Serveur d'exploration sur la maladie de Parkinson

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A microtransplantation approach for cell suspension grafting in the rat parkinson model: A detailed account of the methodology

Identifieur interne : 001D09 ( Main/Corpus ); précédent : 001D08; suivant : 001D10

A microtransplantation approach for cell suspension grafting in the rat parkinson model: A detailed account of the methodology

Auteurs : G. Nikkhah ; M. Olsson ; J. Eberhard ; C. Bentlage ; M. G. Cunningham ; A. Bjo Rklund

Source :

RBID : ISTEX:529812786D9C6610FCB69624D9E40A3D7F6A2EE7

English descriptors

Abstract

Shortcomings of current techniques used for the intracerebral transplantation of ventral mesencephalic dopamine neurons include low graft survival, high variability, considerable implantation trauma and suboptimal graft integration. In order to overcome these limitations, we have adopted a microtransplantation approach which allows precise and reproducible implantation of ventral mesen-cephalon cell suspensions at single or multiple sites with minimal trauma and improved survival and integration of the grafted neurons [Nikkhahet al. (1994)Brain Res.633, 133–143]. The present study was undertaken to determine the influence of different grafting parameters as well as the time-course of development of micrografted dopaminergic neurons and to devise an optimal microtransplantation procedure in the rat Parkinson model. Rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway received four graft deposits of either 0.25, 0.5, 1.0 or 2.0 μl along four injection tracts (150,000 cells/μl) using either a glass capillary (o.d. 50–70 μm) or a regular cannula (o.d. 0.50 mm, metal cannula grafts). At one, two and 12 weeks postgrafting (capillary grafts) and at 12 weeks postgrafting (metal cannula grafts) dopamine neuron survival and graft volumes were measured and the implantation trauma assessed by glial fibrillary acidic protein expression. The results demonstrate that single deposits of 50,000–75,000 cells in 0.5 μl, implanted with a glass capillary, provide the best environment both for dopaminergic and non-dopaminergic neuron survival. Grafts implanted with the glass capillary showed much weaker long-term glial fibrillary acidic protein expression along the injection tract and around the implants than was the case in grafts implanted with the thicker metal cannula. Optimal graft integration and minimal disturbances of host brain structures can reliably be achieved by small-sized implants (20,000–35,000 cells/deposit). Tyrosine hydroxylase-positive fiber outgrowth from micrografted dopaminergic neurons was seen not only in the surrounding caudate-putamen, but also along white matter tracts into the nucleus accumbens and the overlying cerebral cortex. Spreading of dopaminergic micrografts over multiple small deposits rather than increasing the volume of single grafts gave more extensive reinnervation of the entire host striatum.The micrografting technique provides a useful tool to improve graft-host interactions in the rat Parkinson model, and it allows more precise and reproducible quantitative studies on dopamine neuron survival and growth in intrastriatal ventral mesencephalon transplants. This technique should also be highly useful for the intracerebral implantation of cells derived from primary cultures or cell lines [Gage and Fisher (1991)Neuron6, 1–12].

Url:
DOI: 10.1016/0306-4522(94)90007-8

Links to Exploration step

ISTEX:529812786D9C6610FCB69624D9E40A3D7F6A2EE7

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A microtransplantation approach for cell suspension grafting in the rat parkinson model: A detailed account of the methodology</title>
<author>
<name sortKey="Nikkhah, G" sort="Nikkhah, G" uniqKey="Nikkhah G" first="G." last="Nikkhah">G. Nikkhah</name>
<affiliation>
<mods:affiliation>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Olsson, M" sort="Olsson, M" uniqKey="Olsson M" first="M." last="Olsson">M. Olsson</name>
<affiliation>
<mods:affiliation>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Eberhard, J" sort="Eberhard, J" uniqKey="Eberhard J" first="J." last="Eberhard">J. Eberhard</name>
<affiliation>
<mods:affiliation>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bentlage, C" sort="Bentlage, C" uniqKey="Bentlage C" first="C." last="Bentlage">C. Bentlage</name>
<affiliation>
<mods:affiliation>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cunningham, M G" sort="Cunningham, M G" uniqKey="Cunningham M" first="M. G." last="Cunningham">M. G. Cunningham</name>
<affiliation>
<mods:affiliation>Harvard Medical School, Boston, MA 02115, U.S.A.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bjo Rklund, A" sort="Bjo Rklund, A" uniqKey="Bjo Rklund A" first="A." last="Bjo Rklund">A. Bjo Rklund</name>
<affiliation>
<mods:affiliation>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:529812786D9C6610FCB69624D9E40A3D7F6A2EE7</idno>
<date when="1994" year="1994">1994</date>
<idno type="doi">10.1016/0306-4522(94)90007-8</idno>
<idno type="url">https://api.istex.fr/document/529812786D9C6610FCB69624D9E40A3D7F6A2EE7/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">001D09</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">A microtransplantation approach for cell suspension grafting in the rat parkinson model: A detailed account of the methodology</title>
<author>
<name sortKey="Nikkhah, G" sort="Nikkhah, G" uniqKey="Nikkhah G" first="G." last="Nikkhah">G. Nikkhah</name>
<affiliation>
<mods:affiliation>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Olsson, M" sort="Olsson, M" uniqKey="Olsson M" first="M." last="Olsson">M. Olsson</name>
<affiliation>
<mods:affiliation>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Eberhard, J" sort="Eberhard, J" uniqKey="Eberhard J" first="J." last="Eberhard">J. Eberhard</name>
<affiliation>
<mods:affiliation>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bentlage, C" sort="Bentlage, C" uniqKey="Bentlage C" first="C." last="Bentlage">C. Bentlage</name>
<affiliation>
<mods:affiliation>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cunningham, M G" sort="Cunningham, M G" uniqKey="Cunningham M" first="M. G." last="Cunningham">M. G. Cunningham</name>
<affiliation>
<mods:affiliation>Harvard Medical School, Boston, MA 02115, U.S.A.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bjo Rklund, A" sort="Bjo Rklund, A" uniqKey="Bjo Rklund A" first="A." last="Bjo Rklund">A. Bjo Rklund</name>
<affiliation>
<mods:affiliation>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Neuroscience</title>
<title level="j" type="abbrev">NSC</title>
<idno type="ISSN">0306-4522</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1994">1994</date>
<biblScope unit="volume">63</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="57">57</biblScope>
<biblScope unit="page" to="72">72</biblScope>
</imprint>
<idno type="ISSN">0306-4522</idno>
</series>
<idno type="istex">529812786D9C6610FCB69624D9E40A3D7F6A2EE7</idno>
<idno type="DOI">10.1016/0306-4522(94)90007-8</idno>
<idno type="PII">0306-4522(94)90007-8</idno>
<idno type="ArticleID">94900078</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0306-4522</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>6-OHDA</term>
<term>DAB</term>
<term>DARPP-32</term>
<term>DMEM</term>
<term>GFAP</term>
<term>PB</term>
<term>TH</term>
<term>VM</term>
