Serveur d'exploration Posturo

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Neurogenic potential of the vestibular nuclei and behavioural recovery time course in the adult cat are governed by the nature of the vestibular damage.

Identifieur interne : 000C08 ( Main/Curation ); précédent : 000C07; suivant : 000C09

Neurogenic potential of the vestibular nuclei and behavioural recovery time course in the adult cat are governed by the nature of the vestibular damage.

Auteurs : Sophie Dutheil [France] ; Michel Lacour ; Brahim Tighilet

Source :

RBID : pubmed:21853029

Descripteurs français

English descriptors

Abstract

Functional and reactive neurogenesis and astrogenesis are observed in deafferented vestibular nuclei after unilateral vestibular nerve section in adult cats. The newborn cells survive up to one month and contribute actively to the successful recovery of posturo-locomotor functions. This study investigates whether the nature of vestibular deafferentation has an incidence on the neurogenic potential of the vestibular nuclei, and on the time course of behavioural recovery. Three animal models that mimic different vestibular pathologies were used: unilateral and permanent suppression of vestibular input by unilateral vestibular neurectomy (UVN), or by unilateral labyrinthectomy (UL, the mechanical destruction of peripheral vestibular receptors), or unilateral and reversible blockade of vestibular nerve input using tetrodotoxin (TTX). Neurogenesis and astrogenesis were revealed in the vestibular nuclei using bromodeoxyuridine (BrdU) as a newborn cell marker, while glial fibrillary acidic protein (GFAP) and glutamate decarboxylase 67 (GAD67) were used to identify astrocytes and GABAergic neurons, respectively. Spontaneous nystagmus and posturo-locomotor tests (static and dynamic balance performance) were carried out to quantify the behavioural recovery process. Results showed that the nature of vestibular loss determined the cellular plastic events occurring in the vestibular nuclei and affected the time course of behavioural recovery. Interestingly, the deafferented vestibular nuclei express neurogenic potential after acute and total vestibular loss only (UVN), while non-structural plastic processes are involved when the vestibular deafferentation is less drastic (UL, TTX). This is the first experimental evidence that the vestibular complex in the brainstem can become neurogenic under specific injury. These new data are of interest for understanding the factors favouring the expression of functional neurogenesis in adult mammals in a brain repair perspective, and are of clinical relevance in vestibular pathology.

