Serveur d'exploration sur la maladie de Parkinson

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bioenergetics and the epigenome: Interface between the environment and genes in common diseases

Identifieur interne : 002079 ( Main/Corpus ); précédent : 002078; suivant : 002080

Bioenergetics and the epigenome: Interface between the environment and genes in common diseases

Auteurs : Douglas C. Wallace

Source :

RBID : ISTEX:718C5AF0F6ECBFD7FCAE09A04F872E3FB75097D4

English descriptors

Abstract

Extensive efforts have been directed at using genome‐wide association studies (GWAS) to identify the genes responsible for common metabolic and degenerative diseases, cancer, and aging, but with limited success. While environmental factors have been evoked to explain this conundrum, the nature of these environmental factors remains unexplained. The availability of and demands for energy constitute one of the most important aspects of the environment. The flow of energy through the cell is primarily mediated by the mitochondrion, which oxidizes reducing equivalents from hydrocarbons via acetyl‐CoA, NADH + H+, and FADH2 to generate ATP through oxidative phosphorylation (OXPHOS). The mitochondrial genome encompasses hundreds of nuclear DNA (nDNA)‐encoded genes plus 37 mitochondrial DNA (mtDNA)‐encoded genes. Although the mtDNA has a high mutation rate, only milder, potentially adaptive mutations are introduced into the population through female oocytes. In contrast, nDNA‐encoded bioenergetic genes have a low mutation rate. However, their expression is modulated by histone phosphorylation and acetylation using mitochondrially‐generated ATP and acetyl‐CoA, which permits increased gene expression, growth, and reproduction when calories are abundant. Phosphorylation, acetylaton, and cellular redox state also regulate most signal transduction pathways and activities of multiple transcription factors. Thus, mtDNA mutations provide heritable and stable adaptation to regional differences while mitochondrially‐mediated changes in the epigenome permit reversible modulation of gene expression in response to fluctuations in the energy environment. The most common genomic changes that interface with the environment and cause complex disease must, therefore, be mitochondrial and epigenomic in origin. © 2010 Wiley‐Liss, Inc. Dev Disabil Res Rev 2010;16:114–119.