<term>o.d.</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Shortcomings of current techniques used for the intracerebral transplantation of ventral mesencephalic dopamine neurons include low graft survival, high variability, considerable implantation trauma and suboptimal graft integration. In order to overcome these limitations, we have adopted a microtransplantation approach which allows precise and reproducible implantation of ventral mesen-cephalon cell suspensions at single or multiple sites with minimal trauma and improved survival and integration of the grafted neurons [Nikkhahet al. (1994)Brain Res.633, 133–143]. The present study was undertaken to determine the influence of different grafting parameters as well as the time-course of development of micrografted dopaminergic neurons and to devise an optimal microtransplantation procedure in the rat Parkinson model. Rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway received four graft deposits of either 0.25, 0.5, 1.0 or 2.0 μl along four injection tracts (150,000 cells/μl) using either a glass capillary (o.d. 50–70 μm) or a regular cannula (o.d. 0.50 mm, metal cannula grafts). At one, two and 12 weeks postgrafting (capillary grafts) and at 12 weeks postgrafting (metal cannula grafts) dopamine neuron survival and graft volumes were measured and the implantation trauma assessed by glial fibrillary acidic protein expression. The results demonstrate that single deposits of 50,000–75,000 cells in 0.5 μl, implanted with a glass capillary, provide the best environment both for dopaminergic and non-dopaminergic neuron survival. Grafts implanted with the glass capillary showed much weaker long-term glial fibrillary acidic protein expression along the injection tract and around the implants than was the case in grafts implanted with the thicker metal cannula. Optimal graft integration and minimal disturbances of host brain structures can reliably be achieved by small-sized implants (20,000–35,000 cells/deposit). Tyrosine hydroxylase-positive fiber outgrowth from micrografted dopaminergic neurons was seen not only in the surrounding caudate-putamen, but also along white matter tracts into the nucleus accumbens and the overlying cerebral cortex. Spreading of dopaminergic micrografts over multiple small deposits rather than increasing the volume of single grafts gave more extensive reinnervation of the entire host striatum.The micrografting technique provides a useful tool to improve graft-host interactions in the rat Parkinson model, and it allows more precise and reproducible quantitative studies on dopamine neuron survival and growth in intrastriatal ventral mesencephalon transplants. This technique should also be highly useful for the intracerebral implantation of cells derived from primary cultures or cell lines [Gage and Fisher (1991)Neuron6, 1–12].</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>G. Nikkhah</name>
<affiliations>
<json:string>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. Olsson</name>
<affiliations>
<json:string>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. Eberhard</name>
<affiliations>
<json:string>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</json:string>
</affiliations>
</json:item>
<json:item>
<name>C. Bentlage</name>
<affiliations>
<json:string>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</json:string>
</affiliations>
</json:item>
<json:item>
<name>M.G. Cunningham</name>
<affiliations>
<json:string>Harvard Medical School, Boston, MA 02115, U.S.A.</json:string>
</affiliations>
</json:item>
<json:item>
<name>A. Bjo¨rklund</name>
<affiliations>
<json:string>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>DAB : 3,3′diaminobenzidine</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>DARPP-32 : dopamine- and adenosine-3′-5′-monophosphate-regulated phosphoprotein</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>DMEM : Dulbecco's minimum essential medium</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>GFAP : glial fibrillary acidic protein</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>o.d. : outer diameter</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>6-OHDA : 6-hydroxydopamine</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>PB : phosphate buffer</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>TH : tyrosine hydroxylase</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>VM : ventral mesencephalon</value>
</json:item>
</subject>
<articleId>
<json:string>94900078</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>Shortcomings of current techniques used for the intracerebral transplantation of ventral mesencephalic dopamine neurons include low graft survival, high variability, considerable implantation trauma and suboptimal graft integration. In order to overcome these limitations, we have adopted a microtransplantation approach which allows precise and reproducible implantation of ventral mesen-cephalon cell suspensions at single or multiple sites with minimal trauma and improved survival and integration of the grafted neurons [Nikkhahet al. (1994)Brain Res.633, 133–143]. The present study was undertaken to determine the influence of different grafting parameters as well as the time-course of development of micrografted dopaminergic neurons and to devise an optimal microtransplantation procedure in the rat Parkinson model. Rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway received four graft deposits of either 0.25, 0.5, 1.0 or 2.0 μl along four injection tracts (150,000 cells/μl) using either a glass capillary (o.d. 50–70 μm) or a regular cannula (o.d. 0.50 mm, metal cannula grafts). At one, two and 12 weeks postgrafting (capillary grafts) and at 12 weeks postgrafting (metal cannula grafts) dopamine neuron survival and graft volumes were measured and the implantation trauma assessed by glial fibrillary acidic protein expression. The results demonstrate that single deposits of 50,000–75,000 cells in 0.5 μl, implanted with a glass capillary, provide the best environment both for dopaminergic and non-dopaminergic neuron survival. Grafts implanted with the glass capillary showed much weaker long-term glial fibrillary acidic protein expression along the injection tract and around the implants than was the case in grafts implanted with the thicker metal cannula. Optimal graft integration and minimal disturbances of host brain structures can reliably be achieved by small-sized implants (20,000–35,000 cells/deposit). Tyrosine hydroxylase-positive fiber outgrowth from micrografted dopaminergic neurons was seen not only in the surrounding caudate-putamen, but also along white matter tracts into the nucleus accumbens and the overlying cerebral cortex. Spreading of dopaminergic micrografts over multiple small deposits rather than increasing the volume of single grafts gave more extensive reinnervation of the entire host striatum.The micrografting technique provides a useful tool to improve graft-host interactions in the rat Parkinson model, and it allows more precise and reproducible quantitative studies on dopamine neuron survival and growth in intrastriatal ventral mesencephalon transplants. This technique should also be highly useful for the intracerebral implantation of cells derived from primary cultures or cell lines [Gage and Fisher (1991)Neuron6, 1–12].</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>504 x 756 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>9</keywordCount>
<abstractCharCount>2817</abstractCharCount>
<pdfWordCount>8007</pdfWordCount>
<pdfCharCount>50832</pdfCharCount>
<pdfPageCount>16</pdfPageCount>
<abstractWordCount>387</abstractWordCount>
</qualityIndicators>
<title>A microtransplantation approach for cell suspension grafting in the rat parkinson model: A detailed account of the methodology</title>
<pii>
<json:string>0306-4522(94)90007-8</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>63</volume>
<pii>
<json:string>S0306-4522(00)X0304-1</json:string>
</pii>
<pages>
<last>72</last>
<first>57</first>
</pages>
<issn>
<json:string>0306-4522</json:string>
</issn>
<issue>1</issue>
<genre>
<json:string>Journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Neuroscience</title>
<publicationDate>1994</publicationDate>
</host>
<categories>
<wos>
<json:string>NEUROSCIENCES</json:string>
</wos>
</categories>
<publicationDate>1994</publicationDate>
<copyrightDate>1994</copyrightDate>
<doi>
<json:string>10.1016/0306-4522(94)90007-8</json:string>
</doi>
<id>529812786D9C6610FCB69624D9E40A3D7F6A2EE7</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/529812786D9C6610FCB69624D9E40A3D7F6A2EE7/fulltext/pdf</uri>
</json:item>
<json:item>
<original>true</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/529812786D9C6610FCB69624D9E40A3D7F6A2EE7/fulltext/txt</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/529812786D9C6610FCB69624D9E40A3D7F6A2EE7/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/529812786D9C6610FCB69624D9E40A3D7F6A2EE7/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">A microtransplantation approach for cell suspension grafting in the rat parkinson model: A detailed account of the methodology</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1994</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">A microtransplantation approach for cell suspension grafting in the rat parkinson model: A detailed account of the methodology</title>
<author>
<persName>
<forename type="first">G.</forename>
<surname>Nikkhah</surname>
</persName>
<affiliation>To whom all correspondence should be addressed.</affiliation>
