experiments and column tests with systematic variation of EBCTs was successfully achieved using PHREEQC incorporating a charge distribution multisite complexation (CD-MUSIC) model and one-dimensional reactive transport block. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">25516251</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>08</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1614-7499</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>22</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Environmental science and pollution research international</Title>
<ISOAbbreviation>Environ Sci Pollut Res Int</ISOAbbreviation>
</Journal>
<ArticleTitle>Groundwater arsenic removal using granular TiO2: integrated laboratory and field study.</ArticleTitle>
<Pagination>
<MedlinePgn>8224-34</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11356-014-3955-8</ELocationID>
<Abstract>
<AbstractText>High concentrations of arsenic (As) in groundwater pose a great threat to human health. The motivation of this study was to provide a practical solution for As-safe water in As geogenic areas using granular TiO2 (GTiO2). The kinetics results indicated that the As (III/V) adsorption on GTiO2 conformed to the Weber-Morris (WM) intraparticle diffusion model. The Langmuir isotherm results suggested that the adsorption capacities for As (III) and As (V) were 106.4 and 38.3 mg/g, respectively. Ion effect study showed that cationic Ca and Mg substantially enhanced As (V) adsorption, whereas no significant impact was observed on As (III). Silicate substantially decreased As (V) adsorption by 57 % and As (III) by 50 %. HCO3 (-) remarkably inhibited As (V) adsorption by 52 %, whereas it slightly reduced As (III) adsorption by 8 %. Field column results demonstrated that ∼700 μg/L As was removed at an empty bed contact time (EBCT) of 1.08 min for 968 bed volumes before effluent As concentration exceeded 10 μg/L, corresponding to 0.96 mg As/g GTiO2. Two household filters loaded with 110 g GTiO2 in the on-off operational mode can provide 6-L/day As-safe drinking water up to 288 and 600 days from the groundwater containing ∼700 μg/L As and ∼217 μg/L As, respectively. Integration of batch experiments and column tests with systematic variation of EBCTs was successfully achieved using PHREEQC incorporating a charge distribution multisite complexation (CD-MUSIC) model and one-dimensional reactive transport block. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cui</LastName>
<ForeName>Jinli</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Jingjing</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Siwu</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jing</LastName>
<ForeName>Chuanyong</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chan</LastName>
<ForeName>Tingshan</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>12</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Environ Sci Pollut Res Int</MedlineTA>
<NlmUniqueID>9441769</NlmUniqueID>
<ISSNLinking>0944-1344</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001639">Bicarbonates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017640">Silicates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014874">Water Pollutants, Chemical</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>15FIX9V2JP</RegistryNumber>
<NameOfSubstance UI="C009495">titanium dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>D1JT611TNE</RegistryNumber>
<NameOfSubstance UI="D014025">Titanium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>I38ZP9992A</RegistryNumber>
<NameOfSubstance UI="D008274">Magnesium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N712M78A8G</RegistryNumber>
<NameOfSubstance UI="D001151">Arsenic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000327" MajorTopicYN="N">Adsorption</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001151" MajorTopicYN="N">Arsenic</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001639" MajorTopicYN="N">Bicarbonates</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005374" MajorTopicYN="N">Filtration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060587" MajorTopicYN="N">Groundwater</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008274" MajorTopicYN="N">Magnesium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="N">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017640" MajorTopicYN="N">Silicates</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014025" MajorTopicYN="N">Titanium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014874" MajorTopicYN="N">Water Pollutants, Chemical</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018508" MajorTopicYN="N">Water Purification</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>08</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>12</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>8</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25516251</ArticleId>
<ArticleId IdType="doi">10.1007/s11356-014-3955-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Environ Sci Technol. 2010 Dec 1;44(23):9094-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21053910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Aug 23;341(6148):866-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23970694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Contam Hydrol. 2012 Mar 15;129-130:2-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22136983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2014;48(5):2759-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24460061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2013 Nov 15;262:1176-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22785008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2012 May 15;215-216:1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22445257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2013 Apr 2;47(7):3432-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23473362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2005 Oct 15;39(20):8032-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16295871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Colloid Interface Sci. 2008 Apr 15;320(2):400-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18272166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Chem. 2014 Aug;33(8):1692-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24619954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2010 Nov;44(19):5823-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20663535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2014 Mar;21(5):3218-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24203255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2003 May-Jun;32(3):841-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12809285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8531-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2012 Oct 15;46(16):5061-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22841593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 May 28;328(5982):1123-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20508123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2013 May 21;47(10):5419-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23600923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2008 Aug 15;156(1-3):604-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18242828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2008 Sep 1;42(17):6318-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18800496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Sci (China). 2014 Feb 1;26(2):240-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25076514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2013 Jun 1;47(9):2938-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23566332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2014 Feb;21(3):1944-1953</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24014199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2004 Nov;38(18):4002-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15380990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Colloid Interface Sci. 2006 Sep 1;301(1):1-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16765978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2009 Aug-Sep;157(8-9):2514-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19339086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2012 Feb;4(2):714-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22235839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13751-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23918360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2005 Jul;60(3):389-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15924958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Res. 2008 Nov;42(18):4629-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18786691</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chan, Tingshan" sort="Chan, Tingshan" uniqKey="Chan T" first="Tingshan" last="Chan">Tingshan Chan</name>
<name sortKey="Du, Jingjing" sort="Du, Jingjing" uniqKey="Du J" first="Jingjing" last="Du">Jingjing Du</name>
<name sortKey="Jing, Chuanyong" sort="Jing, Chuanyong" uniqKey="Jing C" first="Chuanyong" last="Jing">Chuanyong Jing</name>
<name sortKey="Yu, Siwu" sort="Yu, Siwu" uniqKey="Yu S" first="Siwu" last="Yu">Siwu Yu</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Cui, Jinli" sort="Cui, Jinli" uniqKey="Cui J" first="Jinli" last="Cui">Jinli Cui</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E23 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E23 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25516251
   |texte=   Groundwater arsenic removal using granular TiO2: integrated laboratory and field study.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25516251" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021