Serveur d'exploration sur la maladie de Parkinson

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Functional connectivity of cortical motor areas in the resting state in Parkinson's disease

Identifieur interne : 002878 ( Main/Corpus ); précédent : 002877; suivant : 002879

Functional connectivity of cortical motor areas in the resting state in Parkinson's disease

Auteurs : Tao Wu ; Xiangyu Long ; Liang Wang ; Mark Hallett ; Yufeng Zang ; Kuncheng Li ; Piu Chan

Source :

RBID : ISTEX:FA9B85FC541373204B9B38C1AC4D7A17B749DCAE

English descriptors

Abstract

Parkinson's disease (PD) patients have difficulty in initiating movements. Previous studies have suggested that the abnormal brain activity may happen not only during performance of self‐initiated movements but also in the before movement (baseline or resting) state. In the current study, we investigated the functional connectivity of brain networks in the resting state in PD. We chose the rostral supplementary motor area (pre‐SMA) and bilateral primary motor cortex (M1) as “seed” regions, because the pre‐SMA is important in motor preparation, whereas the M1 is critical in motor execution. FMRIs were acquired in 18 patients and 18 matched controls. We found that in the resting state, the pattern of connectivity with both the pre‐SMA or the M1 was changed in PD. Connectivity with the pre‐SMA in patients with PD compared to normal subjects was increased connectivity to the right M1 and decreased to the left putamen, right insula, right premotor cortex, and left inferior parietal lobule. We only found stronger connectivity in the M1 with its own local region in patients with PD compared to controls. Our findings demonstrate that the interactions of brain networks are abnormal in PD in the resting state. There are more connectivity changes of networks related to motor preparation and initiation than to networks of motor execution in PD. We postulate that these disrupted connections indicate a lack of readiness for movement and may be partly responsible for difficulty in initiating movements in PD. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/hbm.21118