<affiliation>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</affiliation>
</author>
<author>
<persName>
<forename type="first">M.</forename>
<surname>Olsson</surname>
</persName>
<affiliation>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</affiliation>
</author>
<author>
<persName>
<forename type="first">J.</forename>
<surname>Eberhard</surname>
</persName>
<affiliation>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</affiliation>
</author>
<author>
<persName>
<forename type="first">C.</forename>
<surname>Bentlage</surname>
</persName>
<affiliation>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</affiliation>
</author>
<author>
<persName>
<forename type="first">M.G.</forename>
<surname>Cunningham</surname>
</persName>
<affiliation>Harvard Medical School, Boston, MA 02115, U.S.A.</affiliation>
</author>
<author>
<persName>
<forename type="first">A.</forename>
<surname>Bjo¨rklund</surname>
</persName>
<affiliation>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Neuroscience</title>
<title level="j" type="abbrev">NSC</title>
<idno type="pISSN">0306-4522</idno>
<idno type="PII">S0306-4522(00)X0304-1</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1994"></date>
<biblScope unit="volume">63</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="57">57</biblScope>
<biblScope unit="page" to="72">72</biblScope>
</imprint>
</monogr>
<idno type="istex">529812786D9C6610FCB69624D9E40A3D7F6A2EE7</idno>
<idno type="DOI">10.1016/0306-4522(94)90007-8</idno>
<idno type="PII">0306-4522(94)90007-8</idno>
<idno type="ArticleID">94900078</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1994</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Shortcomings of current techniques used for the intracerebral transplantation of ventral mesencephalic dopamine neurons include low graft survival, high variability, considerable implantation trauma and suboptimal graft integration. In order to overcome these limitations, we have adopted a microtransplantation approach which allows precise and reproducible implantation of ventral mesen-cephalon cell suspensions at single or multiple sites with minimal trauma and improved survival and integration of the grafted neurons [Nikkhahet al. (1994)Brain Res.633, 133–143]. The present study was undertaken to determine the influence of different grafting parameters as well as the time-course of development of micrografted dopaminergic neurons and to devise an optimal microtransplantation procedure in the rat Parkinson model. Rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway received four graft deposits of either 0.25, 0.5, 1.0 or 2.0 μl along four injection tracts (150,000 cells/μl) using either a glass capillary (o.d. 50–70 μm) or a regular cannula (o.d. 0.50 mm, metal cannula grafts). At one, two and 12 weeks postgrafting (capillary grafts) and at 12 weeks postgrafting (metal cannula grafts) dopamine neuron survival and graft volumes were measured and the implantation trauma assessed by glial fibrillary acidic protein expression. The results demonstrate that single deposits of 50,000–75,000 cells in 0.5 μl, implanted with a glass capillary, provide the best environment both for dopaminergic and non-dopaminergic neuron survival. Grafts implanted with the glass capillary showed much weaker long-term glial fibrillary acidic protein expression along the injection tract and around the implants than was the case in grafts implanted with the thicker metal cannula. Optimal graft integration and minimal disturbances of host brain structures can reliably be achieved by small-sized implants (20,000–35,000 cells/deposit). Tyrosine hydroxylase-positive fiber outgrowth from micrografted dopaminergic neurons was seen not only in the surrounding caudate-putamen, but also along white matter tracts into the nucleus accumbens and the overlying cerebral cortex. Spreading of dopaminergic micrografts over multiple small deposits rather than increasing the volume of single grafts gave more extensive reinnervation of the entire host striatum.The micrografting technique provides a useful tool to improve graft-host interactions in the rat Parkinson model, and it allows more precise and reproducible quantitative studies on dopamine neuron survival and growth in intrastriatal ventral mesencephalon transplants. This technique should also be highly useful for the intracerebral implantation of cells derived from primary cultures or cell lines [Gage and Fisher (1991)Neuron6, 1–12].</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<item>
<term>DAB</term>
<term>3,3′diaminobenzidine</term>
</item>
<item>
<term>DARPP-32</term>
<term>dopamine- and adenosine-3′-5′-monophosphate-regulated phosphoprotein</term>
</item>
<item>
<term>DMEM</term>
<term>Dulbecco's minimum essential medium</term>
</item>
<item>
<term>GFAP</term>
<term>glial fibrillary acidic protein</term>
</item>
<item>
<term>o.d.</term>
<term>outer diameter</term>
</item>
<item>
<term>6-OHDA</term>
<term>6-hydroxydopamine</term>
</item>
<item>
<term>PB</term>
<term>phosphate buffer</term>
</item>
<item>
<term>TH</term>
<term>tyrosine hydroxylase</term>
</item>
<item>
<term>VM</term>
<term>ventral mesencephalon</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1994-05-07">Registration</change>
<change when="1994">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier doc found" wicri:toSee="Elsevier, no converted or simple article">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 5.0.1//EN//XML" URI="art501.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article version="5.0" xml:lang="en" docsubtype="fla">
<item-info>
<jid>NSC</jid>
<aid>94900078</aid>
<ce:pii>0306-4522(94)90007-8</ce:pii>
<ce:doi>10.1016/0306-4522(94)90007-8</ce:doi>
<ce:copyright type="unknown" year="1994">IBRO</ce:copyright>
</item-info>
<head>
<ce:title>A microtransplantation approach for cell suspension grafting in the rat parkinson model: A detailed account of the methodology</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>G.</ce:given-name>
<ce:surname>Nikkhah</ce:surname>
<ce:cross-ref refid="cor1">
<ce:sup></ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="aff1">
<ce:sup>*</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="aff2">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>M.</ce:given-name>
<ce:surname>Olsson</ce:surname>
<ce:cross-ref refid="aff1">
<ce:sup>*</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>J.</ce:given-name>
<ce:surname>Eberhard</ce:surname>
<ce:cross-ref refid="aff1">
<ce:sup>*</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>C.</ce:given-name>
<ce:surname>Bentlage</ce:surname>
<ce:cross-ref refid="aff1">
<ce:sup>*</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="aff2">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>M.G.</ce:given-name>
<ce:surname>Cunningham</ce:surname>
<ce:cross-ref refid="aff3">
<ce:sup>§</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>A.</ce:given-name>
<ce:surname>Bjo¨rklund</ce:surname>
<ce:cross-ref refid="aff1">
<ce:sup>*</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="aff1">
<ce:label>*</ce:label>
<ce:textfn>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</ce:textfn>
</ce:affiliation>
<ce:affiliation id="aff2">
<ce:label></ce:label>
<ce:textfn>Neurosurgical clinic, Nordstadt Hospital, Haltenhoffstr. 41, D-30167 Hannover, Germany</ce:textfn>
</ce:affiliation>
<ce:affiliation id="aff3">
<ce:label>§</ce:label>
<ce:textfn>Harvard Medical School, Boston, MA 02115, U.S.A.</ce:textfn>
</ce:affiliation>
<ce:correspondence id="cor1">
<ce:label></ce:label>
<ce:text>To whom all correspondence should be addressed.</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-accepted day="7" month="5" year="1994"></ce:date-accepted>
<ce:abstract id="ab1" class="author" xml:lang="en">
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Shortcomings of current techniques used for the intracerebral transplantation of ventral mesencephalic dopamine neurons include low graft survival, high variability, considerable implantation trauma and suboptimal graft integration. In order to overcome these limitations, we have adopted a microtransplantation approach which allows precise and reproducible implantation of ventral mesen-cephalon cell suspensions at single or multiple sites with minimal trauma and improved survival and integration of the grafted neurons [
<ce:cross-ref refid="bib29">Nikkhah
<ce:italic>et al.</ce:italic>
(1994)</ce:cross-ref>
<ce:italic>Brain Res</ce:italic>
.