Url:
DOI: 10.1002/ddrr.113

Links to Exploration step

ISTEX:718C5AF0F6ECBFD7FCAE09A04F872E3FB75097D4

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bioenergetics and the epigenome: Interface between the environment and genes in common diseases</title>
<author>
<name sortKey="Wallace, Douglas C" sort="Wallace, Douglas C" uniqKey="Wallace D" first="Douglas C." last="Wallace">Douglas C. Wallace</name>
<affiliation>
<mods:affiliation>The Department of Pathology and Laboratory Medicine, Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:718C5AF0F6ECBFD7FCAE09A04F872E3FB75097D4</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1002/ddrr.113</idno>
<idno type="url">https://api.istex.fr/document/718C5AF0F6ECBFD7FCAE09A04F872E3FB75097D4/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">002079</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Bioenergetics and the epigenome: Interface between the environment and genes in common diseases</title>
<author>
<name sortKey="Wallace, Douglas C" sort="Wallace, Douglas C" uniqKey="Wallace D" first="Douglas C." last="Wallace">Douglas C. Wallace</name>
<affiliation>
<mods:affiliation>The Department of Pathology and Laboratory Medicine, Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Developmental Disabilities Research Reviews</title>
<title level="j" type="abbrev">Dev Disabil Res Revs</title>
<idno type="ISSN">1940-5510</idno>
<idno type="eISSN">1940-5529</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., a Wiley company</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="2010-06">2010-06</date>
<biblScope unit="volume">16</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="114">114</biblScope>
<biblScope unit="page" to="119">119</biblScope>
</imprint>
<idno type="ISSN">1940-5510</idno>
</series>
<idno type="istex">718C5AF0F6ECBFD7FCAE09A04F872E3FB75097D4</idno>
<idno type="DOI">10.1002/ddrr.113</idno>
<idno type="ArticleID">DDRR113</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1940-5510</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>bioenergetics</term>
<term>complex disease</term>
<term>epigenome</term>
<term>mitochondria</term>
<term>signal transduction</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Extensive efforts have been directed at using genome‐wide association studies (GWAS) to identify the genes responsible for common metabolic and degenerative diseases, cancer, and aging, but with limited success. While environmental factors have been evoked to explain this conundrum, the nature of these environmental factors remains unexplained. The availability of and demands for energy constitute one of the most important aspects of the environment. The flow of energy through the cell is primarily mediated by the mitochondrion, which oxidizes reducing equivalents from hydrocarbons via acetyl‐CoA, NADH + H+, and FADH2 to generate ATP through oxidative phosphorylation (OXPHOS). The mitochondrial genome encompasses hundreds of nuclear DNA (nDNA)‐encoded genes plus 37 mitochondrial DNA (mtDNA)‐encoded genes. Although the mtDNA has a high mutation rate, only milder, potentially adaptive mutations are introduced into the population through female oocytes. In contrast, nDNA‐encoded bioenergetic genes have a low mutation rate. However, their expression is modulated by histone phosphorylation and acetylation using mitochondrially‐generated ATP and acetyl‐CoA, which permits increased gene expression, growth, and reproduction when calories are abundant. Phosphorylation, acetylaton, and cellular redox state also regulate most signal transduction pathways and activities of multiple transcription factors. Thus, mtDNA mutations provide heritable and stable adaptation to regional differences while mitochondrially‐mediated changes in the epigenome permit reversible modulation of gene expression in response to fluctuations in the energy environment. The most common genomic changes that interface with the environment and cause complex disease must, therefore, be mitochondrial and epigenomic in origin. © 2010 Wiley‐Liss, Inc. Dev Disabil Res Rev 2010;16:114–119.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Douglas C. Wallace</name>
<affiliations>
<json:string>The Department of Pathology and Laboratory Medicine, Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>bioenergetics</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mitochondria</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>epigenome</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>complex disease</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>signal transduction</value>
</json:item>
</subject>
<articleId>
<json:string>DDRR113</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>Extensive efforts have been directed at using genome‐wide association studies (GWAS) to identify the genes responsible for common metabolic and degenerative diseases, cancer, and aging, but with limited success. While environmental factors have been evoked to explain this conundrum, the nature of these environmental factors remains unexplained. The availability of and demands for energy constitute one of the most important aspects of the environment. The flow of energy through the cell is primarily mediated by the mitochondrion, which oxidizes reducing equivalents from hydrocarbons via acetyl‐CoA, NADH + H+, and FADH2 to generate ATP through oxidative phosphorylation (OXPHOS). The mitochondrial genome encompasses hundreds of nuclear DNA (nDNA)‐encoded genes plus 37 mitochondrial DNA (mtDNA)‐encoded genes. Although