Serveur d'exploration Posturo

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Assessment of the static upright balance index and brain blood oxygen levels as parameters to evaluate pilot workload.

Identifieur interne : 000254 ( Main/Corpus ); précédent : 000253; suivant : 000255

Assessment of the static upright balance index and brain blood oxygen levels as parameters to evaluate pilot workload.

Auteurs : Jicheng Sun ; Shan Cheng ; Jin Ma ; Kaiwen Xiong ; Miao Su ; Wendong Hu

Source :

RBID : pubmed:30921375

English descriptors

Abstract

OBJECTIVE

To investigate the potential for static upright balance function and brain-blood oxygen parameters to evaluate pilot workload.

METHODS

Phase 1: The NASA Task Load Index (NASA-TLX) was used to compare the workloads of real flights with flight simulator simulated flight tasks in 15 pilots (Cohort 1). Phase 2: To determine the effects of workload, 50 cadets were divided equally into simulated flight task load (experimental) and control groups (Cohort 2). The experimental group underwent 2 h of simulated flight tasks, while the control group rested for 2 h. Their static upright balance function was evaluated using balance index-1 (BI-1), before and after the tasks, with balance system posturography equipment and cerebral blood oxygen parameters monitored with near infrared spectroscopy (NIRS) in real time. Sternberg dual-task and reaction time tests were performed in the experimental and control groups before and after the simulated flight tasks.

RESULTS

(Phase1) There was a significant correlation between the workload caused by real flight and simulated flight tasks (P<0.01), indicating that NASA-TLX scales were also a tool for measuring workloads of the stimulated flight tasks. (Phase 2) For the simulated flight task experiments, the NASA-TLX total scores were significantly different between the two groups (P<0.001) and (pre-to-post) changes of the BI-1 index were greater in the experimental group than in controls (P<0.001). The cerebral blood oxygen saturation levels (rsO2) (P<0.01) and ΔHb reductions (P<0.05) were significantly higher in the experimental, compared to the control group, during the simulated flight task. In contrast to the control group the error rates (P = 0.002) and accuracy (P<0.001) changed significantly in the experimental group after the simulated flight tasks.

CONCLUSIONS

The simulated flight task model could simulate the real flight task load and static balance and NIRS were useful for evaluating pilots' workload/fatigue.