Links to Exploration step

ISTEX:FA9B85FC541373204B9B38C1AC4D7A17B749DCAE

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Functional connectivity of cortical motor areas in the resting state in Parkinson's disease</title>
<author>
<name sortKey="Wu, Tao" sort="Wu, Tao" uniqKey="Wu T" first="Tao" last="Wu">Tao Wu</name>
<affiliation>
<mods:affiliation>Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Beijing, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Long, Xiangyu" sort="Long, Xiangyu" uniqKey="Long X" first="Xiangyu" last="Long">Xiangyu Long</name>
<affiliation>
<mods:affiliation>State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Liang" sort="Wang, Liang" uniqKey="Wang L" first="Liang" last="Wang">Liang Wang</name>
<affiliation>
<mods:affiliation>Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hallett, Mark" sort="Hallett, Mark" uniqKey="Hallett M" first="Mark" last="Hallett">Mark Hallett</name>
<affiliation>
<mods:affiliation>Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zang, Yufeng" sort="Zang, Yufeng" uniqKey="Zang Y" first="Yufeng" last="Zang">Yufeng Zang</name>
<affiliation>
<mods:affiliation>State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Kuncheng" sort="Li, Kuncheng" uniqKey="Li K" first="Kuncheng" last="Li">Kuncheng Li</name>
<affiliation>
<mods:affiliation>Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chan, Piu" sort="Chan, Piu" uniqKey="Chan P" first="Piu" last="Chan">Piu Chan</name>
<affiliation>
<mods:affiliation>Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Beijing, China</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:FA9B85FC541373204B9B38C1AC4D7A17B749DCAE</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1002/hbm.21118</idno>
<idno type="url">https://api.istex.fr/document/FA9B85FC541373204B9B38C1AC4D7A17B749DCAE/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">002878</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Functional connectivity of cortical motor areas in the resting state in Parkinson's disease</title>
<author>
<name sortKey="Wu, Tao" sort="Wu, Tao" uniqKey="Wu T" first="Tao" last="Wu">Tao Wu</name>
<affiliation>
<mods:affiliation>Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Beijing, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Long, Xiangyu" sort="Long, Xiangyu" uniqKey="Long X" first="Xiangyu" last="Long">Xiangyu Long</name>
<affiliation>
<mods:affiliation>State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Liang" sort="Wang, Liang" uniqKey="Wang L" first="Liang" last="Wang">Liang Wang</name>
<affiliation>
<mods:affiliation>Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hallett, Mark" sort="Hallett, Mark" uniqKey="Hallett M" first="Mark" last="Hallett">Mark Hallett</name>
<affiliation>
<mods:affiliation>Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zang, Yufeng" sort="Zang, Yufeng" uniqKey="Zang Y" first="Yufeng" last="Zang">Yufeng Zang</name>
<affiliation>
<mods:affiliation>State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Kuncheng" sort="Li, Kuncheng" uniqKey="Li K" first="Kuncheng" last="Li">Kuncheng Li</name>
<affiliation>
<mods:affiliation>Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chan, Piu" sort="Chan, Piu" uniqKey="Chan P" first="Piu" last="Chan">Piu Chan</name>
<affiliation>
<mods:affiliation>Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Beijing, China</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Human Brain Mapping</title>
<title level="j" type="abbrev">Hum. Brain Mapp.</title>
<idno type="ISSN">1065-9471</idno>
<idno type="eISSN">1097-0193</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2011-09">2011-09</date>
<biblScope unit="volume">32</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="1443">1443</biblScope>
<biblScope unit="page" to="1457">1457</biblScope>
</imprint>
<idno type="ISSN">1065-9471</idno>
</series>
<idno type="istex">FA9B85FC541373204B9B38C1AC4D7A17B749DCAE</idno>
<idno type="DOI">10.1002/hbm.21118</idno>
<idno type="ArticleID">HBM21118</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1065-9471</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Parkinson's disease</term>
<term>functional connectivity</term>
<term>primary motor cortex</term>
<term>resting state</term>
<term>rostral supplementary motor area</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Parkinson's disease (PD) patients have difficulty in initiating movements. Previous studies have suggested that the abnormal brain activity may happen not only during performance of self‐initiated movements but also in the before movement (baseline or resting) state. In the current study, we investigated the functional connectivity of brain networks in the resting state in PD. We chose the rostral supplementary motor area (pre‐SMA) and bilateral primary motor cortex (M1) as “seed” regions, because the pre‐SMA is important in motor preparation, whereas the M1 is critical in motor execution. FMRIs were acquired in 18 patients and 18 matched controls. We found that in the resting state, the pattern of connectivity with both the pre‐SMA or the M1 was changed in PD. Connectivity with the pre‐SMA in patients with PD compared to normal subjects was increased connectivity to the right M1 and decreased to the left putamen, right insula, right premotor cortex, and left inferior parietal lobule. We only found stronger connectivity in the M1 with its own local region in patients with PD compared to controls. Our findings demonstrate that the interactions of brain networks are abnormal in PD in the resting state. There are more connectivity changes of networks related to motor preparation and initiation than to networks of motor execution in PD. We postulate that these disrupted connections indicate a lack of readiness for movement and may be partly responsible for difficulty in initiating movements in PD. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Tao Wu</name>
<affiliations>
<json:string>Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Beijing, China</json:string>
</affiliations>
</json:item>
<json:item>
<name>Xiangyu Long</name>
<affiliations>
<json:string>State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China</json:string>
</affiliations>
</json:item>
<json:item>
<name>Liang Wang</name>
<affiliations>
<json:string>Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China</json:string>
</affiliations>
</json:item>
<json:item>
<name>Mark Hallett</name>
<affiliations>
