Serveur d'exploration sur la maladie de Parkinson

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Computational analysis of determinants of dopamine (DA) dysfunction in DA nerve terminals

Identifieur interne : 001A84 ( Main/Corpus ); précédent : 001A83; suivant : 001A85

Computational analysis of determinants of dopamine (DA) dysfunction in DA nerve terminals

Auteurs : Zhen Qi ; Gary W. Miller ; Eberhard O. Voit

Source :

RBID : ISTEX:4D8906CBF780D75F05A02C104E08EA32F5130E3D

English descriptors

Abstract

Dopamine signaling is involved in a number of brain pathways, and its disruption has been suggested to be involved in the several disease states, including Parkinson's disease (PD), schizophrenia, and attention deficit hyperactivity disorder (ADHD). It has been hypothesized that altered storage, release, and reuptake of dopamine contributes to both the hypo‐ and hyperdopaminergic states that exist in various diseases. Here, we use our recently described mathematical model of dopamine metabolism, combined with a comprehensive Monte Carlo simulation analysis, to identify key determinants of dopamine metabolism associated with the dysregulation of dopamine homeostasis that may contribute to the pathogenesis of dopamine‐based disorders. Our model reveals that the dopamine transporter (DAT), the vesicular monoamine transporter (VMAT2), and the enzyme monoamine oxidase (MAO) are the most influential components controlling the synaptic level of dopamine and the formation of toxic intracellular metabolites. The results are consistent with experimental observations and point to metabolic processes and combinations of processes that may be biochemical drivers of dopamine neuron degeneration. Since many of the identified components can be targeted therapeutically, the model may aid in the design of combined therapeutic regimens aimed at restoring proper dopamine signaling with toxic intermediates under control. Synapse 63:1133–1142, 2009. © 2009 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/syn.20686

