Serveur d'exploration Posturo

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Effects of Anodal Transcranial Direct Current Stimulation on the Walking Performance of Chronic Hemiplegic Patients.

Identifieur interne : 000231 ( Main/Corpus ); précédent : 000230; suivant : 000232

The Effects of Anodal Transcranial Direct Current Stimulation on the Walking Performance of Chronic Hemiplegic Patients.

Auteurs : Etienne Ojardias ; Oscar Dagbémabou Azé ; Davy Luneau ; Janis Mednieks ; Agnès Condemine ; Diana Rimaud ; Fanette Chassagne ; Pascal Giraux

Source :

RBID : pubmed:31124218

Abstract

OBJECTIVE

To evaluate the effect of a single session of tDCS over the primary motor cortex of the lower limb (M1-LL) vs. placebo on the walking performance in chronic hemiplegic patients.

PATIENTS AND METHODS

Randomized, cross-over, double-blinded study. Eighteen patients with initially complete hemiplegia and poststroke delay >6 months were included. Each patient received a single session of anodal stimulation (2 mA, 20 min) over M1-LL (a-tDCS condition) and a pseudostimulation session (SHAM condition). The order of the two sessions was randomly assigned, with an 11-day interval between the two sessions. The anodal electrode was centered on the hotspot identified with Transcranial magnetic stimulation. The cathode was placed above the contralesional orbitofrontal cortex. Walking performance was evaluated with the Wade test and the 6-minute walk test (6MWT), gait parameters with GAITRite, and balance with posturography. These tests were performed during and 1 hour after the stimulation. Baseline assessments were performed the day before and 10 days after each session.

RESULTS

The comparison between the 6MWT under a-tDCS vs. SHAM conditions demonstrated a nonsignificant positive effect of the stimulation by 15% during stimulation (p = 0.360) and a significant positive effect of 25% 1 hour after stimulation (p = 0.038). No significant differences were observed for the other evaluations.

DISCUSSION

These results showed a significant positive effect of a single session of anodal tDCS of the M1-LL in chronic hemiplegic patients. This proof-of-concept study supports the conduct of clinical studies evaluating the effectiveness of a walking training program associated with iterative tDCS stimulation.

CONFLICT OF INTEREST

The authors reported no conflict of interest.