the mtDNA has a high mutation rate, only milder, potentially adaptive mutations are introduced into the population through female oocytes. In contrast, nDNA‐encoded bioenergetic genes have a low mutation rate. However, their expression is modulated by histone phosphorylation and acetylation using mitochondrially‐generated ATP and acetyl‐CoA, which permits increased gene expression, growth, and reproduction when calories are abundant. Phosphorylation, acetylaton, and cellular redox state also regulate most signal transduction pathways and activities of multiple transcription factors. Thus, mtDNA mutations provide heritable and stable adaptation to regional differences while mitochondrially‐mediated changes in the epigenome permit reversible modulation of gene expression in response to fluctuations in the energy environment. The most common genomic changes that interface with the environment and cause complex disease must, therefore, be mitochondrial and epigenomic in origin. © 2010 Wiley‐Liss, Inc. Dev Disabil Res Rev 2010;16:114–119.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>612 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>5</keywordCount>
<abstractCharCount>1875</abstractCharCount>
<pdfWordCount>5001</pdfWordCount>
<pdfCharCount>33947</pdfCharCount>
<pdfPageCount>6</pdfPageCount>
<abstractWordCount>251</abstractWordCount>
</qualityIndicators>
<title>Bioenergetics and the epigenome: Interface between the environment and genes in common diseases</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>16</volume>
<publisherId>
<json:string>DDRR</json:string>
</publisherId>
<pages>
<total>6</total>
<last>119</last>
<first>114</first>
</pages>
<issn>
<json:string>1940-5510</json:string>
</issn>
<issue>2</issue>
<author>
<json:item>
<name>Marni J. Falk</name>
</json:item>
</author>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>Journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1940-5529</json:string>
</eissn>
<title>Developmental Disabilities Research Reviews</title>
<doi>
<json:string>10.1002/(ISSN)1940-5529</json:string>
</doi>
</host>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1002/ddrr.113</json:string>
</doi>
<id>718C5AF0F6ECBFD7FCAE09A04F872E3FB75097D4</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/718C5AF0F6ECBFD7FCAE09A04F872E3FB75097D4/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/718C5AF0F6ECBFD7FCAE09A04F872E3FB75097D4/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/718C5AF0F6ECBFD7FCAE09A04F872E3FB75097D4/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Bioenergetics and the epigenome: Interface between the environment and genes in common diseases</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., a Wiley company</publisher>
<pubPlace>New York</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2010</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Bioenergetics and the epigenome: Interface between the environment and genes in common diseases</title>
<author>
<persName>
<forename type="first">Douglas C.</forename>
<surname>Wallace</surname>
</persName>
<note type="correspondence">
<p>Correspondence: Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, The Department of Pathology and Laboratory Medicine, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104‐4302</p>
</note>
<affiliation>The Department of Pathology and Laboratory Medicine, Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Developmental Disabilities Research Reviews</title>
<title level="j" type="abbrev">Dev Disabil Res Revs</title>
<idno type="pISSN">1940-5510</idno>
<idno type="eISSN">1940-5529</idno>
<idno type="DOI">10.1002/(ISSN)1940-5529</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., a Wiley company</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="2010-06"></date>
<biblScope unit="volume">16</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="114">114</biblScope>
<biblScope unit="page" to="119">119</biblScope>
</imprint>
</monogr>
<idno type="istex">718C5AF0F6ECBFD7FCAE09A04F872E3FB75097D4</idno>
<idno type="DOI">10.1002/ddrr.113</idno>
<idno type="ArticleID">DDRR113</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2010</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Extensive efforts have been directed at using genome‐wide association studies (GWAS) to identify the genes responsible for common metabolic and degenerative diseases, cancer, and aging, but with limited success. While environmental factors have been evoked to explain this conundrum, the nature of these environmental factors remains unexplained. The availability of and demands for energy constitute one of the most important aspects of the environment. The flow of energy through the cell is primarily mediated by the mitochondrion, which oxidizes reducing equivalents from hydrocarbons via acetyl‐CoA, NADH + H+, and FADH2 to generate ATP through oxidative phosphorylation (OXPHOS). The mitochondrial genome encompasses hundreds of nuclear DNA (nDNA)‐encoded genes plus 37 mitochondrial DNA (mtDNA)‐encoded genes. Although the mtDNA has a high mutation rate, only milder, potentially adaptive mutations are introduced into the population through female oocytes. In contrast, nDNA‐encoded bioenergetic genes have a low mutation rate. However, their expression is modulated by histone phosphorylation and acetylation using mitochondrially‐generated ATP and acetyl‐CoA, which permits increased gene expression, growth, and reproduction when calories are abundant. Phosphorylation, acetylaton, and cellular redox state also regulate most signal transduction pathways and activities of multiple transcription factors. Thus, mtDNA mutations provide heritable and stable adaptation to regional differences while mitochondrially‐mediated changes in the epigenome permit reversible modulation of gene expression in response to fluctuations in the energy environment. The most common genomic changes that interface with the environment and cause complex disease must, therefore, be mitochondrial and epigenomic in origin. © 2010 Wiley‐Liss, Inc. Dev Disabil Res Rev 2010;16:114–119.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>bioenergetics</term>