DOI: 10.1371/journal.pone.0214277
PubMed: 30921375
PubMed Central: PMC6438667

Links to Exploration step

pubmed:30921375

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Assessment of the static upright balance index and brain blood oxygen levels as parameters to evaluate pilot workload.</title>
<author>
<name sortKey="Sun, Jicheng" sort="Sun, Jicheng" uniqKey="Sun J" first="Jicheng" last="Sun">Jicheng Sun</name>
<affiliation>
<nlm:affiliation>Deparment of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Shan" sort="Cheng, Shan" uniqKey="Cheng S" first="Shan" last="Cheng">Shan Cheng</name>
<affiliation>
<nlm:affiliation>Deparment of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ma, Jin" sort="Ma, Jin" uniqKey="Ma J" first="Jin" last="Ma">Jin Ma</name>
<affiliation>
<nlm:affiliation>Deparment of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiong, Kaiwen" sort="Xiong, Kaiwen" uniqKey="Xiong K" first="Kaiwen" last="Xiong">Kaiwen Xiong</name>
<affiliation>
<nlm:affiliation>Deparment of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Su, Miao" sort="Su, Miao" uniqKey="Su M" first="Miao" last="Su">Miao Su</name>
<affiliation>
<nlm:affiliation>Deparment of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Wendong" sort="Hu, Wendong" uniqKey="Hu W" first="Wendong" last="Hu">Wendong Hu</name>
<affiliation>
<nlm:affiliation>Deparment of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30921375</idno>
<idno type="pmid">30921375</idno>
<idno type="doi">10.1371/journal.pone.0214277</idno>
<idno type="pmc">PMC6438667</idno>
<idno type="wicri:Area/Main/Corpus">000254</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000254</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Assessment of the static upright balance index and brain blood oxygen levels as parameters to evaluate pilot workload.</title>
<author>
<name sortKey="Sun, Jicheng" sort="Sun, Jicheng" uniqKey="Sun J" first="Jicheng" last="Sun">Jicheng Sun</name>
<affiliation>
<nlm:affiliation>Deparment of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Shan" sort="Cheng, Shan" uniqKey="Cheng S" first="Shan" last="Cheng">Shan Cheng</name>
<affiliation>
<nlm:affiliation>Deparment of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ma, Jin" sort="Ma, Jin" uniqKey="Ma J" first="Jin" last="Ma">Jin Ma</name>
<affiliation>
<nlm:affiliation>Deparment of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xiong, Kaiwen" sort="Xiong, Kaiwen" uniqKey="Xiong K" first="Kaiwen" last="Xiong">Kaiwen Xiong</name>
<affiliation>
<nlm:affiliation>Deparment of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Su, Miao" sort="Su, Miao" uniqKey="Su M" first="Miao" last="Su">Miao Su</name>
<affiliation>
<nlm:affiliation>Deparment of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Wendong" sort="Hu, Wendong" uniqKey="Hu W" first="Wendong" last="Hu">Wendong Hu</name>
<affiliation>
<nlm:affiliation>Deparment of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult (MeSH)</term>
<term>Aircraft (MeSH)</term>
<term>Area Under Curve (MeSH)</term>
<term>Blood Vessels (chemistry)</term>
<term>Brain (metabolism)</term>
<term>Electroencephalography (MeSH)</term>
<term>Fatigue (pathology)</term>
<term>Heart Rate (MeSH)</term>
<term>Hemoglobins (analysis)</term>
<term>Humans (MeSH)</term>
<term>Male (MeSH)</term>
<term>Oxygen (analysis)</term>
<term>Postural Balance (physiology)</term>
<term>ROC Curve (MeSH)</term>
<term>Workload (MeSH)</term>
<term>Young Adult (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Hemoglobins</term>
<term>Oxygen</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Blood Vessels</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Brain</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Fatigue</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Postural Balance</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Aircraft</term>
<term>Area Under Curve</term>
<term>Electroencephalography</term>
<term>Heart Rate</term>
<term>Humans</term>
<term>Male</term>
<term>ROC Curve</term>
<term>Workload</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>OBJECTIVE</b>
</p>
<p>To investigate the potential for static upright balance function and brain-blood oxygen parameters to evaluate pilot workload.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>Phase 1: The NASA Task Load Index (NASA-TLX) was used to compare the workloads of real flights with flight simulator simulated flight tasks in 15 pilots (Cohort 1). Phase 2: To determine the effects of workload, 50 cadets were divided equally into simulated flight task load (experimental) and control groups (Cohort 2). The experimental group underwent 2 h of simulated flight tasks, while the control group rested for 2 h. Their static upright balance function was evaluated using balance index-1 (BI-1), before and after the tasks, with balance system posturography equipment and cerebral blood oxygen parameters monitored with near infrared spectroscopy (NIRS) in real time. Sternberg dual-task and reaction time tests were performed in the experimental and control groups before and after the simulated flight tasks.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>(Phase1) There was a significant correlation between the workload caused by real flight and simulated flight tasks (P<0.01), indicating that NASA-TLX scales were also a tool for measuring workloads of the stimulated flight tasks. (Phase 2) For the simulated flight task experiments, the NASA-TLX total scores were significantly different between the two groups (P<0.001) and (pre-to-post) changes of the BI-1 index were greater in the experimental group than in controls (P<0.001). The cerebral blood oxygen saturation levels (rsO2) (P<0.01) and ΔHb reductions (P<0.05) were significantly higher in the experimental, compared to the control group, during the simulated flight task. In contrast to the control group the error rates (P = 0.002) and accuracy (P<0.001) changed significantly in the experimental group after the simulated flight tasks.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The simulated flight task model could simulate the real flight task load and static balance and NIRS were useful for evaluating pilots' workload/fatigue.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30921375</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>12</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Assessment of the static upright balance index and brain blood oxygen levels as parameters to evaluate pilot workload.</ArticleTitle>
<Pagination>
<MedlinePgn>e0214277</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0214277</ELocationID>
<Abstract>
<AbstractText Label="OBJECTIVE">To investigate the potential for static upright balance function and brain-blood oxygen parameters to evaluate pilot workload.</AbstractText>
<AbstractText Label="METHODS">Phase 1: The NASA Task Load Index (NASA-TLX) was used to compare the workloads of real flights with flight simulator simulated flight tasks in 15 pilots (Cohort 1). Phase 2: To determine the effects of workload, 50 cadets were divided equally into simulated flight task load (experimental) and control groups (Cohort 2). The experimental group underwent 2 h of simulated flight tasks, while the control group rested for 2 h. Their static upright balance function was evaluated using balance index-1 (BI-1), before and after the tasks, with balance system posturography equipment and cerebral blood oxygen parameters monitored with near infrared spectroscopy (NIRS) in real time. Sternberg dual-task and reaction time tests were performed in the experimental and control groups before and after the simulated flight tasks.</AbstractText>
<AbstractText Label="RESULTS">(Phase1) There was a significant correlation between the workload caused by real flight and simulated flight tasks (P<0.01), indicating that NASA-TLX scales were also a tool for measuring workloads of the stimulated flight tasks. (Phase 2) For the simulated flight task experiments, the NASA-TLX total scores were significantly different between the two groups (P<0.001) and (pre-to-post) changes of the BI-1 index were greater in the experimental group than in controls (P<0.001). The cerebral blood oxygen saturation levels (rsO2) (P<0.01) and ΔHb reductions (P<0.05) were significantly higher in the experimental, compared to the control group, during the simulated flight task. In contrast to the control group the error rates (P = 0.002) and accuracy (P<0.001) changed significantly in the experimental group after the simulated flight tasks.</AbstractText>
