Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Waterproof Fabric-Based Multifunctional Triboelectric Nanogenerator for Universally Harvesting Energy from Raindrops, Wind, and Human Motions and as Self-Powered Sensors.

Identifieur interne : 000427 ( Main/Exploration ); précédent : 000426; suivant : 000428

Waterproof Fabric-Based Multifunctional Triboelectric Nanogenerator for Universally Harvesting Energy from Raindrops, Wind, and Human Motions and as Self-Powered Sensors.

Auteurs : Ying-Chih Lai ; Yung-Chi Hsiao ; Hsing-Mei Wu ; Zhong Lin Wang [États-Unis]

Source :

RBID : pubmed:30886807

Abstract

Developing nimble, shape-adaptable, conformable, and widely implementable energy harvesters with the capability to scavenge multiple renewable and ambient energy sources is highly demanded for distributed, remote, and wearable energy uses to meet the needs of internet of things. Here, the first single waterproof and fabric-based multifunctional triboelectric nanogenerator (WPF-MTENG) is presented, which can produce electricity from both natural tiny impacts (rain and wind) and body movements, and can not only serve as a flexible, adaptive, wearable, and universal energy collector but also act as a self-powered, active, fabric-based sensor. The working principle comes from a conjunction of contact triboelectrification and electrostatic induction during contact/separation of internal soft fabrics. The structural/material designs of the WPF-MTENG are systematically studied to optimize its performance, and its outputs under different conditions of rain, wind, and various body movements are comprehensively investigated. Its applicability is practically demonstrated in various objects and working situations to gather ambient energy. Lastly, a WPF-MTENG-based keypad as self-powered human-system interfaces is demonstrated on a garment for remotely controlling a music-player system. This multifunctional WPF-MTENG, which is as flexible as clothes, not only presents a promising step toward democratic collections of alternative energy but also provides a new vision for wearable technologies.