</item>
<item>
<term>mitochondria</term>
</item>
<item>
<term>epigenome</term>
</item>
<item>
<term>complex disease</term>
</item>
<item>
<term>signal transduction</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2010-07-07">Received</change>
<change when="2010-07-15">Registration</change>
<change when="2010-06">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/718C5AF0F6ECBFD7FCAE09A04F872E3FB75097D4/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., a Wiley company</publisherName>
<publisherLoc>New York</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1940-5529</doi>
<issn type="print">1940-5510</issn>
<issn type="electronic">1940-5529</issn>
<idGroup>
<id type="product" value="DDRR"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS">Developmental Disabilities Research Reviews</title>
<title type="short">Dev Disabil Res Revs</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="20">
<doi origin="wiley" registered="yes">10.1002/ddrr.v16:2</doi>
<titleGroup>
<title type="specialIssueTitle">Emerging Research in Mitochondrial Disease</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="16">16</numbering>
<numbering type="journalIssue">2</numbering>
</numberingGroup>
<creators>
<creator xml:id="sped1" creatorRole="sponsoringEditor">
<personName>
<givenNames>Marni J.</givenNames>
<familyName>Falk</familyName>
</personName>
</creator>
</creators>
<coverDate startDate="2010-06">June 2010</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="30" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/ddrr.113</doi>
<idGroup>
<id type="unit" value="DDRR113"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="6"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2010 Wiley‐Liss, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2010-07-07"></event>
<event type="manuscriptAccepted" date="2010-07-15"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.16 mode:FullText" date="2010-08-27"></event>
<event type="firstOnline" date="2010-08-27"></event>
<event type="publishedOnlineFinalForm" date="2010-08-27"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-17"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-16"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">114</numbering>
<numbering type="pageLast">119</numbering>
</numberingGroup>
<correspondenceTo>Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, The Department of Pathology and Laboratory Medicine, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104‐4302</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:DDRR.DDRR113.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="0"></count>
<count type="tableTotal" number="0"></count>
<count type="referenceTotal" number="62"></count>
<count type="wordTotal" number="5438"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Bioenergetics and the epigenome: Interface between the environment and genes in common diseases</title>
<title type="short" xml:lang="en">Bioenergetics and the Epigenome</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Douglas C.</givenNames>
<familyName>Wallace</familyName>
</personName>
<contactDetails>
<email>wallacedl@email.chop.edu</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>The Department of Pathology and Laboratory Medicine, Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">bioenergetics</keyword>
<keyword xml:id="kwd2">mitochondria</keyword>
<keyword xml:id="kwd3">epigenome</keyword>
<keyword xml:id="kwd4">complex disease</keyword>
<keyword xml:id="kwd5">signal transduction</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Extensive efforts have been directed at using genome‐wide association studies (GWAS) to identify the genes responsible for common metabolic and degenerative diseases, cancer, and aging, but with limited success. While environmental factors have been evoked to explain this conundrum, the nature of these environmental factors remains unexplained. The availability of and demands for energy constitute one of the most important aspects of the environment. The flow of energy through the cell is primarily mediated by the mitochondrion, which oxidizes reducing equivalents from hydrocarbons via acetyl‐CoA, NADH + H
<sup>+</sup>
, and FADH
<sub>2</sub>