DOI: 10.1371/journal.pone.0022262
PubMed: 21853029
PubMed Central: PMC3154899

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21853029

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Neurogenic potential of the vestibular nuclei and behavioural recovery time course in the adult cat are governed by the nature of the vestibular damage.</title>
<author>
<name sortKey="Dutheil, Sophie" sort="Dutheil, Sophie" uniqKey="Dutheil S" first="Sophie" last="Dutheil">Sophie Dutheil</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Neurosciences, UMR 6149 Neurosciences Intégratives et Adaptatives, Université de Provence/CNRS-Pôle 3C (Comportement, Cerveau, Cognition), Centre de Saint Charles, Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Département de Neurosciences, UMR 6149 Neurosciences Intégratives et Adaptatives, Université de Provence/CNRS-Pôle 3C (Comportement, Cerveau, Cognition), Centre de Saint Charles, Marseille</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lacour, Michel" sort="Lacour, Michel" uniqKey="Lacour M" first="Michel" last="Lacour">Michel Lacour</name>
</author>
<author>
<name sortKey="Tighilet, Brahim" sort="Tighilet, Brahim" uniqKey="Tighilet B" first="Brahim" last="Tighilet">Brahim Tighilet</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21853029</idno>
<idno type="pmid">21853029</idno>
<idno type="doi">10.1371/journal.pone.0022262</idno>
<idno type="pmc">PMC3154899</idno>
<idno type="wicri:Area/Main/Corpus">000C08</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C08</idno>
<idno type="wicri:Area/Main/Curation">000C08</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C08</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Neurogenic potential of the vestibular nuclei and behavioural recovery time course in the adult cat are governed by the nature of the vestibular damage.</title>
<author>
<name sortKey="Dutheil, Sophie" sort="Dutheil, Sophie" uniqKey="Dutheil S" first="Sophie" last="Dutheil">Sophie Dutheil</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Neurosciences, UMR 6149 Neurosciences Intégratives et Adaptatives, Université de Provence/CNRS-Pôle 3C (Comportement, Cerveau, Cognition), Centre de Saint Charles, Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Département de Neurosciences, UMR 6149 Neurosciences Intégratives et Adaptatives, Université de Provence/CNRS-Pôle 3C (Comportement, Cerveau, Cognition), Centre de Saint Charles, Marseille</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Lacour, Michel" sort="Lacour, Michel" uniqKey="Lacour M" first="Michel" last="Lacour">Michel Lacour</name>
</author>
<author>
<name sortKey="Tighilet, Brahim" sort="Tighilet, Brahim" uniqKey="Tighilet B" first="Brahim" last="Tighilet">Brahim Tighilet</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aging (pathology)</term>
<term>Animals (MeSH)</term>
<term>Astrocytes (metabolism)</term>
<term>Astrocytes (pathology)</term>
<term>Behavior, Animal (physiology)</term>
<term>Cats (MeSH)</term>
<term>Cell Differentiation (MeSH)</term>
<term>Cell Proliferation (MeSH)</term>
<term>Cell Survival (MeSH)</term>
<term>Glial Fibrillary Acidic Protein (metabolism)</term>
<term>Glutamate Decarboxylase (metabolism)</term>
<term>Neurogenesis (MeSH)</term>
<term>Neurons, Afferent (metabolism)</term>
<term>Neurons, Afferent (pathology)</term>
<term>Recovery of Function (physiology)</term>
<term>Time Factors (MeSH)</term>
<term>Vestibular Nuclei (enzymology)</term>
<term>Vestibular Nuclei (pathology)</term>
<term>Vestibular Nuclei (physiopathology)</term>
<term>Vestibule, Labyrinth (innervation)</term>
<term>Vestibule, Labyrinth (pathology)</term>
<term>Vestibule, Labyrinth (physiopathology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Astrocytes (anatomopathologie)</term>
<term>Astrocytes (métabolisme)</term>
<term>Chats (MeSH)</term>
<term>Comportement animal (physiologie)</term>
<term>Différenciation cellulaire (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Glutamate decarboxylase (métabolisme)</term>
<term>Labyrinthe vestibulaire (anatomopathologie)</term>
<term>Labyrinthe vestibulaire (innervation)</term>
<term>Labyrinthe vestibulaire (physiopathologie)</term>
<term>Neurogenèse (MeSH)</term>
<term>Neurones afférents (anatomopathologie)</term>
<term>Neurones afférents (métabolisme)</term>
<term>Noyaux vestibulaires (anatomopathologie)</term>
<term>Noyaux vestibulaires (enzymologie)</term>
<term>Noyaux vestibulaires (physiopathologie)</term>
<term>Prolifération cellulaire (MeSH)</term>
<term>Protéine gliofibrillaire acide (métabolisme)</term>
<term>Récupération fonctionnelle (physiologie)</term>
<term>Survie cellulaire (MeSH)</term>
<term>Vieillissement (anatomopathologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glial Fibrillary Acidic Protein</term>
<term>Glutamate Decarboxylase</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Astrocytes</term>
<term>Labyrinthe vestibulaire</term>
<term>Neurones afférents</term>
<term>Noyaux vestibulaires</term>
<term>Vieillissement</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Noyaux vestibulaires</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Vestibular Nuclei</term>
</keywords>
<keywords scheme="MESH" qualifier="innervation" xml:lang="en">
<term>Vestibule, Labyrinth</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Astrocytes</term>
<term>Neurons, Afferent</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Astrocytes</term>
<term>Glutamate decarboxylase</term>
<term>Labyrinthe vestibulaire</term>
<term>Neurones afférents</term>
<term>Protéine gliofibrillaire acide</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Aging</term>
<term>Astrocytes</term>
<term>Neurons, Afferent</term>
<term>Vestibular Nuclei</term>
<term>Vestibule, Labyrinth</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Comportement animal</term>
<term>Récupération fonctionnelle</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Behavior, Animal</term>
<term>Recovery of Function</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathologie" xml:lang="fr">
<term>Labyrinthe vestibulaire</term>
<term>Noyaux vestibulaires</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Vestibular Nuclei</term>
<term>Vestibule, Labyrinth</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cats</term>
<term>Cell Differentiation</term>
<term>Cell Proliferation</term>
<term>Cell Survival</term>
<term>Neurogenesis</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Chats</term>
<term>Différenciation cellulaire</term>
<term>Facteurs temps</term>
<term>Neurogenèse</term>
<term>Prolifération cellulaire</term>