<json:string>Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland</json:string>
</affiliations>
</json:item>
<json:item>
<name>Yufeng Zang</name>
<affiliations>
<json:string>State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China</json:string>
</affiliations>
</json:item>
<json:item>
<name>Kuncheng Li</name>
<affiliations>
<json:string>Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China</json:string>
</affiliations>
</json:item>
<json:item>
<name>Piu Chan</name>
<affiliations>
<json:string>Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Beijing, China</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Parkinson's disease</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>functional connectivity</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>resting state</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>rostral supplementary motor area</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>primary motor cortex</value>
</json:item>
</subject>
<articleId>
<json:string>HBM21118</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>Parkinson's disease (PD) patients have difficulty in initiating movements. Previous studies have suggested that the abnormal brain activity may happen not only during performance of self‐initiated movements but also in the before movement (baseline or resting) state. In the current study, we investigated the functional connectivity of brain networks in the resting state in PD. We chose the rostral supplementary motor area (pre‐SMA) and bilateral primary motor cortex (M1) as “seed” regions, because the pre‐SMA is important in motor preparation, whereas the M1 is critical in motor execution. FMRIs were acquired in 18 patients and 18 matched controls. We found that in the resting state, the pattern of connectivity with both the pre‐SMA or the M1 was changed in PD. Connectivity with the pre‐SMA in patients with PD compared to normal subjects was increased connectivity to the right M1 and decreased to the left putamen, right insula, right premotor cortex, and left inferior parietal lobule. We only found stronger connectivity in the M1 with its own local region in patients with PD compared to controls. Our findings demonstrate that the interactions of brain networks are abnormal in PD in the resting state. There are more connectivity changes of networks related to motor preparation and initiation than to networks of motor execution in PD. We postulate that these disrupted connections indicate a lack of readiness for movement and may be partly responsible for difficulty in initiating movements in PD. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.</abstract>
<qualityIndicators>
<score>7.952</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>612 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>5</keywordCount>
<abstractCharCount>1564</abstractCharCount>
<pdfWordCount>9036</pdfWordCount>
<pdfCharCount>57832</pdfCharCount>
<pdfPageCount>15</pdfPageCount>
<abstractWordCount>246</abstractWordCount>
</qualityIndicators>
<title>Functional connectivity of cortical motor areas in the resting state in Parkinson's disease</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>32</volume>
<publisherId>
<json:string>HBM</json:string>
</publisherId>
<pages>
<total>15</total>
<last>1457</last>
<first>1443</first>
</pages>
<issn>
<json:string>1065-9471</json:string>
</issn>
<issue>9</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>Journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1097-0193</json:string>
</eissn>
<title>Human Brain Mapping</title>
<doi>
<json:string>10.1002/(ISSN)1097-0193</json:string>
</doi>
</host>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1002/hbm.21118</json:string>
</doi>
<id>FA9B85FC541373204B9B38C1AC4D7A17B749DCAE</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/FA9B85FC541373204B9B38C1AC4D7A17B749DCAE/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/FA9B85FC541373204B9B38C1AC4D7A17B749DCAE/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/FA9B85FC541373204B9B38C1AC4D7A17B749DCAE/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Functional connectivity of cortical motor areas in the resting state in Parkinson's disease</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2011</date>
</publicationStmt>
<notesStmt>
<note>National Science Foundation of China - No. 30870693;</note>
<note>Ministry of Science and Technology - No. 2006AA02A408;</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Functional connectivity of cortical motor areas in the resting state in Parkinson's disease</title>
<author>
<persName>
<forename type="first">Tao</forename>
<surname>Wu</surname>
</persName>
<note type="correspondence">
<p>Correspondence: Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China</p>
</note>
<affiliation>Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Beijing, China</affiliation>
</author>
<author>
<persName>
<forename type="first">Xiangyu</forename>
<surname>Long</surname>
</persName>
<affiliation>State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China</affiliation>
</author>
<author>
<persName>
<forename type="first">Liang</forename>
<surname>Wang</surname>
</persName>
<affiliation>Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China</affiliation>
</author>
<author>
<persName>
<forename type="first">Mark</forename>
<surname>Hallett</surname>
</persName>
<affiliation>Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland</affiliation>
</author>
<author>
<persName>
<forename type="first">Yufeng</forename>
<surname>Zang</surname>
</persName>
<affiliation>State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China</affiliation>
</author>
<author>
<persName>
<forename type="first">Kuncheng</forename>
<surname>Li</surname>
</persName>
<affiliation>Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China</affiliation>
</author>
<author>
<persName>
<forename type="first">Piu</forename>
<surname>Chan</surname>
</persName>
<affiliation>Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Beijing, China</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Human Brain Mapping</title>
<title level="j" type="abbrev">Hum. Brain Mapp.</title>
<idno type="pISSN">1065-9471</idno>
<idno type="eISSN">1097-0193</idno>
<idno type="DOI">10.1002/(ISSN)1097-0193</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2011-09"></date>
<biblScope unit="volume">32</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="1443">1443</biblScope>
<biblScope unit="page" to="1457">1457</biblScope>