Links to Exploration step

ISTEX:4D8906CBF780D75F05A02C104E08EA32F5130E3D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Computational analysis of determinants of dopamine (DA) dysfunction in DA nerve terminals</title>
<author>
<name sortKey="Qi, Zhen" sort="Qi, Zhen" uniqKey="Qi Z" first="Zhen" last="Qi">Zhen Qi</name>
<affiliation>
<mods:affiliation>Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Miller, Gary W" sort="Miller, Gary W" uniqKey="Miller G" first="Gary W." last="Miller">Gary W. Miller</name>
<affiliation>
<mods:affiliation>Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, GA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Voit, Eberhard O" sort="Voit, Eberhard O" uniqKey="Voit E" first="Eberhard O." last="Voit">Eberhard O. Voit</name>
<affiliation>
<mods:affiliation>Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:4D8906CBF780D75F05A02C104E08EA32F5130E3D</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1002/syn.20686</idno>
<idno type="url">https://api.istex.fr/document/4D8906CBF780D75F05A02C104E08EA32F5130E3D/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">001A84</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Computational analysis of determinants of dopamine (DA) dysfunction in DA nerve terminals</title>
<author>
<name sortKey="Qi, Zhen" sort="Qi, Zhen" uniqKey="Qi Z" first="Zhen" last="Qi">Zhen Qi</name>
<affiliation>
<mods:affiliation>Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Miller, Gary W" sort="Miller, Gary W" uniqKey="Miller G" first="Gary W." last="Miller">Gary W. Miller</name>
<affiliation>
<mods:affiliation>Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, GA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Voit, Eberhard O" sort="Voit, Eberhard O" uniqKey="Voit E" first="Eberhard O." last="Voit">Eberhard O. Voit</name>
<affiliation>
<mods:affiliation>Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Synapse</title>
<title level="j" type="abbrev">Synapse</title>
<idno type="ISSN">0887-4476</idno>
<idno type="eISSN">1098-2396</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2009-12">2009-12</date>
<biblScope unit="volume">63</biblScope>
<biblScope unit="issue">12</biblScope>
<biblScope unit="page" from="1133">1133</biblScope>
<biblScope unit="page" to="1142">1142</biblScope>
</imprint>
<idno type="ISSN">0887-4476</idno>
</series>
<idno type="istex">4D8906CBF780D75F05A02C104E08EA32F5130E3D</idno>
<idno type="DOI">10.1002/syn.20686</idno>
<idno type="ArticleID">SYN20686</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0887-4476</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biochemical Systems Theory</term>
<term>Monte Carlo method</term>
<term>Parkinson's disease</term>
<term>dopamine metabolism</term>
<term>dopamine nerve terminal</term>
<term>metabolic profile</term>
<term>personalized medicine</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Dopamine signaling is involved in a number of brain pathways, and its disruption has been suggested to be involved in the several disease states, including Parkinson's disease (PD), schizophrenia, and attention deficit hyperactivity disorder (ADHD). It has been hypothesized that altered storage, release, and reuptake of dopamine contributes to both the hypo‐ and hyperdopaminergic states that exist in various diseases. Here, we use our recently described mathematical model of dopamine metabolism, combined with a comprehensive Monte Carlo simulation analysis, to identify key determinants of dopamine metabolism associated with the dysregulation of dopamine homeostasis that may contribute to the pathogenesis of dopamine‐based disorders. Our model reveals that the dopamine transporter (DAT), the vesicular monoamine transporter (VMAT2), and the enzyme monoamine oxidase (MAO) are the most influential components controlling the synaptic level of dopamine and the formation of toxic intracellular metabolites. The results are consistent with experimental observations and point to metabolic processes and combinations of processes that may be biochemical drivers of dopamine neuron degeneration. Since many of the identified components can be targeted therapeutically, the model may aid in the design of combined therapeutic regimens aimed at restoring proper dopamine signaling with toxic intermediates under control. Synapse 63:1133–1142, 2009. © 2009 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Zhen Qi</name>
<affiliations>
<json:string>Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA</json:string>
<json:string>Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Gary W. Miller</name>
<affiliations>
<json:string>Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA</json:string>
<json:string>Department of Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, GA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Eberhard O. Voit</name>
<affiliations>
<json:string>Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Biochemical Systems Theory</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>dopamine metabolism</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>dopamine nerve terminal</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Monte Carlo method</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>metabolic profile</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Parkinson's disease</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>personalized medicine</value>
</json:item>
</subject>
<articleId>
