Serveur d'exploration sur la maladie de Parkinson

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optogenetic investigation of neural circuits underlying brain disease in animal models

Identifieur interne : 002B66 ( Main/Corpus ); précédent : 002B65; suivant : 002B67

Optogenetic investigation of neural circuits underlying brain disease in animal models

Auteurs : Kay M. Tye ; Karl Deisseroth

Source :

RBID : ISTEX:E1619554621D8731C5B4FF4800B74A407CD1AA74

Abstract

Optogenetic tools have provided a new way to establish causal relationships between brain activity and behaviour in health and disease. Although no animal model captures human disease precisely, behaviours that recapitulate disease symptoms may be elicited and modulated by optogenetic methods, including behaviours that are relevant to anxiety, fear, depression, addiction, autism and parkinsonism. The rapid proliferation of optogenetic reagents together with the swift advancement of strategies for implementation has created new opportunities for causal and precise dissection of the circuits underlying brain diseases in animal models.

Url:
DOI: 10.1038/nrn3171

Links to Exploration step

ISTEX:E1619554621D8731C5B4FF4800B74A407CD1AA74

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Optogenetic investigation of neural circuits underlying brain disease in animal models</title>
<author>
<name sortKey="Tye, Kay M" sort="Tye, Kay M" uniqKey="Tye K" first="Kay M." last="Tye">Kay M. Tye</name>
<affiliation>
<mods:affiliation>Department of Bioengineering, Stanford University, 318 Campus Drive, Clark Center, Stanford, California 94305-5444, USA.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Picower Institute of Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: kaytye@mit.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Deisseroth, Karl" sort="Deisseroth, Karl" uniqKey="Deisseroth K" first="Karl" last="Deisseroth">Karl Deisseroth</name>
<affiliation>
<mods:affiliation>Department of Bioengineering, Stanford University, 318 Campus Drive, Clark Center, Stanford, California 94305-5444, USA.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Psychiatry, Stanford University, 401 Quarry Road, Stanford, California 94305-5717, USA.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>CNC Program, Stanford University, Stanford, California 94305, USA.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305-5323, USA.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: deissero@stanford.edu</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:E1619554621D8731C5B4FF4800B74A407CD1AA74</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1038/nrn3171</idno>
<idno type="url">https://api.istex.fr/document/E1619554621D8731C5B4FF4800B74A407CD1AA74/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">002B66</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Optogenetic investigation of neural circuits underlying brain disease in animal models</title>
<author>
<name sortKey="Tye, Kay M" sort="Tye, Kay M" uniqKey="Tye K" first="Kay M." last="Tye">Kay M. Tye</name>
<affiliation>
<mods:affiliation>Department of Bioengineering, Stanford University, 318 Campus Drive, Clark Center, Stanford, California 94305-5444, USA.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Picower Institute of Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: kaytye@mit.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Deisseroth, Karl" sort="Deisseroth, Karl" uniqKey="Deisseroth K" first="Karl" last="Deisseroth">Karl Deisseroth</name>
<affiliation>
<mods:affiliation>Department of Bioengineering, Stanford University, 318 Campus Drive, Clark Center, Stanford, California 94305-5444, USA.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Psychiatry, Stanford University, 401 Quarry Road, Stanford, California 94305-5717, USA.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>CNC Program, Stanford University, Stanford, California 94305, USA.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305-5323, USA.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: deissero@stanford.edu</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Nature Reviews Neuroscience</title>
<idno type="ISSN">1471-003X</idno>
<idno type="eISSN">1471-0048</idno>
<imprint>
<publisher>Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</publisher>
<date type="published" when="2012-04">2012-04</date>
<biblScope unit="volume">13</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="251">251</biblScope>
<biblScope unit="page" to="266">266</biblScope>
</imprint>
<idno type="ISSN">1471-003X</idno>
</series>
<idno type="istex">E1619554621D8731C5B4FF4800B74A407CD1AA74</idno>
<idno type="DOI">10.1038/nrn3171</idno>