<ce:bold>633</ce:bold>
, 133–143]. The present study was undertaken to determine the influence of different grafting parameters as well as the time-course of development of micrografted dopaminergic neurons and to devise an optimal microtransplantation procedure in the rat Parkinson model. Rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway received four graft deposits of either 0.25, 0.5, 1.0 or 2.0 μl along four injection tracts (150,000 cells/μl) using either a glass capillary (o.d. 50–70 μm) or a regular cannula (o.d. 0.50 mm, metal cannula grafts). At one, two and 12 weeks postgrafting (capillary grafts) and at 12 weeks postgrafting (metal cannula grafts) dopamine neuron survival and graft volumes were measured and the implantation trauma assessed by glial fibrillary acidic protein expression. The results demonstrate that single deposits of 50,000–75,000 cells in 0.5 μl, implanted with a glass capillary, provide the best environment both for dopaminergic and non-dopaminergic neuron survival. Grafts implanted with the glass capillary showed much weaker long-term glial fibrillary acidic protein expression along the injection tract and around the implants than was the case in grafts implanted with the thicker metal cannula. Optimal graft integration and minimal disturbances of host brain structures can reliably be achieved by small-sized implants (20,000–35,000 cells/deposit). Tyrosine hydroxylase-positive fiber outgrowth from micrografted dopaminergic neurons was seen not only in the surrounding caudate-putamen, but also along white matter tracts into the nucleus accumbens and the overlying cerebral cortex. Spreading of dopaminergic micrografts over multiple small deposits rather than increasing the volume of single grafts gave more extensive reinnervation of the entire host striatum.</ce:simple-para>
<ce:simple-para>The micrografting technique provides a useful tool to improve graft-host interactions in the rat Parkinson model, and it allows more precise and reproducible quantitative studies on dopamine neuron survival and growth in intrastriatal ventral mesencephalon transplants. This technique should also be highly useful for the intracerebral implantation of cells derived from primary cultures or cell lines [
<ce:cross-ref refid="bib19">Gage and Fisher (1991)</ce:cross-ref>
<ce:italic>Neuron</ce:italic>
<ce:bold>6</ce:bold>
, 1–12].</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="abr" xml:lang="en">
<ce:keyword>
<ce:text>DAB</ce:text>
<ce:keyword>
<ce:text>3,3′diaminobenzidine</ce:text>
</ce:keyword>
</ce:keyword>
<ce:keyword>
<ce:text>DARPP-32</ce:text>
<ce:keyword>
<ce:text>dopamine- and adenosine-3′-5′-monophosphate-regulated phosphoprotein</ce:text>
</ce:keyword>
</ce:keyword>
<ce:keyword>
<ce:text>DMEM</ce:text>
<ce:keyword>
<ce:text>Dulbecco's minimum essential medium</ce:text>
</ce:keyword>
</ce:keyword>
<ce:keyword>
<ce:text>GFAP</ce:text>
<ce:keyword>
<ce:text>glial fibrillary acidic protein</ce:text>
</ce:keyword>
</ce:keyword>
<ce:keyword>
<ce:text>o.d.</ce:text>
<ce:keyword>
<ce:text>outer diameter</ce:text>
</ce:keyword>
</ce:keyword>
<ce:keyword>
<ce:text>6-OHDA</ce:text>
<ce:keyword>
<ce:text>6-hydroxydopamine</ce:text>
</ce:keyword>
</ce:keyword>
<ce:keyword>
<ce:text>PB</ce:text>
<ce:keyword>
<ce:text>phosphate buffer</ce:text>
</ce:keyword>
</ce:keyword>
<ce:keyword>
<ce:text>TH</ce:text>
<ce:keyword>
<ce:text>tyrosine hydroxylase</ce:text>
</ce:keyword>
</ce:keyword>
<ce:keyword>
<ce:text>VM</ce:text>
<ce:keyword>
<ce:text>ventral mesencephalon</ce:text>
</ce:keyword>
</ce:keyword>
</ce:keywords>
</head>
<tail>
<ce:bibliography>
<ce:section-title>References</ce:section-title>
<ce:bibliography-sec>
<ce:bib-reference id="bib1">
<ce:label>1.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Abercrombie</ce:surname>
<ce:given-name>M.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Estimation of nuclear population from microtome sections</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Anat. Rec.</sb:maintitle>
</sb:title>
<sb:volume-nr>94</sb:volume-nr>
</sb:series>
<sb:date>1946</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>239</sb:first-page>
<sb:last-page>247</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib2">
<ce:label>2.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Abrous</ce:surname>
<ce:given-name>N.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Guy</ce:surname>
<ce:given-name>J.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Vigny</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Calas</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Le Moal</ce:surname>
<ce:given-name>M.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Herman</ce:surname>
<ce:given-name>J.P.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Development of intracerebral dopaminergic grafts: a combined immunohistochemical and autoradiographic study of its time course and environmental influences</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>J. comp. Neurol.</sb:maintitle>
</sb:title>
<sb:volume-nr>273</sb:volume-nr>
</sb:series>
<sb:date>1988</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>26</sb:first-page>
<sb:last-page>41</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib3">
<ce:label>3.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Abrous</ce:surname>
<ce:given-name>D.N.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Choulli</ce:surname>
<ce:given-name>K.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Rouge-Pont</ce:surname>
<ce:given-name>F.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Simon</ce:surname>
<ce:given-name>H.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Le Moal</ce:surname>
<ce:given-name>M.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Herman</ce:surname>
<ce:given-name>J.P.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Effects of intracerebral dopaminergic grafts on behavioural deficits induced by neonatal 6-hydroxydopamine lesions of the mesotelencephalic dopaminergic pathway</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Neuroscience</sb:maintitle>
</sb:title>
<sb:volume-nr>54</sb:volume-nr>
</sb:series>
<sb:date>1993</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>499</sb:first-page>
<sb:last-page>511</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib4">
<ce:label>4.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Bjo¨rklund</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Stenevi</ce:surname>
<ce:given-name>U.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Schmidt</ce:surname>
<ce:given-name>R.H.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Dunnett</ce:surname>
<ce:given-name>S.B.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Gage</ce:surname>
<ce:given-name>F.H.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Intracerebral grafting of neuronal cell suspensions.I. Introduction and general methods of preparation</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Acta physiol. scand.</sb:maintitle>
</sb:title>
<sb:volume-nr>522</sb:volume-nr>
</sb:series>
<sb:date>1983</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>1</sb:first-page>
<sb:last-page>7</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib5">
<ce:label>5.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Bjo¨rklund</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Dopaminergic transplants in experimental parkinsonism: cellular mechanisms of graft-induced functional recovery</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Curr. Opin. Neurobiol.</sb:maintitle>
</sb:title>
<sb:volume-nr>2</sb:volume-nr>
</sb:series>
<sb:date>1992</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>683</sb:first-page>
<sb:last-page>689</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib6">
<ce:label>6.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Bjo¨rklund</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Dunnett</ce:surname>
<ce:given-name>S.B.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Neural transplantation in adult rats</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:edited-book>
<sb:editors>
<sb:editor>
<ce:surname>Dunnett</ce:surname>
<ce:given-name>S.B.</ce:given-name>
</sb:editor>
<sb:editor>
<ce:surname>Bjo¨rklund</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:editor>
</sb:editors>
<sb:title>
<sb:maintitle>Neural Transplantation. A Practical Approach</sb:maintitle>
</sb:title>
<sb:date>1992</sb:date>
<sb:publisher>
<sb:name>Oxford University Press</sb:name>
<sb:location>Oxford</sb:location>
</sb:publisher>
</sb:edited-book>
<sb:pages>
<sb:first-page>57</sb:first-page>
<sb:last-page>78</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib7">