</imprint>
</monogr>
<idno type="istex">FA9B85FC541373204B9B38C1AC4D7A17B749DCAE</idno>
<idno type="DOI">10.1002/hbm.21118</idno>
<idno type="ArticleID">HBM21118</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2011</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Parkinson's disease (PD) patients have difficulty in initiating movements. Previous studies have suggested that the abnormal brain activity may happen not only during performance of self‐initiated movements but also in the before movement (baseline or resting) state. In the current study, we investigated the functional connectivity of brain networks in the resting state in PD. We chose the rostral supplementary motor area (pre‐SMA) and bilateral primary motor cortex (M1) as “seed” regions, because the pre‐SMA is important in motor preparation, whereas the M1 is critical in motor execution. FMRIs were acquired in 18 patients and 18 matched controls. We found that in the resting state, the pattern of connectivity with both the pre‐SMA or the M1 was changed in PD. Connectivity with the pre‐SMA in patients with PD compared to normal subjects was increased connectivity to the right M1 and decreased to the left putamen, right insula, right premotor cortex, and left inferior parietal lobule. We only found stronger connectivity in the M1 with its own local region in patients with PD compared to controls. Our findings demonstrate that the interactions of brain networks are abnormal in PD in the resting state. There are more connectivity changes of networks related to motor preparation and initiation than to networks of motor execution in PD. We postulate that these disrupted connections indicate a lack of readiness for movement and may be partly responsible for difficulty in initiating movements in PD. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Parkinson's disease</term>
</item>
<item>
<term>functional connectivity</term>
</item>
<item>
<term>resting state</term>
</item>
<item>
<term>rostral supplementary motor area</term>
</item>
<item>
<term>primary motor cortex</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2009-11-05">Received</change>
<change when="2010-06-07">Registration</change>
<change when="2011-09">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/FA9B85FC541373204B9B38C1AC4D7A17B749DCAE/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1097-0193</doi>
<issn type="print">1065-9471</issn>
<issn type="electronic">1097-0193</issn>
<idGroup>
<id type="product" value="HBM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="HUMAN BRAIN MAPPING">Human Brain Mapping</title>
<title type="short">Hum. Brain Mapp.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="90">
<doi origin="wiley" registered="yes">10.1002/hbm.v32.9</doi>
<numberingGroup>
<numbering type="journalVolume" number="32">32</numbering>
<numbering type="journalIssue">9</numbering>
</numberingGroup>
<coverDate startDate="2011-09">September 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="80" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/hbm.21118</doi>
<idGroup>
<id type="unit" value="HBM21118"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="15"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2010 Wiley‐Liss, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2009-11-05"></event>
<event type="manuscriptRevised" date="2010-05-09"></event>
<event type="manuscriptAccepted" date="2010-06-07"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.5.2 mode:FullText" date="2011-08-11"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2010-08-25"></event>
<event type="firstOnline" date="2010-08-25"></event>
<event type="publishedOnlineFinalForm" date="2011-08-11"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-26"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-23"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1443</numbering>
<numbering type="pageLast">1457</numbering>
</numberingGroup>
<correspondenceTo>Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:HBM.HBM21118.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="4"></count>
<count type="tableTotal" number="6"></count>
<count type="referenceTotal" number="116"></count>
<count type="wordTotal" number="13501"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Functional connectivity of cortical motor areas in the resting state in Parkinson's disease</title>
<title type="short" xml:lang="en">Functional Connectivity in Parkinson's Disease</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Tao</givenNames>
<familyName>Wu</familyName>
</personName>
<contactDetails>
<email>wutao69@gmail.com</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Xiangyu</givenNames>
<familyName>Long</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Liang</givenNames>
<familyName>Wang</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af4">
<personName>
<givenNames>Mark</givenNames>
<familyName>Hallett</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Yufeng</givenNames>
<familyName>Zang</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Kuncheng</givenNames>
<familyName>Li</familyName>
</personName>
</creator>
<creator xml:id="au7" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Piu</givenNames>
<familyName>Chan</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="CN" type="organization">
<unparsedAffiliation>Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Beijing, China</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="CN" type="organization">
<unparsedAffiliation>State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="CN" type="organization">
<unparsedAffiliation>Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af4" countryCode="US" type="organization">
<unparsedAffiliation>Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">Parkinson's disease</keyword>
<keyword xml:id="kwd2">functional connectivity</keyword>
<keyword xml:id="kwd3">resting state</keyword>
<keyword xml:id="kwd4">rostral supplementary motor area</keyword>
<keyword xml:id="kwd5">primary motor cortex</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>National Science Foundation of China</fundingAgency>
<fundingNumber>30870693</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>Ministry of Science and Technology</fundingAgency>