<idno type="ArticleID">nrn3171</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1471-003X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="eng">Optogenetic tools have provided a new way to establish causal relationships between brain activity and behaviour in health and disease. Although no animal model captures human disease precisely, behaviours that recapitulate disease symptoms may be elicited and modulated by optogenetic methods, including behaviours that are relevant to anxiety, fear, depression, addiction, autism and parkinsonism. The rapid proliferation of optogenetic reagents together with the swift advancement of strategies for implementation has created new opportunities for causal and precise dissection of the circuits underlying brain diseases in animal models.</div>
</front>
</TEI>
<istex>
<corpusName>nature</corpusName>
<author>
<json:item>
<name>Kay M. Tye</name>
<affiliations>
<json:string>Department of Bioengineering, Stanford University, 318 Campus Drive, Clark Center, Stanford, California 94305-5444, USA.</json:string>
<json:string>Picower Institute of Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA.</json:string>
<json:string>E-mail: kaytye@mit.edu</json:string>
</affiliations>
</json:item>
<json:item>
<name>Karl Deisseroth</name>
<affiliations>
<json:string>Department of Bioengineering, Stanford University, 318 Campus Drive, Clark Center, Stanford, California 94305-5444, USA.</json:string>
<json:string>Department of Psychiatry, Stanford University, 401 Quarry Road, Stanford, California 94305-5717, USA.</json:string>
<json:string>CNC Program, Stanford University, Stanford, California 94305, USA.</json:string>
<json:string>Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305-5323, USA.</json:string>
<json:string>E-mail: deissero@stanford.edu</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<abstract>Optogenetic tools have provided a new way to establish causal relationships between brain activity and behaviour in health and disease. Although no animal model captures human disease precisely, behaviours that recapitulate disease symptoms may be elicited and modulated by optogenetic methods, including behaviours that are relevant to anxiety, fear, depression, addiction, autism and parkinsonism. The rapid proliferation of optogenetic reagents together with the swift advancement of strategies for implementation has created new opportunities for causal and precise dissection of the circuits underlying brain diseases in animal models.</abstract>
<qualityIndicators>
<score>7.544</score>
<pdfVersion>1.6</pdfVersion>
<pdfPageSize>595.276 x 782.362 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>640</abstractCharCount>
<pdfWordCount>12324</pdfWordCount>
<pdfCharCount>88041</pdfCharCount>
<pdfPageCount>16</pdfPageCount>
<abstractWordCount>87</abstractWordCount>
</qualityIndicators>
<title>Optogenetic investigation of neural circuits underlying brain disease in animal models</title>
<genre>
<json:string>review-article</json:string>
</genre>
<host>
<volume>13</volume>
<pages>
<total>16</total>
<last>266</last>
<first>251</first>
</pages>
<issn>
<json:string>1471-003X</json:string>
</issn>
<issue>4</issue>
<genre></genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1471-0048</json:string>
</eissn>
<title>Nature Reviews Neuroscience</title>
</host>
<categories>
<wos>
<json:string>NEUROSCIENCES</json:string>
</wos>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1038/nrn3171</json:string>
</doi>
<id>E1619554621D8731C5B4FF4800B74A407CD1AA74</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/E1619554621D8731C5B4FF4800B74A407CD1AA74/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/E1619554621D8731C5B4FF4800B74A407CD1AA74/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/E1619554621D8731C5B4FF4800B74A407CD1AA74/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Optogenetic investigation of neural circuits underlying brain disease in animal models</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</publisher>
<availability>
<p>NATURE</p>
</availability>
<date>2012-03-20</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Optogenetic investigation of neural circuits underlying brain disease in animal models</title>
<author>
<persName>
<forename type="first">Kay M.</forename>
<surname>Tye</surname>
</persName>
<email>kaytye@mit.edu</email>
<note type="biography">Kay M. Tye studied brain and cognitive sciences at the Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA, and completed her doctoral training at the University of California, San Francisco, USA. During this time she showed that amygdala plasticity mediates reward-related learning and neural encoding of reward-related cues. She received postdoctoral training at Stanford University, Palo Alto, California, USA, using optogenetic techniques to investigate neural circuit properties underlying psychiatric disease-related symptoms. Her laboratory at the Picower Institute of Learning and Memory in the Department of Brain and Cognitive Sciences at MIT is focused on dissecting neural circuits encoding emotional valence, with emphasis on the identification of common circuits that are perturbed in disease models related to addiction, anxiety and depression.</note>