<term>Survie cellulaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Functional and reactive neurogenesis and astrogenesis are observed in deafferented vestibular nuclei after unilateral vestibular nerve section in adult cats. The newborn cells survive up to one month and contribute actively to the successful recovery of posturo-locomotor functions. This study investigates whether the nature of vestibular deafferentation has an incidence on the neurogenic potential of the vestibular nuclei, and on the time course of behavioural recovery. Three animal models that mimic different vestibular pathologies were used: unilateral and permanent suppression of vestibular input by unilateral vestibular neurectomy (UVN), or by unilateral labyrinthectomy (UL, the mechanical destruction of peripheral vestibular receptors), or unilateral and reversible blockade of vestibular nerve input using tetrodotoxin (TTX). Neurogenesis and astrogenesis were revealed in the vestibular nuclei using bromodeoxyuridine (BrdU) as a newborn cell marker, while glial fibrillary acidic protein (GFAP) and glutamate decarboxylase 67 (GAD67) were used to identify astrocytes and GABAergic neurons, respectively. Spontaneous nystagmus and posturo-locomotor tests (static and dynamic balance performance) were carried out to quantify the behavioural recovery process. Results showed that the nature of vestibular loss determined the cellular plastic events occurring in the vestibular nuclei and affected the time course of behavioural recovery. Interestingly, the deafferented vestibular nuclei express neurogenic potential after acute and total vestibular loss only (UVN), while non-structural plastic processes are involved when the vestibular deafferentation is less drastic (UL, TTX). This is the first experimental evidence that the vestibular complex in the brainstem can become neurogenic under specific injury. These new data are of interest for understanding the factors favouring the expression of functional neurogenesis in adult mammals in a brain repair perspective, and are of clinical relevance in vestibular pathology.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21853029</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>12</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2011</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Neurogenic potential of the vestibular nuclei and behavioural recovery time course in the adult cat are governed by the nature of the vestibular damage.</ArticleTitle>
<Pagination>
<MedlinePgn>e22262</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0022262</ELocationID>
<Abstract>
<AbstractText>Functional and reactive neurogenesis and astrogenesis are observed in deafferented vestibular nuclei after unilateral vestibular nerve section in adult cats. The newborn cells survive up to one month and contribute actively to the successful recovery of posturo-locomotor functions. This study investigates whether the nature of vestibular deafferentation has an incidence on the neurogenic potential of the vestibular nuclei, and on the time course of behavioural recovery. Three animal models that mimic different vestibular pathologies were used: unilateral and permanent suppression of vestibular input by unilateral vestibular neurectomy (UVN), or by unilateral labyrinthectomy (UL, the mechanical destruction of peripheral vestibular receptors), or unilateral and reversible blockade of vestibular nerve input using tetrodotoxin (TTX). Neurogenesis and astrogenesis were revealed in the vestibular nuclei using bromodeoxyuridine (BrdU) as a newborn cell marker, while glial fibrillary acidic protein (GFAP) and glutamate decarboxylase 67 (GAD67) were used to identify astrocytes and GABAergic neurons, respectively. Spontaneous nystagmus and posturo-locomotor tests (static and dynamic balance performance) were carried out to quantify the behavioural recovery process. Results showed that the nature of vestibular loss determined the cellular plastic events occurring in the vestibular nuclei and affected the time course of behavioural recovery. Interestingly, the deafferented vestibular nuclei express neurogenic potential after acute and total vestibular loss only (UVN), while non-structural plastic processes are involved when the vestibular deafferentation is less drastic (UL, TTX). This is the first experimental evidence that the vestibular complex in the brainstem can become neurogenic under specific injury. These new data are of interest for understanding the factors favouring the expression of functional neurogenesis in adult mammals in a brain repair perspective, and are of clinical relevance in vestibular pathology.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dutheil</LastName>
<ForeName>Sophie</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Département de Neurosciences, UMR 6149 Neurosciences Intégratives et Adaptatives, Université de Provence/CNRS-Pôle 3C (Comportement, Cerveau, Cognition), Centre de Saint Charles, Marseille, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lacour</LastName>
<ForeName>Michel</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tighilet</LastName>
<ForeName>Brahim</ForeName>
<Initials>B</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>08</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005904">Glial Fibrillary Acidic Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.1.1.15</RegistryNumber>
<NameOfSubstance UI="D005968">Glutamate Decarboxylase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.1.1.15</RegistryNumber>
<NameOfSubstance UI="C402565">glutamate decarboxylase 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000375" MajorTopicYN="N">Aging</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001253" MajorTopicYN="N">Astrocytes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001522" MajorTopicYN="N">Behavior, Animal</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002415" MajorTopicYN="N">Cats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002454" MajorTopicYN="N">Cell Differentiation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002470" MajorTopicYN="N">Cell Survival</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005904" MajorTopicYN="N">Glial Fibrillary Acidic Protein</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005968" MajorTopicYN="N">Glutamate Decarboxylase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055495" MajorTopicYN="Y">Neurogenesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009475" MajorTopicYN="N">Neurons, Afferent</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020127" MajorTopicYN="N">Recovery of Function</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014726" MajorTopicYN="N">Vestibular Nuclei</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="Y">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014722" MajorTopicYN="N">Vestibule, Labyrinth</DescriptorName>
<QualifierName UI="Q000294" MajorTopicYN="Y">innervation</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>01</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21853029</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0022262</ArticleId>
<ArticleId IdType="pii">PONE-D-11-00816</ArticleId>
<ArticleId IdType="pmc">PMC3154899</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2006 Feb 2;439(7076):589-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16341203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2009 Dec 29;164(4):1444-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19782724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Neurobiol. 2000 Oct;62(3):313-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10840152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Neurochir Suppl. 1999;73:21-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10494337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Stem Cell Res Ther. 2008 Sep;3(3):163-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18782000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2006 Jan;197(1):113-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16246330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroreport. 2001 Oct 8;12(14):3051-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11568635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Brain Res Rev. 1989 Apr-Jun;14(2):155-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2665890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Neurobiol. 