<json:string>SYN20686</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>Dopamine signaling is involved in a number of brain pathways, and its disruption has been suggested to be involved in the several disease states, including Parkinson's disease (PD), schizophrenia, and attention deficit hyperactivity disorder (ADHD). It has been hypothesized that altered storage, release, and reuptake of dopamine contributes to both the hypo‐ and hyperdopaminergic states that exist in various diseases. Here, we use our recently described mathematical model of dopamine metabolism, combined with a comprehensive Monte Carlo simulation analysis, to identify key determinants of dopamine metabolism associated with the dysregulation of dopamine homeostasis that may contribute to the pathogenesis of dopamine‐based disorders. Our model reveals that the dopamine transporter (DAT), the vesicular monoamine transporter (VMAT2), and the enzyme monoamine oxidase (MAO) are the most influential components controlling the synaptic level of dopamine and the formation of toxic intracellular metabolites. The results are consistent with experimental observations and point to metabolic processes and combinations of processes that may be biochemical drivers of dopamine neuron degeneration. Since many of the identified components can be targeted therapeutically, the model may aid in the design of combined therapeutic regimens aimed at restoring proper dopamine signaling with toxic intermediates under control. Synapse 63:1133–1142, 2009. © 2009 Wiley‐Liss, Inc.</abstract>
<qualityIndicators>
<score>7.436</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>612 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>7</keywordCount>
<abstractCharCount>1475</abstractCharCount>
<pdfWordCount>5697</pdfWordCount>
<pdfCharCount>37139</pdfCharCount>
<pdfPageCount>10</pdfPageCount>
<abstractWordCount>203</abstractWordCount>
</qualityIndicators>
<title>Computational analysis of determinants of dopamine (DA) dysfunction in DA nerve terminals</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>63</volume>
<publisherId>
<json:string>SYN</json:string>
</publisherId>
<pages>
<total>10</total>
<last>1142</last>
<first>1133</first>
</pages>
<issn>
<json:string>0887-4476</json:string>
</issn>
<issue>12</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>Journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1098-2396</json:string>
</eissn>
<title>Synapse</title>
<doi>
<json:string>10.1002/(ISSN)1098-2396</json:string>
</doi>
</host>
<publicationDate>2009</publicationDate>
<copyrightDate>2009</copyrightDate>
<doi>
<json:string>10.1002/syn.20686</json:string>
</doi>
<id>4D8906CBF780D75F05A02C104E08EA32F5130E3D</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/4D8906CBF780D75F05A02C104E08EA32F5130E3D/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/4D8906CBF780D75F05A02C104E08EA32F5130E3D/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/4D8906CBF780D75F05A02C104E08EA32F5130E3D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Computational analysis of determinants of dopamine (DA) dysfunction in DA nerve terminals</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2009</date>
</publicationStmt>
<notesStmt>
<note>Woodruff Health Science Center Fund</note>
<note>NIH - No. P01‐ES016731; No. U54‐ES012068;</note>
<note>Georgia Research Alliance</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Computational analysis of determinants of dopamine (DA) dysfunction in DA nerve terminals</title>
<author>
<persName>
<forename type="first">Zhen</forename>
<surname>Qi</surname>
</persName>
<affiliation>Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA</affiliation>
<affiliation>Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA</affiliation>
</author>
<author>
<persName>
<forename type="first">Gary W.</forename>
<surname>Miller</surname>
</persName>
<affiliation>Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA</affiliation>
<affiliation>Department of Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, GA</affiliation>
</author>
<author>
<persName>
<forename type="first">Eberhard O.</forename>
<surname>Voit</surname>
</persName>
<note type="correspondence">
<p>Correspondence: Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Medical School, Atlanta, GA 30332</p>
</note>
<affiliation>Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Synapse</title>
<title level="j" type="abbrev">Synapse</title>
<idno type="pISSN">0887-4476</idno>
<idno type="eISSN">1098-2396</idno>
<idno type="DOI">10.1002/(ISSN)1098-2396</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2009-12"></date>
<biblScope unit="volume">63</biblScope>
<biblScope unit="issue">12</biblScope>
<biblScope unit="page" from="1133">1133</biblScope>
<biblScope unit="page" to="1142">1142</biblScope>
</imprint>
</monogr>
<idno type="istex">4D8906CBF780D75F05A02C104E08EA32F5130E3D</idno>
<idno type="DOI">10.1002/syn.20686</idno>