<ce:label>7.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Bjo¨rklund</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Dunnett</ce:surname>
<ce:given-name>S.B.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Nikkhah</ce:surname>
<ce:given-name>G.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Nigral transplants in the rat Parkinson model: functional limitations and strategies to enhance nigrostriatal reconstruction</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:edited-book>
<sb:editors>
<sb:editor>
<ce:surname>Dunnett</ce:surname>
<ce:given-name>S.B.</ce:given-name>
</sb:editor>
<sb:editor>
<ce:surname>Bjo¨rklund</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:editor>
</sb:editors>
<sb:title>
<sb:maintitle>Functional Neural Transplantation</sb:maintitle>
</sb:title>
<sb:date>1994</sb:date>
<sb:publisher>
<sb:name>Raven Press</sb:name>
<sb:location>New York</sb:location>
</sb:publisher>
</sb:edited-book>
</sb:host>
<sb:comment>(in press).</sb:comment>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib8">
<ce:label>8.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Bovolenta</ce:surname>
<ce:given-name>P.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Wandosell</ce:surname>
<ce:given-name>F.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Nieto-Sampedro</ce:surname>
<ce:given-name>M.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>CNS glial scar tissue: a source of molecules which inhibit central neurite outgrowth</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:edited-book>
<sb:editors>
<sb:editor>
<ce:surname>Yu</ce:surname>
<ce:given-name>A.C.H.</ce:given-name>
</sb:editor>
<sb:editor>
<ce:surname>Hertz</ce:surname>
<ce:given-name>L.</ce:given-name>
</sb:editor>
<sb:editor>
<ce:surname>Norenberg</ce:surname>
<ce:given-name>M.D.</ce:given-name>
</sb:editor>
<sb:editor>
<ce:surname>Sykova´</ce:surname>
<ce:given-name>E.</ce:given-name>
</sb:editor>
<sb:editor>
<ce:surname>Waxman</ce:surname>
<ce:given-name>S.G.</ce:given-name>
</sb:editor>
</sb:editors>
<sb:title>
<sb:maintitle>Neuronal-astrocytic Interactions</sb:maintitle>
</sb:title>
<sb:date>1992</sb:date>
<sb:publisher>
<sb:name>Elsevier</sb:name>
<sb:location>Amsterdam</sb:location>
</sb:publisher>
</sb:edited-book>
<sb:pages>
<sb:first-page>367</sb:first-page>
<sb:last-page>379</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib9">
<ce:label>9.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Brundin</ce:surname>
<ce:given-name>P.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Widner</ce:surname>
<ce:given-name>H.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Rehncrona</ce:surname>
<ce:given-name>S.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Bjo¨rklund</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Lindvall</ce:surname>
<ce:given-name>O.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Influence of the size of the implantation instrument on the survival of dissociated fetal neural grafts</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Restor. Neurol. Neurosci., Suppl.</sb:maintitle>
</sb:title>
<sb:volume-nr>1</sb:volume-nr>
</sb:series>
<sb:date>1989</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>56</sb:first-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib10">
<ce:label>10.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Brundin</ce:surname>
<ce:given-name>P.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Bjo¨rklund</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Lindvall</ce:surname>
<ce:given-name>O.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Practical aspects of the use of human fetal brain tissue for intracerebral grafting</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Prog. Brain Res.</sb:maintitle>
</sb:title>
<sb:volume-nr>82</sb:volume-nr>
</sb:series>
<sb:date>1990</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>707</sb:first-page>
<sb:last-page>714</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib11">
<ce:label>11.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Cunningham</ce:surname>
<ce:given-name>M.G.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>McKay</ce:surname>
<ce:given-name>R.D.G.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>A hypothermic miniaturized stereotaxic instrument for surgery in newborn rats</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>J. Neurosci. Meth.</sb:maintitle>
</sb:title>
<sb:volume-nr>47</sb:volume-nr>
</sb:series>
<sb:date>1993</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>105</sb:first-page>
<sb:last-page>114</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib12">
<ce:label>12.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Cunningham</ce:surname>
<ce:given-name>M.G.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Nikkhah</ce:surname>
<ce:given-name>G.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>McKay</ce:surname>
<ce:given-name>R.D.G.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Grafting immortalized hippocampal cells into the brain of the adult and the newborn rat</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Neuroprotocols</sb:maintitle>
</sb:title>
<sb:volume-nr>3</sb:volume-nr>
</sb:series>
<sb:date>1993</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>260</sb:first-page>
<sb:last-page>272</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib13">
<ce:label>13.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Davies</ce:surname>
<ce:given-name>S.J.A.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Field</ce:surname>
<ce:given-name>P.M.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Raisman</ce:surname>
<ce:given-name>G.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Long fibre growth by axons of embryonic mouse hippocampal neurons microtransplanted into the adult rat fimbria</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Eur. J. Neurosci.</sb:maintitle>
</sb:title>
<sb:volume-nr>5</sb:volume-nr>
</sb:series>
<sb:date>1993</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>95</sb:first-page>
<sb:last-page>106</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib14">
<ce:label>14.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Duan</ce:surname>
<ce:given-name>W.-M.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Widner</ce:surname>
<ce:given-name>H.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Bjo¨rklund</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Brundin</ce:surname>
<ce:given-name>P.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Sequential intrastriatal grafting of allogenic embryonic dopamine-rich neuronal tissue in adult rats: will the second graft be rejected?</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Neuroscience</sb:maintitle>
</sb:title>
<sb:volume-nr>57</sb:volume-nr>
</sb:series>
<sb:date>1993</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>261</sb:first-page>
<sb:last-page>274</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib15">
<ce:label>15.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Emmett</ce:surname>
<ce:given-name>C.J.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Jaques</ce:surname>
<ce:given-name>B.W.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Seeley</ce:surname>
<ce:given-name>P.J.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Microtransplantation of neural cells into adult rat brain</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Neuroscience</sb:maintitle>
</sb:title>
<sb:volume-nr>38</sb:volume-nr>
</sb:series>
<sb:date>1990</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>213</sb:first-page>
<sb:last-page>222</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib16">
<ce:label>16.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Eng</ce:surname>
<ce:given-name>L.F.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Yu</ce:surname>
<ce:given-name>A.C.H.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Lee</ce:surname>
<ce:given-name>Y.L.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Astrocytic response to injury</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:edited-book>
<sb:editors>
<sb:editor>
<ce:surname>Yu</ce:surname>
<ce:given-name>A.C.H.</ce:given-name>
</sb:editor>
<sb:editor>
<ce:surname>Hertz</ce:surname>
<ce:given-name>L.</ce:given-name>
</sb:editor>
<sb:editor>
<ce:surname>Norenberg</ce:surname>
<ce:given-name>M.D.</ce:given-name>
</sb:editor>
<sb:editor>
<ce:surname>Sykova´</ce:surname>
<ce:given-name>E.</ce:given-name>
</sb:editor>
<sb:editor>
<ce:surname>Waxman</ce:surname>
<ce:given-name>S.G.</ce:given-name>
</sb:editor>
</sb:editors>
<sb:title>
<sb:maintitle>Neuronal-astrocytic Interactions</sb:maintitle>
</sb:title>
<sb:date>1992</sb:date>
<sb:publisher>
<sb:name>Elsevier</sb:name>