<AbstractText Label="CONCLUSIONS">The simulated flight task model could simulate the real flight task load and static balance and NIRS were useful for evaluating pilots' workload/fatigue.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Jicheng</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Deparment of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Shan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Deparment of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Jin</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Deparment of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xiong</LastName>
<ForeName>Kaiwen</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Deparment of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Miao</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Deparment of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Wendong</ForeName>
<Initials>W</Initials>
<Identifier Source="ORCID">0000-0002-0616-0545</Identifier>
<AffiliationInfo>
<Affiliation>Deparment of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>03</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006454">Hemoglobins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9008-02-0</RegistryNumber>
<NameOfSubstance UI="C100003">deoxyhemoglobin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000401" MajorTopicYN="N">Aircraft</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019540" MajorTopicYN="N">Area Under Curve</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001808" MajorTopicYN="N">Blood Vessels</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001921" MajorTopicYN="N">Brain</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004569" MajorTopicYN="N">Electroencephalography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005221" MajorTopicYN="N">Fatigue</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006339" MajorTopicYN="N">Heart Rate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006454" MajorTopicYN="N">Hemoglobins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004856" MajorTopicYN="N">Postural Balance</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012372" MajorTopicYN="N">ROC Curve</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016526" MajorTopicYN="N">Workload</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>03</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30921375</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0214277</ArticleId>
<ArticleId IdType="pii">PONE-D-18-22112</ArticleId>
<ArticleId IdType="pmc">PMC6438667</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Aerosp Med Hum Perform. 2018 Nov 1;89(11):961-966</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30352648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2013;789:157-162</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23852490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2018 May 1;171:75-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29305162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2018 Jun;236(6):1611-1619</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29589078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Arch Psychiatry Clin Neurosci. 1998;248(5):245-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9840371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Accid Anal Prev. 2011 Mar;43(2):498-515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21130213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neurol. 2017 Sep 21;8:483</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28983275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Int Med Res. 2009 Sep-Oct;37(5):1311-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19930836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Phys. 2014 Oct;41(10):102702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25281981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mov Sci. 2017 Aug;54:1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28323218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Ergon. 2014 Jul;45(4):1140-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24581559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Motor Control. 2018 Oct 1;22(4):425-435</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29486627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomech. 2013 Jan 4;46(1):70-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23149079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Hum Neurosci. 2018 May 17;12:187</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29867411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Biobehav Rev. 2014 Jul;44:58-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23116991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Sleep Res. 2011 Jun;20(2):348-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20819145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol Respir Environ Exerc Physiol. 1981 Jul;51(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7263402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol (1985). 2009 Mar;106(3):857-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19131473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 1993 May 14;154(1-2):101-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8361619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Appl Physiol. 2009 Oct;107(3):281-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19578870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Appl Physiol. 2018 Jul;118(7):1373-1384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29687266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aviat Space Environ Med. 2007 Sep;78(9):859-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17891895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Psychosom Res. 2003 Apr;54(4):345-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12670612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Behav Neurosci. 2015 Jul 13;9:176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26217203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aviat Space Environ Med. 2004 Mar;75(3 Suppl):A44-53; discussion A54-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15018265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gait Posture. 2018 Jun;63:97-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29727778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Sports Med Phys Fitness. 2014 Feb;54(1):118-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24445553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fam Pract Res J. 1993 Mar;13(1):81-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8484345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Surg. 1989 Jan-Feb;46(1):29-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2721234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ergonomics. 2010 Jul;53(7):848-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20582766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aviat Space Environ Med. 2009 Jan;80(1):29-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19180856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sports Med. 2006;36(10):881-909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17004850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2013 Dec 11;(82):e51077</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24378378</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PosturoV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000254 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000254 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PosturoV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30921375
   |texte=   Assessment of the static upright balance index and brain blood oxygen levels as parameters to evaluate pilot workload.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30921375" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PosturoV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 22:38:36 2020. Site generation: Thu Mar 25 16:16:50 2021