<affiliation>Kay M. Tye studied brain and cognitive sciences at the Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA, and completed her doctoral training at the University of California, San Francisco, USA. During this time she showed that amygdala plasticity mediates reward-related learning and neural encoding of reward-related cues. She received postdoctoral training at Stanford University, Palo Alto, California, USA, using optogenetic techniques to investigate neural circuit properties underlying psychiatric disease-related symptoms. Her laboratory at the Picower Institute of Learning and Memory in the Department of Brain and Cognitive Sciences at MIT is focused on dissecting neural circuits encoding emotional valence, with emphasis on the identification of common circuits that are perturbed in disease models related to addiction, anxiety and depression.</affiliation>
<affiliation>Department of Bioengineering, Stanford University, 318 Campus Drive, Clark Center, Stanford, California 94305-5444, USA.</affiliation>
<affiliation>Picower Institute of Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA.</affiliation>
</author>
<author>
<persName>
<forename type="first">Karl</forename>
<surname>Deisseroth</surname>
</persName>
<email>deissero@stanford.edu</email>
<note type="biography">Karl Deisseroth received his bachelor's degree (1992), Ph.D. (1998) and M.D. (2000) from Harvard University, Cambridge, Massachusetts, USA. He completed postdoctoral training, medical internship and adult psychiatry residency at Stanford University and was board-certified in 2006. He is also a faculty member in the Bioengineering and Psychiatry Departments and continues to practice as a psychiatrist. He has developed and applied optogenetics, for which he was the recipient of the 2010 Koetser Prize, the 2010 Nakasone Prize and the 2011 Alden Spencer Prize. In 2010 he was elected to the Institute of Medicine.</note>
<affiliation>Karl Deisseroth received his bachelor's degree (1992), Ph.D. (1998) and M.D. (2000) from Harvard University, Cambridge, Massachusetts, USA. He completed postdoctoral training, medical internship and adult psychiatry residency at Stanford University and was board-certified in 2006. He is also a faculty member in the Bioengineering and Psychiatry Departments and continues to practice as a psychiatrist. He has developed and applied optogenetics, for which he was the recipient of the 2010 Koetser Prize, the 2010 Nakasone Prize and the 2011 Alden Spencer Prize. In 2010 he was elected to the Institute of Medicine.</affiliation>
<affiliation>Department of Bioengineering, Stanford University, 318 Campus Drive, Clark Center, Stanford, California 94305-5444, USA.</affiliation>
<affiliation>Department of Psychiatry, Stanford University, 401 Quarry Road, Stanford, California 94305-5717, USA.</affiliation>
<affiliation>CNC Program, Stanford University, Stanford, California 94305, USA.</affiliation>
<affiliation>Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305-5323, USA.</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Nature Reviews Neuroscience</title>
<idno type="pISSN">1471-003X</idno>
<idno type="eISSN">1471-0048</idno>
<imprint>
<publisher>Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</publisher>
<date type="published" when="2012-04"></date>
<biblScope unit="volume">13</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="251">251</biblScope>
<biblScope unit="page" to="266">266</biblScope>
</imprint>
</monogr>
<idno type="istex">E1619554621D8731C5B4FF4800B74A407CD1AA74</idno>
<idno type="DOI">10.1038/nrn3171</idno>
<idno type="ArticleID">nrn3171</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2012-03-20</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Optogenetic tools have provided a new way to establish causal relationships between brain activity and behaviour in health and disease. Although no animal model captures human disease precisely, behaviours that recapitulate disease symptoms may be elicited and modulated by optogenetic methods, including behaviours that are relevant to anxiety, fear, depression, addiction, autism and parkinsonism. The rapid proliferation of optogenetic reagents together with the swift advancement of strategies for implementation has created new opportunities for causal and precise dissection of the circuits underlying brain diseases in animal models.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2012-03-20">Created</change>