<fundingNumber>2006AA02A408</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Parkinson's disease (PD) patients have difficulty in initiating movements. Previous studies have suggested that the abnormal brain activity may happen not only during performance of self‐initiated movements but also in the before movement (baseline or resting) state. In the current study, we investigated the functional connectivity of brain networks in the resting state in PD. We chose the rostral supplementary motor area (pre‐SMA) and bilateral primary motor cortex (M1) as “seed” regions, because the pre‐SMA is important in motor preparation, whereas the M1 is critical in motor execution. FMRIs were acquired in 18 patients and 18 matched controls. We found that in the resting state, the pattern of connectivity with both the pre‐SMA or the M1 was changed in PD. Connectivity with the pre‐SMA in patients with PD compared to normal subjects was increased connectivity to the right M1 and decreased to the left putamen, right insula, right premotor cortex, and left inferior parietal lobule. We only found stronger connectivity in the M1 with its own local region in patients with PD compared to controls. Our findings demonstrate that the interactions of brain networks are abnormal in PD in the resting state. There are more connectivity changes of networks related to motor preparation and initiation than to networks of motor execution in PD. We postulate that these disrupted connections indicate a lack of readiness for movement and may be partly responsible for difficulty in initiating movements in PD. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Functional connectivity of cortical motor areas in the resting state in Parkinson's disease</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Functional Connectivity in Parkinson's Disease</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Functional connectivity of cortical motor areas in the resting state in Parkinson's disease</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tao</namePart>
<namePart type="family">Wu</namePart>
<affiliation>Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Beijing, China</affiliation>
<description>Correspondence: Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiangyu</namePart>
<namePart type="family">Long</namePart>
<affiliation>State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang</namePart>
<namePart type="family">Wang</namePart>
<affiliation>Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Hallett</namePart>
<affiliation>Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yufeng</namePart>
<namePart type="family">Zang</namePart>
<affiliation>State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kuncheng</namePart>
<namePart type="family">Li</namePart>
<affiliation>Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Piu</namePart>
<namePart type="family">Chan</namePart>
<affiliation>Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Beijing, China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011-09</dateIssued>
<dateCaptured encoding="w3cdtf">2009-11-05</dateCaptured>
<dateValid encoding="w3cdtf">2010-06-07</dateValid>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">4</extent>
<extent unit="tables">6</extent>
<extent unit="references">116</extent>
<extent unit="words">13501</extent>
</physicalDescription>
<abstract lang="en">Parkinson's disease (PD) patients have difficulty in initiating movements. Previous studies have suggested that the abnormal brain activity may happen not only during performance of self‐initiated movements but also in the before movement (baseline or resting) state. In the current study, we investigated the functional connectivity of brain networks in the resting state in PD. We chose the rostral supplementary motor area (pre‐SMA) and bilateral primary motor cortex (M1) as “seed” regions, because the pre‐SMA is important in motor preparation, whereas the M1 is critical in motor execution. FMRIs were acquired in 18 patients and 18 matched controls. We found that in the resting state, the pattern of connectivity with both the pre‐SMA or the M1 was changed in PD. Connectivity with the pre‐SMA in patients with PD compared to normal subjects was increased connectivity to the right M1 and decreased to the left putamen, right insula, right premotor cortex, and left inferior parietal lobule. We only found stronger connectivity in the M1 with its own local region in patients with PD compared to controls. Our findings demonstrate that the interactions of brain networks are abnormal in PD in the resting state. There are more connectivity changes of networks related to motor preparation and initiation than to networks of motor execution in PD. We postulate that these disrupted connections indicate a lack of readiness for movement and may be partly responsible for difficulty in initiating movements in PD. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.</abstract>
<note type="funding">National Science Foundation of China - No. 30870693; </note>
<note type="funding">Ministry of Science and Technology - No. 2006AA02A408; </note>
<subject lang="en">
<genre>Keywords</genre>
<topic>Parkinson's disease</topic>
<topic>functional connectivity</topic>
<topic>resting state</topic>
<topic>rostral supplementary motor area</topic>
<topic>primary motor cortex</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Human Brain Mapping</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Hum. Brain Mapp.</title>
</titleInfo>
<genre type="Journal">journal</genre>
<subject>
<genre>article category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">1065-9471</identifier>
<identifier type="eISSN">1097-0193</identifier>
<identifier type="DOI">10.1002/(ISSN)1097-0193</identifier>
<identifier type="PublisherID">HBM</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>32</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>9</number>
</detail>
<extent unit="pages">
<start>1443</start>
<end>1457</end>
<total>15</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">FA9B85FC541373204B9B38C1AC4D7A17B749DCAE</identifier>
<identifier type="DOI">10.1002/hbm.21118</identifier>
<identifier type="ArticleID">HBM21118</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2010 Wiley‐Liss, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002878 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002878 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:FA9B85FC541373204B9B38C1AC4D7A17B749DCAE
   |texte=   Functional connectivity of cortical motor areas in the resting state in Parkinson's disease
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 18:06:51 2016. Site generation: Wed Mar 6 18:46:03 2024