DOI: 10.1002/advs.201801883
PubMed: 30886807
PubMed Central: PMC6402409


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Waterproof Fabric-Based Multifunctional Triboelectric Nanogenerator for Universally Harvesting Energy from Raindrops, Wind, and Human Motions and as Self-Powered Sensors.</title>
<author>
<name sortKey="Lai, Ying Chih" sort="Lai, Ying Chih" uniqKey="Lai Y" first="Ying-Chih" last="Lai">Ying-Chih Lai</name>
<affiliation>
<nlm:affiliation>Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</wicri:noCountry>
<wicri:noCountry code="no comma">Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Innovation and Development Center of Sustainable Agriculture Research Center for Sustainable Energy and Nanotechnology National Chung Hsing University Taichung 40227 Taiwan.</nlm:affiliation>
<wicri:noCountry code="no comma">Innovation and Development Center of Sustainable Agriculture Research Center for Sustainable Energy and Nanotechnology National Chung Hsing University Taichung 40227 Taiwan.</wicri:noCountry>
<wicri:noCountry code="no comma">Innovation and Development Center of Sustainable Agriculture Research Center for Sustainable Energy and Nanotechnology National Chung Hsing University Taichung 40227 Taiwan.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Hsiao, Yung Chi" sort="Hsiao, Yung Chi" uniqKey="Hsiao Y" first="Yung-Chi" last="Hsiao">Yung-Chi Hsiao</name>
<affiliation>
<nlm:affiliation>Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</wicri:noCountry>
<wicri:noCountry code="no comma">Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Wu, Hsing Mei" sort="Wu, Hsing Mei" uniqKey="Wu H" first="Hsing-Mei" last="Wu">Hsing-Mei Wu</name>
<affiliation>
<nlm:affiliation>Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</wicri:noCountry>
<wicri:noCountry code="no comma">Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zhong Lin" sort="Wang, Zhong Lin" uniqKey="Wang Z" first="Zhong Lin" last="Wang">Zhong Lin Wang</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
<affiliation>
<nlm:affiliation>Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences National Center for Nanoscience and Technology (NCNST) Beijing 100083 P. R. China.</nlm:affiliation>
<wicri:noCountry code="no comma">Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences National Center for Nanoscience and Technology (NCNST) Beijing 100083 P. R. China.</wicri:noCountry>
<wicri:noCountry code="no comma">Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences National Center for Nanoscience and Technology (NCNST) Beijing 100083 P. R. China.</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30886807</idno>
<idno type="pmid">30886807</idno>
<idno type="doi">10.1002/advs.201801883</idno>
<idno type="pmc">PMC6402409</idno>
<idno type="wicri:Area/Main/Corpus">000566</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000566</idno>
<idno type="wicri:Area/Main/Curation">000566</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000566</idno>
<idno type="wicri:Area/Main/Exploration">000566</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Waterproof Fabric-Based Multifunctional Triboelectric Nanogenerator for Universally Harvesting Energy from Raindrops, Wind, and Human Motions and as Self-Powered Sensors.</title>
<author>
<name sortKey="Lai, Ying Chih" sort="Lai, Ying Chih" uniqKey="Lai Y" first="Ying-Chih" last="Lai">Ying-Chih Lai</name>
<affiliation>
<nlm:affiliation>Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</wicri:noCountry>
<wicri:noCountry code="no comma">Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Innovation and Development Center of Sustainable Agriculture Research Center for Sustainable Energy and Nanotechnology National Chung Hsing University Taichung 40227 Taiwan.</nlm:affiliation>
<wicri:noCountry code="no comma">Innovation and Development Center of Sustainable Agriculture Research Center for Sustainable Energy and Nanotechnology National Chung Hsing University Taichung 40227 Taiwan.</wicri:noCountry>
<wicri:noCountry code="no comma">Innovation and Development Center of Sustainable Agriculture Research Center for Sustainable Energy and Nanotechnology National Chung Hsing University Taichung 40227 Taiwan.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Hsiao, Yung Chi" sort="Hsiao, Yung Chi" uniqKey="Hsiao Y" first="Yung-Chi" last="Hsiao">Yung-Chi Hsiao</name>
<affiliation>
<nlm:affiliation>Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</wicri:noCountry>
<wicri:noCountry code="no comma">Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Wu, Hsing Mei" sort="Wu, Hsing Mei" uniqKey="Wu H" first="Hsing-Mei" last="Wu">Hsing-Mei Wu</name>
<affiliation>
<nlm:affiliation>Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</wicri:noCountry>
<wicri:noCountry code="no comma">Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zhong Lin" sort="Wang, Zhong Lin" uniqKey="Wang Z" first="Zhong Lin" last="Wang">Zhong Lin Wang</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
<affiliation>
<nlm:affiliation>Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences National Center for Nanoscience and Technology (NCNST) Beijing 100083 P. R. China.</nlm:affiliation>
<wicri:noCountry code="no comma">Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences National Center for Nanoscience and Technology (NCNST) Beijing 100083 P. R. China.</wicri:noCountry>
<wicri:noCountry code="no comma">Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences National Center for Nanoscience and Technology (NCNST) Beijing 100083 P. R. China.</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Advanced science (Weinheim, Baden-Wurttemberg, Germany)</title>
<idno type="ISSN">2198-3844</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Developing nimble, shape-adaptable, conformable, and widely implementable energy harvesters with the capability to scavenge multiple renewable and ambient energy sources is highly demanded for distributed, remote, and wearable energy uses to meet the needs of internet of things. Here, the first single waterproof and fabric-based multifunctional triboelectric nanogenerator (WPF-MTENG) is presented, which can produce electricity from both natural tiny impacts (rain and wind) and body movements, and can not only serve as a flexible, adaptive, wearable, and universal energy collector but also act as a self-powered, active, fabric-based sensor. The working principle comes from a conjunction of contact triboelectrification and electrostatic induction during contact/separation of internal soft fabrics. The structural/material designs of the WPF-MTENG are systematically studied to optimize its performance, and its outputs under different conditions of rain, wind, and various body movements are comprehensively investigated. Its applicability is practically demonstrated in various objects and working situations to gather ambient energy. Lastly, a WPF-MTENG-based keypad as self-powered human-system interfaces is demonstrated on a garment for remotely controlling a music-player system. This multifunctional WPF-MTENG, which is as flexible as clothes, not only presents a promising step toward democratic collections of alternative energy but also provides a new vision for wearable technologies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30886807</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2198-3844</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>6</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2019</Year>
<Month>Mar</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>Advanced science (Weinheim, Baden-Wurttemberg, Germany)</Title>
<ISOAbbreviation>Adv Sci (Weinh)</ISOAbbreviation>
</Journal>
<ArticleTitle>Waterproof Fabric-Based Multifunctional Triboelectric Nanogenerator for Universally Harvesting Energy from Raindrops, Wind, and Human Motions and as Self-Powered Sensors.</ArticleTitle>
<Pagination>