<change when="2012-04">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/E1619554621D8731C5B4FF4800B74A407CD1AA74/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus nature" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NPG//DTD XML Article//EN" URI="NPG_XML_Article.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article id="nrn3171" language="eng" origsrc="yes" publish="issue" relation="no">
<entity-declarations>
<entity id="figf1" url="/nrn/journal/v13/n4/images/nrn3171-f1.jpg"></entity>
<entity id="figf2" url="/nrn/journal/v13/n4/images/nrn3171-f2.jpg"></entity>
<entity id="figf3" url="/nrn/journal/v13/n4/images/nrn3171-f3.jpg"></entity>
<entity id="figf4" url="/nrn/journal/v13/n4/images/nrn3171-f4.jpg"></entity>
<entity id="figf5" url="/nrn/journal/v13/n4/images/nrn3171-f5.jpg"></entity>
<entity id="illus1" url="/nrn/journal/v13/n4/images/nrn3171-i1.jpg"></entity>
</entity-declarations>
<!--nrn3171-->
<pubfm>
<jtl>Nature Reviews Neuroscience</jtl>
<vol>13</vol>
<iss>4</iss>
<idt>201204</idt>
<categ id="rv"></categ>
<pp>
<spn>251</spn>
<epn>266</epn>
<cnt>16</cnt>
</pp>
<issn type="print">1471-003X</issn>
<issn type="electronic">1471-0048</issn>
<cpg>
<cpy>2012</cpy>
<cpn>Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</cpn>
</cpg>
<subject code="5" id="5" path="/5" priority="0" type="npg.subjects" version="1.0"></subject>
<subject code="269" id="269" path="/269" priority="0" type="npg.subjects" version="1.0"></subject>
<subject code="344" id="344" path="/344" priority="0" type="npg.subjects" version="1.0"></subject>
<subject code="375" id="375" path="/375" priority="0" type="npg.subjects" version="1.0"></subject>
<subject code="476" id="476" path="/476" priority="0" type="npg.subjects" version="1.0"></subject>
<subject code="559" id="559" path="/559" priority="0" type="npg.subjects" version="1.0"></subject>
<doi>10.1038/nrn3171</doi>
</pubfm>
<fm>
<atl display="show">Optogenetic investigation of neural circuits underlying brain disease in animal models</atl>
<aug>
<cau>
<fnm>Kay M.</fnm>
<snm>Tye</snm>
<inits>K M</inits>
<orf rid="a1"></orf>
<orf rid="a2"></orf>
<corf rid="c1"></corf>
<bio>
<p>Kay M. Tye studied brain and cognitive sciences at the Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA, and completed her doctoral training at the University of California, San Francisco, USA. During this time she showed that amygdala plasticity mediates reward-related learning and neural encoding of reward-related cues. She received postdoctoral training at Stanford University, Palo Alto, California, USA, using optogenetic techniques to investigate neural circuit properties underlying psychiatric disease-related symptoms. Her laboratory at the Picower Institute of Learning and Memory in the Department of Brain and Cognitive Sciences at MIT is focused on dissecting neural circuits encoding emotional valence, with emphasis on the identification of common circuits that are perturbed in disease models related to addiction, anxiety and depression.</p>
</bio>
</cau>
<cau>
<fnm>Karl</fnm>
<snm>Deisseroth</snm>
<inits>K</inits>
<orf rid="a1"></orf>
<orf rid="a3"></orf>
<orf rid="a4"></orf>
<orf rid="a5"></orf>
<corf rid="c2"></corf>
<bio>
<p>Karl Deisseroth received his bachelor's degree (1992), Ph.D. (1998) and M.D. (2000) from Harvard University, Cambridge, Massachusetts, USA. He completed postdoctoral training, medical internship and adult psychiatry residency at Stanford University and was board-certified in 2006. He is also a faculty member in the Bioengineering and Psychiatry Departments and continues to practice as a psychiatrist. He has developed and applied optogenetics, for which he was the recipient of the 2010 Koetser Prize, the 2010 Nakasone Prize and the 2011 Alden Spencer Prize. In 2010 he was elected to the Institute of Medicine.</p>
</bio>
</cau>
<aff>
<oid id="a1"></oid>
<org>Department of Bioengineering, Stanford University</org>
,
<street>318 Campus Drive, Clark Center</street>
,
<cty>Stanford</cty>
,
<st>California</st>
<zip>94305-5444</zip>
,
<cny>USA</cny>
.</aff>
<aff>
<oid id="a2"></oid>
<org>Picower Institute of Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology</org>
,
<cty>Cambridge</cty>
,
<st>Massachusetts</st>
<zip>02139-4307</zip>
,
<cny>USA</cny>
.</aff>
<aff>
<oid id="a3"></oid>
<org>Department of Psychiatry, Stanford University</org>
,
<street>401 Quarry Road</street>
,
<cty>Stanford</cty>
,
<st>California</st>
<zip>94305-5717</zip>
,
<cny>USA</cny>
.</aff>
<aff>
<oid id="a4"></oid>
<org>CNC Program, Stanford University</org>
,
<cty>Stanford</cty>
,
<st>California</st>
<zip>94305</zip>
,
<cny>USA</cny>
.</aff>
<aff>
<oid id="a5"></oid>
<org>Howard Hughes Medical Institute, Stanford University Medical School</org>
,
<cty>Stanford</cty>
,
<st>California</st>
<zip>94305-5323</zip>
,
<cny>USA</cny>
. </aff>
<caff>
<coid id="c1"></coid>
<email>kaytye@mit.edu</email>