to generate ATP through oxidative phosphorylation (OXPHOS). The mitochondrial genome encompasses hundreds of nuclear DNA (nDNA)‐encoded genes plus 37 mitochondrial DNA (mtDNA)‐encoded genes. Although the mtDNA has a high mutation rate, only milder, potentially adaptive mutations are introduced into the population through female oocytes. In contrast, nDNA‐encoded bioenergetic genes have a low mutation rate. However, their expression is modulated by histone phosphorylation and acetylation using mitochondrially‐generated ATP and acetyl‐CoA, which permits increased gene expression, growth, and reproduction when calories are abundant. Phosphorylation, acetylaton, and cellular redox state also regulate most signal transduction pathways and activities of multiple transcription factors. Thus, mtDNA mutations provide heritable and stable adaptation to regional differences while mitochondrially‐mediated changes in the epigenome permit reversible modulation of gene expression in response to fluctuations in the energy environment. The most common genomic changes that interface with the environment and cause complex disease must, therefore, be mitochondrial and epigenomic in origin. © 2010 Wiley‐Liss, Inc. Dev Disabil Res Rev 2010;16:114–119.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Bioenergetics and the epigenome: Interface between the environment and genes in common diseases</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Bioenergetics and the Epigenome</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Bioenergetics and the epigenome: Interface between the environment and genes in common diseases</title>
</titleInfo>
<name type="personal">
<namePart type="given">Douglas C.</namePart>
<namePart type="family">Wallace</namePart>
<affiliation>The Department of Pathology and Laboratory Medicine, Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania</affiliation>
<description>Correspondence: Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, The Department of Pathology and Laboratory Medicine, Colket Translational Research Building, 3501 Civic Center Blvd, Philadelphia, PA 19104‐4302</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., a Wiley company</publisher>
<place>
<placeTerm type="text">New York</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2010-06</dateIssued>
<dateCaptured encoding="w3cdtf">2010-07-07</dateCaptured>
<dateValid encoding="w3cdtf">2010-07-15</dateValid>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="references">62</extent>
<extent unit="words">5438</extent>
</physicalDescription>
<abstract lang="en">Extensive efforts have been directed at using genome‐wide association studies (GWAS) to identify the genes responsible for common metabolic and degenerative diseases, cancer, and aging, but with limited success. While environmental factors have been evoked to explain this conundrum, the nature of these environmental factors remains unexplained. The availability of and demands for energy constitute one of the most important aspects of the environment. The flow of energy through the cell is primarily mediated by the mitochondrion, which oxidizes reducing equivalents from hydrocarbons via acetyl‐CoA, NADH + H+, and FADH2 to generate ATP through oxidative phosphorylation (OXPHOS). The mitochondrial genome encompasses hundreds of nuclear DNA (nDNA)‐encoded genes plus 37 mitochondrial DNA (mtDNA)‐encoded genes. Although the mtDNA has a high mutation rate, only milder, potentially adaptive mutations are introduced into the population through female oocytes. In contrast, nDNA‐encoded bioenergetic genes have a low mutation rate. However, their expression is modulated by histone phosphorylation and acetylation using mitochondrially‐generated ATP and acetyl‐CoA, which permits increased gene expression, growth, and reproduction when calories are abundant. Phosphorylation, acetylaton, and cellular redox state also regulate most signal transduction pathways and activities of multiple transcription factors. Thus, mtDNA mutations provide heritable and stable adaptation to regional differences while mitochondrially‐mediated changes in the epigenome permit reversible modulation of gene expression in response to fluctuations in the energy environment. The most common genomic changes that interface with the environment and cause complex disease must, therefore, be mitochondrial and epigenomic in origin. © 2010 Wiley‐Liss, Inc. Dev Disabil Res Rev 2010;16:114–119.</abstract>
<subject lang="en">
<genre>Keywords</genre>
<topic>bioenergetics</topic>
<topic>mitochondria</topic>
<topic>epigenome</topic>
<topic>complex disease</topic>
<topic>signal transduction</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Developmental Disabilities Research Reviews</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Dev Disabil Res Revs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marni J.</namePart>
<namePart type="family">Falk</namePart>
</name>
<genre type="Journal">journal</genre>
<subject>
<genre>article category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">1940-5510</identifier>
<identifier type="eISSN">1940-5529</identifier>
<identifier type="DOI">10.1002/(ISSN)1940-5529</identifier>
<identifier type="PublisherID">DDRR</identifier>
<part>
<date>2010</date>
<detail type="title">
<title>Emerging Research in Mitochondrial Disease</title>
</detail>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>114</start>
<end>119</end>
<total>6</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">718C5AF0F6ECBFD7FCAE09A04F872E3FB75097D4</identifier>
<identifier type="DOI">10.1002/ddrr.113</identifier>
<identifier type="ArticleID">DDRR113</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2010 Wiley‐Liss, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., a Wiley company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002079 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 002079 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:718C5AF0F6ECBFD7FCAE09A04F872E3FB75097D4
   |texte=   Bioenergetics and the epigenome: Interface between the environment and genes in common diseases
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 18:06:51 2016. Site generation: Wed Mar 6 18:46:03 2024