<idno type="ArticleID">SYN20686</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2009</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Dopamine signaling is involved in a number of brain pathways, and its disruption has been suggested to be involved in the several disease states, including Parkinson's disease (PD), schizophrenia, and attention deficit hyperactivity disorder (ADHD). It has been hypothesized that altered storage, release, and reuptake of dopamine contributes to both the hypo‐ and hyperdopaminergic states that exist in various diseases. Here, we use our recently described mathematical model of dopamine metabolism, combined with a comprehensive Monte Carlo simulation analysis, to identify key determinants of dopamine metabolism associated with the dysregulation of dopamine homeostasis that may contribute to the pathogenesis of dopamine‐based disorders. Our model reveals that the dopamine transporter (DAT), the vesicular monoamine transporter (VMAT2), and the enzyme monoamine oxidase (MAO) are the most influential components controlling the synaptic level of dopamine and the formation of toxic intracellular metabolites. The results are consistent with experimental observations and point to metabolic processes and combinations of processes that may be biochemical drivers of dopamine neuron degeneration. Since many of the identified components can be targeted therapeutically, the model may aid in the design of combined therapeutic regimens aimed at restoring proper dopamine signaling with toxic intermediates under control. Synapse 63:1133–1142, 2009. © 2009 Wiley‐Liss, Inc.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Biochemical Systems Theory</term>
</item>
<item>
<term>dopamine metabolism</term>
</item>
<item>
<term>dopamine nerve terminal</term>
</item>
<item>
<term>Monte Carlo method</term>
</item>
<item>
<term>metabolic profile</term>
</item>
<item>
<term>Parkinson's disease</term>
</item>
<item>
<term>personalized medicine</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2008-10-21">Received</change>
<change when="2009-03-04">Registration</change>
<change when="2009-12">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/4D8906CBF780D75F05A02C104E08EA32F5130E3D/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1098-2396</doi>
<issn type="print">0887-4476</issn>
<issn type="electronic">1098-2396</issn>
<idGroup>
<id type="product" value="SYN"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="SYNAPSE">Synapse</title>
<title type="short">Synapse</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="120">
<doi origin="wiley" registered="yes">10.1002/syn.v63:12</doi>
<numberingGroup>
<numbering type="journalVolume" number="63">63</numbering>
<numbering type="journalIssue">12</numbering>
</numberingGroup>
<coverDate startDate="2009-12">December 2009</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="80" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/syn.20686</doi>
<idGroup>
<id type="unit" value="SYN20686"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="10"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2009 Wiley‐Liss, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2008-10-21"></event>
<event type="manuscriptAccepted" date="2009-03-04"></event>
<event type="firstOnline" date="2009-08-07"></event>
<event type="publishedOnlineFinalForm" date="2009-08-07"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-04"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-10"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-03"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1133</numbering>
<numbering type="pageLast">1142</numbering>
</numberingGroup>
<correspondenceTo>Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Medical School, Atlanta, GA 30332</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:SYN.SYN20686.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="5"></count>
<count type="tableTotal" number="0"></count>
<count type="referenceTotal" number="32"></count>
<count type="wordTotal" number="848"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Computational analysis of determinants of dopamine (DA) dysfunction in DA nerve terminals</title>
<title type="short" xml:lang="en">Computational Analysis of Determinants of Dopamine Dysfunction</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1 #af2">
<personName>
<givenNames>Zhen</givenNames>
<familyName>Qi</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2 #af3">
<personName>
<givenNames>Gary W.</givenNames>
<familyName>Miller</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Eberhard O.</givenNames>
<familyName>Voit</familyName>
</personName>
<contactDetails>
<email>eberhard.voit@bme.gatech.edu</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="US" type="organization">
<unparsedAffiliation>Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="US" type="organization">
<unparsedAffiliation>Department of Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, GA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">Biochemical Systems Theory</keyword>
<keyword xml:id="kwd2">dopamine metabolism</keyword>
<keyword xml:id="kwd3">dopamine nerve terminal</keyword>
<keyword xml:id="kwd4">Monte Carlo method</keyword>
<keyword xml:id="kwd5">metabolic profile</keyword>
<keyword xml:id="kwd6">Parkinson's disease</keyword>
<keyword xml:id="kwd7">personalized medicine</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Woodruff Health Science Center Fund</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>NIH</fundingAgency>
<fundingNumber>P01‐ES016731</fundingNumber>
<fundingNumber>U54‐ES012068</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>Georgia Research Alliance</fundingAgency>
</fundingInfo>
<supportingInformation>
<p> Additional Supporting Information may be found in the online version of this article. </p>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:08874476:media:syn20686:SYN_20686_sm_suppinfofigure1"></mediaResource>