<sb:location>Amsterdam</sb:location>
</sb:publisher>
</sb:edited-book>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib17">
<ce:label>17.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Erhardt</ce:surname>
<ce:given-name>M.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Junier</ce:surname>
<ce:given-name>N.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>A method for manufacturing long-shanked glass microelectrodes</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>J. Neurosci. Meth.</sb:maintitle>
</sb:title>
<sb:volume-nr>6</sb:volume-nr>
</sb:series>
<sb:date>1982</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>85</sb:first-page>
<sb:last-page>89</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib18">
<ce:label>18.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Finger</ce:surname>
<ce:given-name>S.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Dunnett</ce:surname>
<ce:given-name>S.B.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Nimodipine enhances growth and vacularization of neural grafts</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Expl Neurol.</sb:maintitle>
</sb:title>
<sb:volume-nr>104</sb:volume-nr>
</sb:series>
<sb:date>1989</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>1</sb:first-page>
<sb:last-page>9</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib19">
<ce:label>19.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Gage</ce:surname>
<ce:given-name>F.H.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Fisher</ce:surname>
<ce:given-name>L.J.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Intracerebral grafting: a tool for the neurobiologist</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Neuron</sb:maintitle>
</sb:title>
<sb:volume-nr>6</sb:volume-nr>
</sb:series>
<sb:date>1991</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>1</sb:first-page>
<sb:last-page>12</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib20">
<ce:label>20.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Gundersen</ce:surname>
<ce:given-name>H.J.G.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Bendtsen</ce:surname>
<ce:given-name>T.F.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Korbo</ce:surname>
<ce:given-name>L.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Marcussen</ce:surname>
<ce:given-name>N.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Sorensen</ce:surname>
<ce:given-name>S.B.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Vesterby</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>West</ce:surname>
<ce:given-name>M.J.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Some new, simple, and efficient stereological methods and their use in pathological research and diagnosis</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Acta pathol. microbiol. Immun. Scand.</sb:maintitle>
</sb:title>
<sb:volume-nr>96</sb:volume-nr>
</sb:series>
<sb:date>1988</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>379</sb:first-page>
<sb:last-page>394</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib21">
<ce:label>21.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Herman</ce:surname>
<ce:given-name>J.P.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Abrous</ce:surname>
<ce:given-name>D.N.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Le</ce:surname>
<ce:given-name>M.M.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Anatomical and behavioral comparison of unilateral dopamine-rich grafts implanted into the striatum of neonatal and adult rats</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Neuroscience</sb:maintitle>
</sb:title>
<sb:volume-nr>40</sb:volume-nr>
</sb:series>
<sb:date>1991</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>465</sb:first-page>
<sb:last-page>475</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib22">
<ce:label>22.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Li</ce:surname>
<ce:given-name>Y.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Raisman</ce:surname>
<ce:given-name>G.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Long axon growth from embryonic neurons transplanted into myelinated tracts of the adult rat spinal cord</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Brain Res.</sb:maintitle>
</sb:title>
<sb:volume-nr>629</sb:volume-nr>
</sb:series>
<sb:date>1993</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>115</sb:first-page>
<sb:last-page>127</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib23">
<ce:label>23.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Lindvall</ce:surname>
<ce:given-name>O.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Rehncrona</ce:surname>
<ce:given-name>S.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Brundin</ce:surname>
<ce:given-name>P.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Gustavii</ce:surname>
<ce:given-name>B.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Astedt</ce:surname>
<ce:given-name>B.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Widner</ce:surname>
<ce:given-name>H.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Lindholm</ce:surname>
<ce:given-name>T.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Bjo¨rklund</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Leenders</ce:surname>
<ce:given-name>K.L.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Rothwell</ce:surname>
<ce:given-name>J.C.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Frackowiak</ce:surname>
<ce:given-name>R.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Marsden</ce:surname>
<ce:given-name>C.D.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Johnels</ce:surname>
<ce:given-name>B.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Steg</ce:surname>
<ce:given-name>G.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Freedman</ce:surname>
<ce:given-name>R.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Hoffer</ce:surname>
<ce:given-name>B.J.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Seiger</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Bygdeman</ce:surname>
<ce:given-name>M.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Stromberg</ce:surname>
<ce:given-name>I.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Olson</ce:surname>
<ce:given-name>L.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson's disease. A detailed account of methodology and a 6-month follow-up</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Archs Neurol.</sb:maintitle>
</sb:title>
<sb:volume-nr>46</sb:volume-nr>
</sb:series>
<sb:date>1989</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>615</sb:first-page>
<sb:last-page>631</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib24">
<ce:label>24.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Lindvall</ce:surname>
<ce:given-name>O.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Brundin</ce:surname>
<ce:given-name>P.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Widner</ce:surname>
<ce:given-name>H.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Rehncrona</ce:surname>
<ce:given-name>S.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Gustavii</ce:surname>
<ce:given-name>B.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Frackowiak</ce:surname>
<ce:given-name>R.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Leenders</ce:surname>
<ce:given-name>K.L.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Sawle</ce:surname>
<ce:given-name>G.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Rothwell</ce:surname>
<ce:given-name>J.C.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Marsden</ce:surname>
<ce:given-name>C.D.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Bjo¨rklund</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Science</sb:maintitle>
</sb:title>
<sb:volume-nr>247</sb:volume-nr>
</sb:series>
<sb:date>1990</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>574</sb:first-page>
<sb:last-page>577</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib25">
<ce:label>25.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Lund</ce:surname>
<ce:given-name>R.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Yee</ce:surname>
<ce:given-name>K.T.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Intracerebral transplantation to immature hosts</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:edited-book>
<sb:editors>
<sb:editor>
<ce:surname>Dunnett</ce:surname>
<ce:given-name>S.B.</ce:given-name>
</sb:editor>
<sb:editor>
<ce:surname>Bjo¨rklund</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:editor>
</sb:editors>
<sb:title>
<sb:maintitle>Neural Transplantation. A Practical Approach</sb:maintitle>
</sb:title>
<sb:date>1992</sb:date>
<sb:publisher>