DOI: 10.1111/ner.12962
PubMed: 31124218

Links to Exploration step

pubmed:31124218

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Effects of Anodal Transcranial Direct Current Stimulation on the Walking Performance of Chronic Hemiplegic Patients.</title>
<author>
<name sortKey="Ojardias, Etienne" sort="Ojardias, Etienne" uniqKey="Ojardias E" first="Etienne" last="Ojardias">Etienne Ojardias</name>
<affiliation>
<nlm:affiliation>Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA, 7424, 42023, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>CHU Saint-Etienne, Service Médecine Physique et Réadaptation, F-42055, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aze, Oscar Dagbemabou" sort="Aze, Oscar Dagbemabou" uniqKey="Aze O" first="Oscar Dagbémabou" last="Azé">Oscar Dagbémabou Azé</name>
<affiliation>
<nlm:affiliation>Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA, 7424, 42023, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Laboratoire de Biomécanique et de Performance, Institut National de la Jeunesse, de l'Education Physique et du Sport (INJEPS)/ Université d'Abomey-Calavi (UAC), Porto-Novo, Bénin, Africa.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Luneau, Davy" sort="Luneau, Davy" uniqKey="Luneau D" first="Davy" last="Luneau">Davy Luneau</name>
<affiliation>
<nlm:affiliation>Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA, 7424, 42023, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mednieks, Janis" sort="Mednieks, Janis" uniqKey="Mednieks J" first="Janis" last="Mednieks">Janis Mednieks</name>
<affiliation>
<nlm:affiliation>CHU Saint-Etienne, Service Médecine Physique et Réadaptation, F-42055, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Neurology and Neurosurgery, Riga Stradins University, Riga, Latvia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Condemine, Agnes" sort="Condemine, Agnes" uniqKey="Condemine A" first="Agnès" last="Condemine">Agnès Condemine</name>
<affiliation>
<nlm:affiliation>CHU Saint-Etienne, Service Médecine Physique et Réadaptation, F-42055, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rimaud, Diana" sort="Rimaud, Diana" uniqKey="Rimaud D" first="Diana" last="Rimaud">Diana Rimaud</name>
<affiliation>
<nlm:affiliation>Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA, 7424, 42023, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>CHU Saint-Etienne, Service Médecine Physique et Réadaptation, F-42055, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chassagne, Fanette" sort="Chassagne, Fanette" uniqKey="Chassagne F" first="Fanette" last="Chassagne">Fanette Chassagne</name>
<affiliation>
<nlm:affiliation>Ecole Nationale Supérieure des Mines de Saint-Etienne, CIS-EMSE, Sainbiose, F-42023, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Giraux, Pascal" sort="Giraux, Pascal" uniqKey="Giraux P" first="Pascal" last="Giraux">Pascal Giraux</name>
<affiliation>
<nlm:affiliation>Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA, 7424, 42023, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>CHU Saint-Etienne, Service Médecine Physique et Réadaptation, F-42055, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31124218</idno>
<idno type="pmid">31124218</idno>
<idno type="doi">10.1111/ner.12962</idno>
<idno type="wicri:Area/Main/Corpus">000231</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000231</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Effects of Anodal Transcranial Direct Current Stimulation on the Walking Performance of Chronic Hemiplegic Patients.</title>
<author>
<name sortKey="Ojardias, Etienne" sort="Ojardias, Etienne" uniqKey="Ojardias E" first="Etienne" last="Ojardias">Etienne Ojardias</name>
<affiliation>
<nlm:affiliation>Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA, 7424, 42023, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>CHU Saint-Etienne, Service Médecine Physique et Réadaptation, F-42055, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aze, Oscar Dagbemabou" sort="Aze, Oscar Dagbemabou" uniqKey="Aze O" first="Oscar Dagbémabou" last="Azé">Oscar Dagbémabou Azé</name>
<affiliation>
<nlm:affiliation>Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA, 7424, 42023, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Laboratoire de Biomécanique et de Performance, Institut National de la Jeunesse, de l'Education Physique et du Sport (INJEPS)/ Université d'Abomey-Calavi (UAC), Porto-Novo, Bénin, Africa.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Luneau, Davy" sort="Luneau, Davy" uniqKey="Luneau D" first="Davy" last="Luneau">Davy Luneau</name>
<affiliation>
<nlm:affiliation>Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA, 7424, 42023, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mednieks, Janis" sort="Mednieks, Janis" uniqKey="Mednieks J" first="Janis" last="Mednieks">Janis Mednieks</name>