<MedlinePgn>1801883</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/advs.201801883</ELocationID>
<Abstract>
<AbstractText>Developing nimble, shape-adaptable, conformable, and widely implementable energy harvesters with the capability to scavenge multiple renewable and ambient energy sources is highly demanded for distributed, remote, and wearable energy uses to meet the needs of internet of things. Here, the first single waterproof and fabric-based multifunctional triboelectric nanogenerator (WPF-MTENG) is presented, which can produce electricity from both natural tiny impacts (rain and wind) and body movements, and can not only serve as a flexible, adaptive, wearable, and universal energy collector but also act as a self-powered, active, fabric-based sensor. The working principle comes from a conjunction of contact triboelectrification and electrostatic induction during contact/separation of internal soft fabrics. The structural/material designs of the WPF-MTENG are systematically studied to optimize its performance, and its outputs under different conditions of rain, wind, and various body movements are comprehensively investigated. Its applicability is practically demonstrated in various objects and working situations to gather ambient energy. Lastly, a WPF-MTENG-based keypad as self-powered human-system interfaces is demonstrated on a garment for remotely controlling a music-player system. This multifunctional WPF-MTENG, which is as flexible as clothes, not only presents a promising step toward democratic collections of alternative energy but also provides a new vision for wearable technologies.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lai</LastName>
<ForeName>Ying-Chih</ForeName>
<Initials>YC</Initials>
<AffiliationInfo>
<Affiliation>Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Innovation and Development Center of Sustainable Agriculture Research Center for Sustainable Energy and Nanotechnology National Chung Hsing University Taichung 40227 Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hsiao</LastName>
<ForeName>Yung-Chi</ForeName>
<Initials>YC</Initials>
<AffiliationInfo>
<Affiliation>Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Hsing-Mei</ForeName>
<Initials>HM</Initials>
<AffiliationInfo>
<Affiliation>Department of Materials Science and Engineering National Chung Hsing University Taichung 40227 Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Zhong Lin</ForeName>
<Initials>ZL</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-5530-0380</Identifier>
<AffiliationInfo>
<Affiliation>School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences National Center for Nanoscience and Technology (NCNST) Beijing 100083 P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>01</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Adv Sci (Weinh)</MedlineTA>
<NlmUniqueID>101664569</NlmUniqueID>
<ISSNLinking>2198-3844</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">raindrop energy</Keyword>
<Keyword MajorTopicYN="N">smart clothes</Keyword>
<Keyword MajorTopicYN="N">triboelectric nanogenerators</Keyword>
<Keyword MajorTopicYN="N">wearable energy</Keyword>
<Keyword MajorTopicYN="N">wind energy</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30886807</ArticleId>
<ArticleId IdType="doi">10.1002/advs.201801883</ArticleId>
<ArticleId IdType="pii">ADVS920</ArticleId>
<ArticleId IdType="pmc">PMC6402409</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2006 Apr 14;312(5771):242-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16614215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Feb 14;451(7180):809-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18273015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Mater. 2013 May 21;25(19):2733-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23553715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2013 Oct 22;7(10):9461-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24044652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2013 Nov 26;7(11):9533-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24079963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2014 Jun 24;8(6):6273-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24766072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Mater. 2014 Jul 16;26(27):4690-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24830874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Mater. 2015 Jan 14;27(2):240-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25377621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Mater. 2015 Apr 17;27(15):2433-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25692572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Mater. 2016 Jan 6;28(1):98-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26540288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Dec 11;6:8975</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26656252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Mater. 2016 Feb 24;28(8):1650-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26669627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2016 Feb 23;10(2):1780-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26738695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2016 Apr 26;10(4):4797-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27077467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Colloid Interface Sci. 2016 Sep 1;477:176-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27267040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Mater. 2016 Dec;28(45):10024-10032</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27678014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Adv. 2016 Oct 26;2(10):e1600097</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27819039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Feb 8;542(7640):159-160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28179678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Mater. 2017 Oct;29(38):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28786510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Aug 25;357(6353):773-778</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28839068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2017 Sep 26;11(9):9490-9499</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28901749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2018 Mar 27;12(3):2893-2899</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29444396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Mater. 2018 Apr;30(15):e1706790</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29508454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Mater. 2018 Jun 7;:e1707271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29877037</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Géorgie (États-Unis)</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Hsiao, Yung Chi" sort="Hsiao, Yung Chi" uniqKey="Hsiao Y" first="Yung-Chi" last="Hsiao">Yung-Chi Hsiao</name>
<name sortKey="Lai, Ying Chih" sort="Lai, Ying Chih" uniqKey="Lai Y" first="Ying-Chih" last="Lai">Ying-Chih Lai</name>
<name sortKey="Wu, Hsing Mei" sort="Wu, Hsing Mei" uniqKey="Wu H" first="Hsing-Mei" last="Wu">Hsing-Mei Wu</name>
</noCountry>
<country name="États-Unis">
<region name="Géorgie (États-Unis)">
<name sortKey="Wang, Zhong Lin" sort="Wang, Zhong Lin" uniqKey="Wang Z" first="Zhong Lin" last="Wang">Zhong Lin Wang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000427 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000427 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30886807
   |texte=   Waterproof Fabric-Based Multifunctional Triboelectric Nanogenerator for Universally Harvesting Energy from Raindrops, Wind, and Human Motions and as Self-Powered Sensors.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30886807" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021