2006 Aug;16(4):385-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16842990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2005;130(4):853-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15652984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2001 Jul 20;908(1):58-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2011 Feb;12(2):88-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21248788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anat Rec. 1991 Dec;231(4):482-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1793176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2010 Mar;112(6):1368-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20028453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 1995 Nov;74(5):2087-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8592199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2009 Mar;108(6):1343-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19154336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):679-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16254185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2005;130(1):75-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15561426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2007 Apr 4;27(14):3845-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17409249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Pharmacol. 2011 Apr;51(4):538-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20940335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Otolaryngol. 1980 Nov-Dec;90(5-6):414-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7211335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Otolaryngol Suppl. 1993;509:1-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8285044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 1999 Feb;22(2):51-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10092043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 2005 Jun;313(3):1126-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15687370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Neurobiol. 2005 Jan;75(1):53-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15713530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2006 Sep 15;575(Pt 3):777-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16825307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2006 Jun 15;573(Pt 3):723-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16613878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Brain Res Rev. 1999 Jul;30(1):77-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10407127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Auris Nasus Larynx. 1998 May;25(2):193-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9673734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2008 Nov 19;28(47):12477-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19020040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2000 Jan;12(1):391-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10651896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroinflammation. 2010;7:91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21143912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Neurosci. 2010 Apr 14;4:11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20428495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 1976 Aug 27;113(2):255-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">821586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Jan 21;397(6716):251-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9930699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glia. 2011 Jan;59(1):152-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21046567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2005 Apr;85(2):523-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15788705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2001 Jun;13(12):2255-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11454029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Neurobiol. 1995 Jun;46(2-3):97-129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7568917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2004;548:192-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15250595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2007 Jan;25(1):47-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17241266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Oculomot Res. 1985;1:269-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2908682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Investig Drugs. 2010 Mar;11(3):298-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20178043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Med Res Opin. 2006 Sep;22(9):1651-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16968568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2011 May 26;70(4):703-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21609826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Rev. 2007 Jan;53(1):198-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17020783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2009 Jun 2;160(4):716-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19285120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vestib Res. 1995 May-Jun;5(3):187-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7627378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2005;132(3):777-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15837138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Restor Neurol Neurosci. 2010;28(1):19-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20086280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 16;101(46):16357-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15534207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2010 Jan 1;468(1):85-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19878706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comp Neurol. 2001 Jul 9;435(4):406-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11406822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Jun 22;405(6789):951-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10879536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):343-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14660786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 2002 Dec;52(6):802-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12447935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anat Rec (Hoboken). 2007 Mar;290(3):330-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17525948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Aging. 1993 Jul-Aug;14(4):275-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8367009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroreport. 2005 Sep 8;16(13):1415-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16110261</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PosturoV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C08 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000C08 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PosturoV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:21853029
   |texte=   Neurogenic potential of the vestibular nuclei and behavioural recovery time course in the adult cat are governed by the nature of the vestibular damage.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Curation/RBID.i   -Sk "pubmed:21853029" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PosturoV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 22:38:36 2020. Site generation: Thu Mar 25 16:16:50 2021