<affiliation>
<nlm:affiliation>CHU Saint-Etienne, Service Médecine Physique et Réadaptation, F-42055, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Neurology and Neurosurgery, Riga Stradins University, Riga, Latvia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Condemine, Agnes" sort="Condemine, Agnes" uniqKey="Condemine A" first="Agnès" last="Condemine">Agnès Condemine</name>
<affiliation>
<nlm:affiliation>CHU Saint-Etienne, Service Médecine Physique et Réadaptation, F-42055, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rimaud, Diana" sort="Rimaud, Diana" uniqKey="Rimaud D" first="Diana" last="Rimaud">Diana Rimaud</name>
<affiliation>
<nlm:affiliation>Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA, 7424, 42023, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>CHU Saint-Etienne, Service Médecine Physique et Réadaptation, F-42055, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chassagne, Fanette" sort="Chassagne, Fanette" uniqKey="Chassagne F" first="Fanette" last="Chassagne">Fanette Chassagne</name>
<affiliation>
<nlm:affiliation>Ecole Nationale Supérieure des Mines de Saint-Etienne, CIS-EMSE, Sainbiose, F-42023, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Giraux, Pascal" sort="Giraux, Pascal" uniqKey="Giraux P" first="Pascal" last="Giraux">Pascal Giraux</name>
<affiliation>
<nlm:affiliation>Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA, 7424, 42023, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>CHU Saint-Etienne, Service Médecine Physique et Réadaptation, F-42055, Saint-Etienne, France.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Neuromodulation : journal of the International Neuromodulation Society</title>
<idno type="eISSN">1525-1403</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>OBJECTIVE</b>
</p>
<p>To evaluate the effect of a single session of tDCS over the primary motor cortex of the lower limb (M1-LL) vs. placebo on the walking performance in chronic hemiplegic patients.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>PATIENTS AND METHODS</b>
</p>
<p>Randomized, cross-over, double-blinded study. Eighteen patients with initially complete hemiplegia and poststroke delay >6 months were included. Each patient received a single session of anodal stimulation (2 mA, 20 min) over M1-LL (a-tDCS condition) and a pseudostimulation session (SHAM condition). The order of the two sessions was randomly assigned, with an 11-day interval between the two sessions. The anodal electrode was centered on the hotspot identified with Transcranial magnetic stimulation. The cathode was placed above the contralesional orbitofrontal cortex. Walking performance was evaluated with the Wade test and the 6-minute walk test (6MWT), gait parameters with GAITRite, and balance with posturography. These tests were performed during and 1 hour after the stimulation. Baseline assessments were performed the day before and 10 days after each session.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The comparison between the 6MWT under a-tDCS vs. SHAM conditions demonstrated a nonsignificant positive effect of the stimulation by 15% during stimulation (p = 0.360) and a significant positive effect of 25% 1 hour after stimulation (p = 0.038). No significant differences were observed for the other evaluations.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>DISCUSSION</b>
</p>
<p>These results showed a significant positive effect of a single session of anodal tDCS of the M1-LL in chronic hemiplegic patients. This proof-of-concept study supports the conduct of clinical studies evaluating the effectiveness of a walking training program associated with iterative tDCS stimulation.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONFLICT OF INTEREST</b>
</p>
<p>The authors reported no conflict of interest.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31124218</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1525-1403</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Neuromodulation : journal of the International Neuromodulation Society</Title>
<ISOAbbreviation>Neuromodulation</ISOAbbreviation>
</Journal>
<ArticleTitle>The Effects of Anodal Transcranial Direct Current Stimulation on the Walking Performance of Chronic Hemiplegic Patients.</ArticleTitle>
<Pagination>
<MedlinePgn>373-379</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/ner.12962</ELocationID>
<Abstract>
<AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">To evaluate the effect of a single session of tDCS over the primary motor cortex of the lower limb (M1-LL) vs. placebo on the walking performance in chronic hemiplegic patients.</AbstractText>