<sb:name>Oxford University Press</sb:name>
<sb:location>Oxford</sb:location>
</sb:publisher>
</sb:edited-book>
<sb:pages>
<sb:first-page>79</sb:first-page>
<sb:last-page>91</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib26">
<ce:label>26.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Mandel</ce:surname>
<ce:given-name>R.J.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Brundin</ce:surname>
<ce:given-name>P.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Bjo¨rklund</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>The importance of graft placement and task complexity for transplant-induced recovery of simple and complex sensorimotor deficits in dopamine denervated rats</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Eur. J. Neurosci.</sb:maintitle>
</sb:title>
<sb:volume-nr>2</sb:volume-nr>
</sb:series>
<sb:date>1990</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>888</sb:first-page>
<sb:last-page>894</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib27">
<ce:label>27.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Mayhew</ce:surname>
<ce:given-name>T.M.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>A review of recent advances in stereology for quantifying neural structure</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>J. Neurocytol.</sb:maintitle>
</sb:title>
<sb:volume-nr>21</sb:volume-nr>
</sb:series>
<sb:date>1992</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>313</sb:first-page>
<sb:last-page>328</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib28">
<ce:label>28.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Nikkhah</ce:surname>
<ce:given-name>G.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Duan</ce:surname>
<ce:given-name>W.-M.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Knappe</ce:surname>
<ce:given-name>U.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Jo¨dicke</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Bjo¨rklund</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Restoration of complex sensorimotor behavior and skilled forelimb use by a modified nigral cell suspension transplantation approach in the rat Parkinson model</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Neuroscience</sb:maintitle>
</sb:title>
<sb:volume-nr>56</sb:volume-nr>
</sb:series>
<sb:date>1993</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>33</sb:first-page>
<sb:last-page>43</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib29">
<ce:label>29.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Nikkhah</ce:surname>
<ce:given-name>G.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Cunningham</ce:surname>
<ce:given-name>M.G.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Jo¨dicke</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Knappe</ce:surname>
<ce:given-name>U.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Bjo¨rklund</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Improved graft survival and striatal reinnervation using a microtransplantation approach in the rat parkinson model</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Brain Res.</sb:maintitle>
</sb:title>
<sb:volume-nr>633</sb:volume-nr>
</sb:series>
<sb:date>1994</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>133</sb:first-page>
<sb:last-page>143</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib30">
<ce:label>30.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Nikkhah</ce:surname>
<ce:given-name>G.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Bentlage</ce:surname>
<ce:given-name>C.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Cunningham</ce:surname>
<ce:given-name>M.G.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Bjo¨rklund</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Intranigral fetal dopamine grafts induce behavioral compensation in the rat Parkinson model</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>J. Neurosci.</sb:maintitle>
</sb:title>
<sb:volume-nr>14</sb:volume-nr>
</sb:series>
<sb:date>1994</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>3449</sb:first-page>
<sb:last-page>3461</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib31">
<ce:label>31.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Sauer</ce:surname>
<ce:given-name>H.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Frodl</ce:surname>
<ce:given-name>E.M.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Kupsch</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>ten</ce:surname>
<ce:given-name>Bruggencate G.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Oertel</ce:surname>
<ce:given-name>W.H.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Cryopreservation, survival and function of intrastriatal fetal mesencephalic grafts in a rat model of Parkinson's disease</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Expl Brain Res.</sb:maintitle>
</sb:title>
<sb:volume-nr>90</sb:volume-nr>
</sb:series>
<sb:date>1992</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>54</sb:first-page>
<sb:last-page>62</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib32">
<ce:label>32.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Sharma</ce:surname>
<ce:given-name>S.K.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Singh</ce:surname>
<ce:given-name>U.N.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>A device for transplantation of single cells</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>J. Neurosci. Meth.</sb:maintitle>
</sb:title>
<sb:volume-nr>49</sb:volume-nr>
</sb:series>
<sb:date>1993</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>1</sb:first-page>
<sb:last-page>3</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib33">
<ce:label>33.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Shipley</ce:surname>
<ce:given-name>M.T.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>A simple, low cost hydraulic pressure device for making microinjections in the brain</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Brain Rex. Bull.</sb:maintitle>
</sb:title>
<sb:volume-nr>8</sb:volume-nr>
</sb:series>
<sb:date>1982</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>237</sb:first-page>
<sb:last-page>239</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib34">
<ce:label>34.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Snyder-Keller</ce:surname>
<ce:given-name>A.M.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Carder</ce:surname>
<ce:given-name>R.K.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Lund</ce:surname>
<ce:given-name>R.D.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Development of dopamine innervation and turning behavior in dopamine-depleted infant rats receiving unilateral nigral transplants</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Neuroscience</sb:maintitle>
</sb:title>
<sb:volume-nr>30</sb:volume-nr>
</sb:series>
<sb:date>1989</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>779</sb:first-page>
<sb:last-page>794</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib35">
<ce:label>35.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Stenevi</ce:surname>
<ce:given-name>U.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Bjo¨rklund</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Svendgaard</ce:surname>
<ce:given-name>N.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Transplantation of central and peripheral monoamine neurons to the adult rat brain: techniques and conditions for survival</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Brain Res.</sb:maintitle>
</sb:title>
<sb:volume-nr>114</sb:volume-nr>
</sb:series>
<sb:date>1976</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>1</sb:first-page>
<sb:last-page>20</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib36">
<ce:label>36.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Ungerstedt</ce:surname>
<ce:given-name>U.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Arbuthnott</ce:surname>
<ce:given-name>G.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>Brain Res.</sb:maintitle>
</sb:title>
<sb:volume-nr>24</sb:volume-nr>
</sb:series>
<sb:date>1970</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>485</sb:first-page>
<sb:last-page>493</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib37">
<ce:label>37.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Whitaker-Azmitia</ce:surname>
<ce:given-name>P.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Ramirez</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Noreika</ce:surname>
<ce:given-name>L.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Gannon</ce:surname>
<ce:given-name>P.J.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Azmitia</ce:surname>