</caff>
<caff>
<coid id="c2"></coid>
<email>deissero@stanford.edu</email>
</caff>
</aug>
<hst>
<pubdate day="20" month="03" type="iss" year="2012"></pubdate>
</hst>
<execsumm>
<p>
<list id="l1" type="bullet">
<li>'Optogenetic' approaches (the use of light-sensitive genetically encodable tools to manipulate cellular activity) in neuroscience have matured beyond the proof-of-principle phase and have grown into a widely used set of techniques for dissecting the circuits underlying behaviour.</li>
<li>Recent technological advances include the integration of optogenetics with established techniques in electrophysiology and pharmacology, as well as the expansion of the optogenetic toolbox to include new opsin variants and new transgenic rodent lines.</li>
<li>Optogenetic approaches provide new advantages such as precise cellular targeting and greater temporal control, but also bring new limitations that are important to consider, such as heating artefacts and problems with light delivery and overexpression toxicity.</li>
<li>Optogenetic approaches have led to the dissection of microcircuits in the amygdala underlying fear and anxiety and to the discovery of unexpectedly broad temporal regimes in which the hippocampus is involved in recalling remote memories.</li>
<li>The use of optogenetics to target a specific projection or specific cell type in transgenic Cre recombinase rodents has advanced our understanding of the circuits underlying reward-related learning relevant to addiction.</li>
<li>Manipulating parvalbumin neurons, rhythmic oscillations and the balance of excitation and inhibition in neocortex using optogenetic tools has advanced our understanding of schizophrenia- and autism-related phenomena.</li>
<li>The use of optogenetic methods has advanced our understanding of neurological disorders and treatments, clarifying our understanding of deep brain stimulation and striatal circuits in the context of Parkinson's disease.</li>
</list>
</p>
</execsumm>
<websumm type="regular">Optogenetics enables the precise and targeted manipulation of the activity of specific neurons and is a powerful tool for the dissection of neural circuits. Tye and Deisseroth describe the latest refinements in optogenetic technology and show how this approach is being used to investigate the circuits involved in psychiatric and neurological disorders.</websumm>
<abs>
<p>Optogenetic tools have provided a new way to establish causal relationships between brain activity and behaviour in health and disease. Although no animal model captures human disease precisely, behaviours that recapitulate disease symptoms may be elicited and modulated by optogenetic methods, including behaviours that are relevant to anxiety, fear, depression, addiction, autism and parkinsonism. The rapid proliferation of optogenetic reagents together with the swift advancement of strategies for implementation has created new opportunities for causal and precise dissection of the circuits underlying brain diseases in animal models.</p>
</abs>
</fm>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="eng">
<title>Optogenetic investigation of neural circuits underlying brain disease in animal models</title>
</titleInfo>
<titleInfo type="alternative" lang="eng" contentType="CDATA">
<title>Optogenetic investigation of neural circuits underlying brain disease in animal models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kay M.</namePart>
<namePart type="family">Tye</namePart>
<affiliation>Department of Bioengineering, Stanford University, 318 Campus Drive, Clark Center, Stanford, California 94305-5444, USA.</affiliation>
<affiliation>Picower Institute of Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA.</affiliation>
<affiliation>E-mail: kaytye@mit.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
<description>Kay M. Tye studied brain and cognitive sciences at the Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA, and completed her doctoral training at the University of California, San Francisco, USA. During this time she showed that amygdala plasticity mediates reward-related learning and neural encoding of reward-related cues. She received postdoctoral training at Stanford University, Palo Alto, California, USA, using optogenetic techniques to investigate neural circuit properties underlying psychiatric disease-related symptoms. Her laboratory at the Picower Institute of Learning and Memory in the Department of Brain and Cognitive Sciences at MIT is focused on dissecting neural circuits encoding emotional valence, with emphasis on the identification of common circuits that are perturbed in disease models related to addiction, anxiety and depression.</description>
</name>
<name type="personal">
<namePart type="given">Karl</namePart>
<namePart type="family">Deisseroth</namePart>