<AbstractText Label="PATIENTS AND METHODS" NlmCategory="METHODS">Randomized, cross-over, double-blinded study. Eighteen patients with initially complete hemiplegia and poststroke delay >6 months were included. Each patient received a single session of anodal stimulation (2 mA, 20 min) over M1-LL (a-tDCS condition) and a pseudostimulation session (SHAM condition). The order of the two sessions was randomly assigned, with an 11-day interval between the two sessions. The anodal electrode was centered on the hotspot identified with Transcranial magnetic stimulation. The cathode was placed above the contralesional orbitofrontal cortex. Walking performance was evaluated with the Wade test and the 6-minute walk test (6MWT), gait parameters with GAITRite, and balance with posturography. These tests were performed during and 1 hour after the stimulation. Baseline assessments were performed the day before and 10 days after each session.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The comparison between the 6MWT under a-tDCS vs. SHAM conditions demonstrated a nonsignificant positive effect of the stimulation by 15% during stimulation (p = 0.360) and a significant positive effect of 25% 1 hour after stimulation (p = 0.038). No significant differences were observed for the other evaluations.</AbstractText>
<AbstractText Label="DISCUSSION" NlmCategory="CONCLUSIONS">These results showed a significant positive effect of a single session of anodal tDCS of the M1-LL in chronic hemiplegic patients. This proof-of-concept study supports the conduct of clinical studies evaluating the effectiveness of a walking training program associated with iterative tDCS stimulation.</AbstractText>
<AbstractText Label="CONFLICT OF INTEREST" NlmCategory="BACKGROUND">The authors reported no conflict of interest.</AbstractText>
<CopyrightInformation>© 2019 International Neuromodulation Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ojardias</LastName>
<ForeName>Etienne</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA, 7424, 42023, Saint-Etienne, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>CHU Saint-Etienne, Service Médecine Physique et Réadaptation, F-42055, Saint-Etienne, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Azé</LastName>
<ForeName>Oscar Dagbémabou</ForeName>
<Initials>OD</Initials>
<AffiliationInfo>
<Affiliation>Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA, 7424, 42023, Saint-Etienne, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratoire de Biomécanique et de Performance, Institut National de la Jeunesse, de l'Education Physique et du Sport (INJEPS)/ Université d'Abomey-Calavi (UAC), Porto-Novo, Bénin, Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Luneau</LastName>
<ForeName>Davy</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA, 7424, 42023, Saint-Etienne, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mednieks</LastName>
<ForeName>Janis</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>CHU Saint-Etienne, Service Médecine Physique et Réadaptation, F-42055, Saint-Etienne, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Neurology and Neurosurgery, Riga Stradins University, Riga, Latvia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Condemine</LastName>
<ForeName>Agnès</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>CHU Saint-Etienne, Service Médecine Physique et Réadaptation, F-42055, Saint-Etienne, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rimaud</LastName>
<ForeName>Diana</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA, 7424, 42023, Saint-Etienne, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>CHU Saint-Etienne, Service Médecine Physique et Réadaptation, F-42055, Saint-Etienne, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chassagne</LastName>
<ForeName>Fanette</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Ecole Nationale Supérieure des Mines de Saint-Etienne, CIS-EMSE, Sainbiose, F-42023, Saint-Etienne, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Giraux</LastName>
<ForeName>Pascal</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, EA, 7424, 42023, Saint-Etienne, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>CHU Saint-Etienne, Service Médecine Physique et Réadaptation, F-42055, Saint-Etienne, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>French Society of PM&R, SOFMER-Merz award grant</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Neuromodulation</MedlineTA>
<NlmUniqueID>9804159</NlmUniqueID>
<ISSNLinking>1094-7159</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Hemiplegia</Keyword>
<Keyword MajorTopicYN="N">neurostimulation</Keyword>
<Keyword MajorTopicYN="N">stroke</Keyword>
<Keyword MajorTopicYN="N">tDCS</Keyword>