<ce:given-name>E.C.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Onset and duration of astrocytic response to cells transplanted into the adult mammalian brain</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:edited-book>
<sb:editors>
<sb:editor>
<ce:surname>Azmitia</ce:surname>
<ce:given-name>E.C.</ce:given-name>
</sb:editor>
<sb:editor>
<ce:surname>Bjo¨rklund</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:editor>
</sb:editors>
<sb:title>
<sb:maintitle>Cell and Tissue Transplantation into the Adult Brain</sb:maintitle>
</sb:title>
<sb:date>1987</sb:date>
<sb:publisher>
<sb:name>The New York Academy of Sciences</sb:name>
<sb:location>New York</sb:location>
</sb:publisher>
</sb:edited-book>
<sb:pages>
<sb:first-page>10</sb:first-page>
<sb:last-page>23</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
<ce:bib-reference id="bib38">
<ce:label>38.</ce:label>
<sb:reference>
<sb:contribution>
<sb:authors>
<sb:author>
<ce:surname>Widner</ce:surname>
<ce:given-name>H.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Tetrud</ce:surname>
<ce:given-name>J.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Rehncrona</ce:surname>
<ce:given-name>S.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Snow</ce:surname>
<ce:given-name>B.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Brundin</ce:surname>
<ce:given-name>P.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Gustavii</ce:surname>
<ce:given-name>B.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Bjo¨rklund</ce:surname>
<ce:given-name>A.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Lindvall</ce:surname>
<ce:given-name>O.</ce:given-name>
</sb:author>
<sb:author>
<ce:surname>Langsten</ce:surname>
<ce:given-name>J.</ce:given-name>
</sb:author>
</sb:authors>
<sb:title>
<sb:maintitle>Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP)</sb:maintitle>
</sb:title>
</sb:contribution>
<sb:host>
<sb:issue>
<sb:series>
<sb:title>
<sb:maintitle>New Engl. J. Med.</sb:maintitle>
</sb:title>
<sb:volume-nr>327</sb:volume-nr>
</sb:series>
<sb:date>1992</sb:date>
</sb:issue>
<sb:pages>
<sb:first-page>1556</sb:first-page>
<sb:last-page>1563</sb:last-page>
</sb:pages>
</sb:host>
</sb:reference>
</ce:bib-reference>
</ce:bibliography-sec>
</ce:bibliography>
</tail>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>A microtransplantation approach for cell suspension grafting in the rat parkinson model: A detailed account of the methodology</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>A microtransplantation approach for cell suspension grafting in the rat parkinson model: A detailed account of the methodology</title>
</titleInfo>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Nikkhah</namePart>
<affiliation>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</affiliation>
<description>To whom all correspondence should be addressed.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Olsson</namePart>
<affiliation>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Eberhard</namePart>
<affiliation>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.</namePart>
<namePart type="family">Bentlage</namePart>
<affiliation>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.G.</namePart>
<namePart type="family">Cunningham</namePart>
<affiliation>Harvard Medical School, Boston, MA 02115, U.S.A.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A.</namePart>
<namePart type="family">Bjo¨rklund</namePart>
<affiliation>Department of Medical Cell Research, University of Lund, Biskopsgatan 5, S-223 62 Lund, Sweden</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1994</dateIssued>
<dateValid encoding="w3cdtf">1994-05-07</dateValid>
<copyrightDate encoding="w3cdtf">1994</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Shortcomings of current techniques used for the intracerebral transplantation of ventral mesencephalic dopamine neurons include low graft survival, high variability, considerable implantation trauma and suboptimal graft integration. In order to overcome these limitations, we have adopted a microtransplantation approach which allows precise and reproducible implantation of ventral mesen-cephalon cell suspensions at single or multiple sites with minimal trauma and improved survival and integration of the grafted neurons [Nikkhahet al. (1994)Brain Res.633, 133–143]. The present study was undertaken to determine the influence of different grafting parameters as well as the time-course of development of micrografted dopaminergic neurons and to devise an optimal microtransplantation procedure in the rat Parkinson model. Rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway received four graft deposits of either 0.25, 0.5, 1.0 or 2.0 μl along four injection tracts (150,000 cells/μl) using either a glass capillary (o.d. 50–70 μm) or a regular cannula (o.d. 0.50 mm, metal cannula grafts). At one, two and 12 weeks postgrafting (capillary grafts) and at 12 weeks postgrafting (metal cannula grafts) dopamine neuron survival and graft volumes were measured and the implantation trauma assessed by glial fibrillary acidic protein expression. The results demonstrate that single deposits of 50,000–75,000 cells in 0.5 μl, implanted with a glass capillary, provide the best environment both for dopaminergic and non-dopaminergic neuron survival. Grafts implanted with the glass capillary showed much weaker long-term glial fibrillary acidic protein expression along the injection tract and around the implants than was the case in grafts implanted with the thicker metal cannula. Optimal graft integration and minimal disturbances of host brain structures can reliably be achieved by small-sized implants (20,000–35,000 cells/deposit). Tyrosine hydroxylase-positive fiber outgrowth from micrografted dopaminergic neurons was seen not only in the surrounding caudate-putamen, but also along white matter tracts into the nucleus accumbens and the overlying cerebral cortex. Spreading of dopaminergic micrografts over multiple small deposits rather than increasing the volume of single grafts gave more extensive reinnervation of the entire host striatum.The micrografting technique provides a useful tool to improve graft-host interactions in the rat Parkinson model, and it allows more precise and reproducible quantitative studies on dopamine neuron survival and growth in intrastriatal ventral mesencephalon transplants. This technique should also be highly useful for the intracerebral implantation of cells derived from primary cultures or cell lines [Gage and Fisher (1991)Neuron6, 1–12].</abstract>
<subject lang="en">
<topic>DAB : 3,3′diaminobenzidine</topic>
<topic>DARPP-32 : dopamine- and adenosine-3′-5′-monophosphate-regulated phosphoprotein</topic>
<topic>DMEM : Dulbecco's minimum essential medium</topic>
<topic>GFAP : glial fibrillary acidic protein</topic>
<topic>o.d. : outer diameter</topic>
<topic>6-OHDA : 6-hydroxydopamine</topic>
<topic>PB : phosphate buffer</topic>
<topic>TH : tyrosine hydroxylase</topic>
<topic>VM : ventral mesencephalon</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Neuroscience</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>NSC</title>
</titleInfo>
<genre type="Journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">199411</dateIssued>
</originInfo>
<identifier type="ISSN">0306-4522</identifier>
<identifier type="PII">S0306-4522(00)X0304-1</identifier>
<part>
<detail type="volume">
<number>63</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>1</start>
<end>350</end>
</extent>
<extent unit="pages">
<start>57</start>
<end>72</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">529812786D9C6610FCB69624D9E40A3D7F6A2EE7</identifier>
<identifier type="DOI">10.1016/0306-4522(94)90007-8</identifier>
<identifier type="PII">0306-4522(94)90007-8</identifier>
<identifier type="ArticleID">94900078</identifier>
<accessCondition type="use and reproduction" contentType="">© 1994IBRO</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>IBRO, ©1994</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<istex:catWosTEI uri="https://api.istex.fr/document/529812786D9C6610FCB69624D9E40A3D7F6A2EE7/enrichments/catWos">
<teiHeader>
<profileDesc>
<textClass>
<classCode scheme="WOS">NEUROSCIENCES</classCode>
</textClass>
</profileDesc>
</teiHeader>
</istex:catWosTEI>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D09 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001D09 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:529812786D9C6610FCB69624D9E40A3D7F6A2EE7
   |texte=   A microtransplantation approach for cell suspension grafting in the rat parkinson model: A detailed account of the methodology
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 18:06:51 2016. Site generation: Wed Mar 6 18:46:03 2024