<affiliation>Department of Bioengineering, Stanford University, 318 Campus Drive, Clark Center, Stanford, California 94305-5444, USA.</affiliation>
<affiliation>Department of Psychiatry, Stanford University, 401 Quarry Road, Stanford, California 94305-5717, USA.</affiliation>
<affiliation>CNC Program, Stanford University, Stanford, California 94305, USA.</affiliation>
<affiliation>Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305-5323, USA.</affiliation>
<affiliation>E-mail: deissero@stanford.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
<description>Karl Deisseroth received his bachelor's degree (1992), Ph.D. (1998) and M.D. (2000) from Harvard University, Cambridge, Massachusetts, USA. He completed postdoctoral training, medical internship and adult psychiatry residency at Stanford University and was board-certified in 2006. He is also a faculty member in the Bioengineering and Psychiatry Departments and continues to practice as a psychiatrist. He has developed and applied optogenetics, for which he was the recipient of the 2010 Koetser Prize, the 2010 Nakasone Prize and the 2011 Alden Spencer Prize. In 2010 he was elected to the Institute of Medicine.</description>
</name>
<typeOfResource>text</typeOfResource>
<genre type="review-article" displayLabel="Review"></genre>
<originInfo>
<publisher>Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</publisher>
<dateIssued encoding="w3cdtf">2012-04</dateIssued>
<dateCreated encoding="w3cdtf">2012-03-20</dateCreated>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="eng">Optogenetic tools have provided a new way to establish causal relationships between brain activity and behaviour in health and disease. Although no animal model captures human disease precisely, behaviours that recapitulate disease symptoms may be elicited and modulated by optogenetic methods, including behaviours that are relevant to anxiety, fear, depression, addiction, autism and parkinsonism. The rapid proliferation of optogenetic reagents together with the swift advancement of strategies for implementation has created new opportunities for causal and precise dissection of the circuits underlying brain diseases in animal models.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Nature Reviews Neuroscience</title>
</titleInfo>
<classification displayLabel="5"></classification>
<classification displayLabel="269"></classification>
<classification displayLabel="344"></classification>
<classification displayLabel="375"></classification>
<classification displayLabel="476"></classification>
<classification displayLabel="559"></classification>
<identifier type="ISSN">1471-003X</identifier>
<identifier type="eISSN">1471-0048</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>251</start>
<end>266</end>
<total>16</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">E1619554621D8731C5B4FF4800B74A407CD1AA74</identifier>
<identifier type="DOI">10.1038/nrn3171</identifier>
<identifier type="ArticleID">nrn3171</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2012 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</accessCondition>
<recordInfo>
<recordContentSource>NATURE</recordContentSource>
<recordIdentifier>/nrn/journal/v13/n4/images/nrn3171-f1.jpg</recordIdentifier>
<recordIdentifier>/nrn/journal/v13/n4/images/nrn3171-f2.jpg</recordIdentifier>
<recordIdentifier>/nrn/journal/v13/n4/images/nrn3171-f3.jpg</recordIdentifier>
<recordIdentifier>/nrn/journal/v13/n4/images/nrn3171-f4.jpg</recordIdentifier>
<recordIdentifier>/nrn/journal/v13/n4/images/nrn3171-f5.jpg</recordIdentifier>
<recordIdentifier>/nrn/journal/v13/n4/images/nrn3171-i1.jpg</recordIdentifier>
</recordInfo>
</mods>
</metadata>
<annexes>
<json:item>
<original>true</original>
<mimetype>image/jpeg</mimetype>
<extension>jpeg</extension>
<uri>https://api.istex.fr/document/E1619554621D8731C5B4FF4800B74A407CD1AA74/annexes/jpeg</uri>
</json:item>
<json:item>
<original>true</original>
<mimetype>application/vnd.ms-powerpoint</mimetype>
<extension>ppt</extension>
<uri>https://api.istex.fr/document/E1619554621D8731C5B4FF4800B74A407CD1AA74/annexes/ppt</uri>
</json:item>
</annexes>
<enrichments>
<istex:catWosTEI uri="https://api.istex.fr/document/E1619554621D8731C5B4FF4800B74A407CD1AA74/enrichments/catWos">
<teiHeader>
<profileDesc>
<textClass>
<classCode scheme="WOS">NEUROSCIENCES</classCode>
</textClass>
</profileDesc>
</teiHeader>
</istex:catWosTEI>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B66 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002B66 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:E1619554621D8731C5B4FF4800B74A407CD1AA74
   |texte=   Optogenetic investigation of neural circuits underlying brain disease in animal models
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 18:06:51 2016. Site generation: Wed Mar 6 18:46:03 2024