<Keyword MajorTopicYN="N">walking</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>02</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>02</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31124218</ArticleId>
<ArticleId IdType="doi">10.1111/ner.12962</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>WHO. World Health Statistics. August 17, 2017. http://www.who.int/gho/publications/world_health_statistics/2014/en/.</Citation>
</Reference>
<Reference>
<Citation>WHO. Rehabilitation 2030: A Call for Action. WHO. December 18, 2017. http://www.who.int/rehabilitation/rehab-2030/en/.</Citation>
</Reference>
<Reference>
<Citation>Gimigliano F, Negrini S. The World Health Organization “rehabilitation 2030-a call for action.” Eur J Phys Rehabil Med 2017;53:155-168.</Citation>
</Reference>
<Reference>
<Citation>Hendricks HT, Limbeek J v, Geurts AC, Zwarts MJ. Motor recovery after stroke: a systematic review of the literature. Arch Phys Med Rehabil 2002;83:1629-1637. https://doi.org/10.1053/apmr.2002.35473.</Citation>
</Reference>
<Reference>
<Citation>Chieffo R, Comi G, Leocani L. Noninvasive neuromodulation in poststroke gait disorders: rationale, feasibility, and state of the art. Neurorehabil Neural Repair 2016;30:71-82. https://doi.org/10.1177/1545968315586464.</Citation>
</Reference>
<Reference>
<Citation>Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000;527:633-639.</Citation>
</Reference>
<Reference>
<Citation>Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving function and activities of daily living in patients after stroke. Cochrane database of systematic reviews. Chichester, UK: John Wiley & Sons, Ltd, 2013.</Citation>
</Reference>
<Reference>
<Citation>Hummel FC, Cohen LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 2006;5:708-712.</Citation>
</Reference>
<Reference>
<Citation>Hummel F. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 2005;128:490-499. https://doi.org/10.1093/brain/awh369.</Citation>
</Reference>
<Reference>
<Citation>Jeffery DT, Norton JA, Roy FD, Gorassini MA. Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Exp Brain Res 2007;182:281-287. https://doi.org/10.1007/s00221-007-1093-y.</Citation>
</Reference>
<Reference>
<Citation>Tanaka S, Hanakawa T, Honda M, Watanabe K. Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp Brain Res 2009;196:459-465. https://doi.org/10.1007/s00221-009-1863-9.</Citation>
</Reference>
<Reference>
<Citation>Tanaka S, Takeda K, Otaka Y et al. Single session of transcranial direct current stimulation transiently increases knee extensor force in patients with hemiparetic stroke. Neurorehabil Neural Repair 2011;25:565-569. https://doi.org/10.1177/1545968311402091.</Citation>
</Reference>
<Reference>
<Citation>Sohn MK, Jee SJ, Kim YW. Effect of transcranial direct current stimulation on postural stability and lower extremity strength in hemiplegic stroke patients. Ann Rehabil Med 2013;37:759-765. https://doi.org/10.5535/arm.2013.37.6.759.</Citation>
</Reference>
<Reference>
<Citation>Madhavan S, Weber KA, Stinear JW. Non-invasive brain stimulation enhances fine motor control of the hemiparetic ankle: implications for rehabilitation. Exp Brain Res 2011;209:9-17. https://doi.org/10.1007/s00221-010-2511-0.</Citation>
</Reference>
<Reference>
<Citation>Tahtis V, Kaski D, Seemungal BM. The effect of single session bi-cephalic transcranial direct current stimulation on gait performance in sub-acute stroke: a pilot study. Restor Neurol Neurosci 2014;32:527-532.</Citation>
</Reference>
<Reference>
<Citation>Chang MC, Kim DY, Park DH. Enhancement of cortical excitability and lower limb motor function in patients with stroke by transcranial direct current stimulation. Brain Stimulat 2015;8:561-566. https://doi.org/10.1016/j.brs.2015.01.411.</Citation>
</Reference>
<Reference>
<Citation>van Asseldonk EHF, Boonstra TA. Transcranial direct current stimulation of the leg motor cortex enhances coordinated motor output during walking with a large inter-individual variability. Brain Stimulat 2015;9:182-190. https://doi.org/10.1016/j.brs.2015.10.001.</Citation>
</Reference>
<Reference>
<Citation>Jayaram G, Stinear JW. The effects of transcranial stimulation on paretic lower limb motor excitability during walking. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc 2009;26:272-279. https://doi.org/10.1097/WNP.0b013e3181af1d41.</Citation>
</Reference>
<Reference>
<Citation>Park SD, Kim JY, Song HS. Effect of application of transcranial direct current stimulation during task-related training on gait ability of patients with stroke. J Phys Ther Sci 2015;27:623-625. https://doi.org/10.1589/jpts.27.623.</Citation>
</Reference>
<Reference>
<Citation>Dunn A, Marsden DL, Nugent E et al. Protocol variations and six-minute walk test performance in stroke survivors: a systematic review with meta-analysis. Stroke Res Treat 2015;2015:1-28. https://doi.org/10.1155/2015/484813.</Citation>
</Reference>
<Reference>
<Citation>Awad LN, Reisman DS, Wright TR, Roos MA, Binder-Macleod SA. Maximum walking speed is a key determinant of long distance walking function after stroke. Top Stroke Rehabil 2014;21:502-509. https://doi.org/10.1310/tsr2106-502.</Citation>
</Reference>
<Reference>
<Citation>Hui D, Zhukovsky DS, Bruera E. Which treatment is better? Ascertaining patient preferences with crossover randomized controlled trials. J Pain Symptom Manage 2015;49:625-631. https://doi.org/10.1016/j.jpainsymman.2014.11.294.</Citation>
</Reference>
<Reference>
<Citation>Wade DT, Wood VA, Heller A, Maggs J, Langton Hewer R. Walking after stroke. Measurement and recovery over the first 3 months. Scand J Rehabil Med 1987;19:25-30.</Citation>
</Reference>
<Reference>
<Citation>Liew S-L, Santarnecchi E, Buch ER, Cohen LG. Non-invasive brain stimulation in neurorehabilitation: Local and distant effects for motor recovery. Front Hum Neurosci 2014;8:378. https://doi.org/10.3389/fnhum.2014.00378.</Citation>
</Reference>
<Reference>
<Citation>Kim CR, Kim D-Y, Kim LS, Chun MH, Kim SJ, Park CH. Modulation of cortical activity after anodal transcranial direct current stimulation of the lower limb motor cortex: a functional MRI study. Brain Stimul Basic Transl Clin Res Neuromodulation 2012;5:462-467. https://doi.org/10.1016/j.brs.2011.08.002.</Citation>
</Reference>
<Reference>
<Citation>Declaration of Helsinki. Recommendations guiding doctors in clinical research. Adopted by the world medical association in 1964. Wis Med J 1967;66:25-26.</Citation>
</Reference>
<Reference>
<Citation>Woods AJ, Antal A, Bikson M et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol 2016;127:1031-1048. https://doi.org/10.1016/j.clinph.2015.11.012.</Citation>
</Reference>
<Reference>
<Citation>Laczó B, Antal A, Rothkegel H, Paulus W. Increasing human leg motor cortex excitability by transcranial high frequency random noise stimulation. Restor Neurol Neurosci 2014;32:403-410.</Citation>
</Reference>
<Reference>
<Citation>Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001;57:1899-1901.</Citation>
</Reference>
<Reference>
<Citation>Danzl MM, Chelette KC, Lee K, Lykins D, Sawaki L. Brain stimulation paired with novel locomotor training with robotic gait orthosis in chronic stroke: a feasibility study. Neuro Rehabilitation 2013;33:67-76. https://doi.org/10.3233/NRE-130929.</Citation>
</Reference>
<Reference>
<Citation>Leon D, Cortes M, Elder J et al. tDCS does not enhance the effects of robot-assisted gait training in patients with subacute stroke. Restor Neurol Neurosci 2017;35:377-384. https://doi.org/10.3233/RNN-170734.</Citation>
</Reference>
<Reference>
<Citation>Lindenberg R, Renga V, Zhu LL, Nair D, Schlaug G. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology 2010;75:2176-2184.</Citation>
</Reference>
<Reference>
<Citation>Liu J, Drutz C, Kumar R et al. Use of the six-minute walk test poststroke: is there a practice effect? Arch Phys Med Rehabil 2008;89:1686-1692. https://doi.org/10.1016/j.apmr.2008.02.026.</Citation>
</Reference>
<Reference>
<Citation>ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002;166:111-117. https://doi.org/10.1164/ajrccm.166.1.at1102.</Citation>
</Reference>
<Reference>
<Citation>Tedesco Triccas L, Burridge JH, Hughes AM et al. Multiple sessions of transcranial direct current stimulation and upper extremity rehabilitation in stroke: a review and meta-analysis. Clin Neurophysiol 2016;127:946-955. https://doi.org/10.1016/j.clinph.2015.04.067.</Citation>
</Reference>
<Reference>
<Citation>Simon R. Optimal two-stage designs for phase II clinical trials. Control Clin Trials 1989;10:1-10.</Citation>
</Reference>
<Reference>
<Citation>Kim DY, Ohn SH, Yang EJ, Park C-I, Jung KJ. Enhancing motor performance by anodal transcranial direct current stimulation in subacute stroke patients. Am J Phys Med Rehabil Assoc Acad Physiatr 2009;88:829-836. https://doi.org/10.1097/PHM.0b013e3181b811e3.</Citation>
</Reference>
<Reference>
<Citation>Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci 2007;25:123-129.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PosturoV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000231 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000231 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PosturoV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31124218
   |texte=   The Effects of Anodal Transcranial Direct Current Stimulation on the Walking Performance of Chronic Hemiplegic Patients.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31124218" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PosturoV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 22:38:36 2020. Site generation: Thu Mar 25 16:16:50 2021