<caption>Figure S1. Graph of significant two‐site combinations for HO</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:08874476:media:syn20686:SYN_20686_sm_suppinfofigure2"></mediaResource>
<caption>Figure S2. Scatter plots of total dopamine, nitrogen dioxide, and dopac quinone in response to manipulations of MAO with VMAT2 and of COMT with DAT</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:08874476:media:syn20686:SYN_20686_sm_suppinfo"></mediaResource>
<caption>Supporting Information</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Dopamine signaling is involved in a number of brain pathways, and its disruption has been suggested to be involved in the several disease states, including Parkinson's disease (PD), schizophrenia, and attention deficit hyperactivity disorder (ADHD). It has been hypothesized that altered storage, release, and reuptake of dopamine contributes to both the hypo‐ and hyperdopaminergic states that exist in various diseases. Here, we use our recently described mathematical model of dopamine metabolism, combined with a comprehensive Monte Carlo simulation analysis, to identify key determinants of dopamine metabolism associated with the dysregulation of dopamine homeostasis that may contribute to the pathogenesis of dopamine‐based disorders. Our model reveals that the dopamine transporter (DAT), the vesicular monoamine transporter (VMAT2), and the enzyme monoamine oxidase (MAO) are the most influential components controlling the synaptic level of dopamine and the formation of toxic intracellular metabolites. The results are consistent with experimental observations and point to metabolic processes and combinations of processes that may be biochemical drivers of dopamine neuron degeneration. Since many of the identified components can be targeted therapeutically, the model may aid in the design of combined therapeutic regimens aimed at restoring proper dopamine signaling with toxic intermediates under control. Synapse 63:1133–1142, 2009. © 2009 Wiley‐Liss, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Computational analysis of determinants of dopamine (DA) dysfunction in DA nerve terminals</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Computational Analysis of Determinants of Dopamine Dysfunction</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Computational analysis of determinants of dopamine (DA) dysfunction in DA nerve terminals</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhen</namePart>
<namePart type="family">Qi</namePart>
<affiliation>Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA</affiliation>
<affiliation>Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gary W.</namePart>
<namePart type="family">Miller</namePart>
<affiliation>Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA</affiliation>
<affiliation>Department of Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, GA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eberhard O.</namePart>
<namePart type="family">Voit</namePart>
<affiliation>Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA</affiliation>
<description>Correspondence: Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Medical School, Atlanta, GA 30332</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2009-12</dateIssued>
<dateCaptured encoding="w3cdtf">2008-10-21</dateCaptured>
<dateValid encoding="w3cdtf">2009-03-04</dateValid>
<copyrightDate encoding="w3cdtf">2009</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">5</extent>
<extent unit="references">32</extent>
<extent unit="words">848</extent>
</physicalDescription>
<abstract lang="en">Dopamine signaling is involved in a number of brain pathways, and its disruption has been suggested to be involved in the several disease states, including Parkinson's disease (PD), schizophrenia, and attention deficit hyperactivity disorder (ADHD). It has been hypothesized that altered storage, release, and reuptake of dopamine contributes to both the hypo‐ and hyperdopaminergic states that exist in various diseases. Here, we use our recently described mathematical model of dopamine metabolism, combined with a comprehensive Monte Carlo simulation analysis, to identify key determinants of dopamine metabolism associated with the dysregulation of dopamine homeostasis that may contribute to the pathogenesis of dopamine‐based disorders. Our model reveals that the dopamine transporter (DAT), the vesicular monoamine transporter (VMAT2), and the enzyme monoamine oxidase (MAO) are the most influential components controlling the synaptic level of dopamine and the formation of toxic intracellular metabolites. The results are consistent with experimental observations and point to metabolic processes and combinations of processes that may be biochemical drivers of dopamine neuron degeneration. Since many of the identified components can be targeted therapeutically, the model may aid in the design of combined therapeutic regimens aimed at restoring proper dopamine signaling with toxic intermediates under control. Synapse 63:1133–1142, 2009. © 2009 Wiley‐Liss, Inc.</abstract>
<note type="funding">Woodruff Health Science Center Fund</note>
<note type="funding">NIH - No. P01‐ES016731; No. U54‐ES012068; </note>
<note type="funding">Georgia Research Alliance</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>Biochemical Systems Theory</topic>
<topic>dopamine metabolism</topic>
<topic>dopamine nerve terminal</topic>
<topic>Monte Carlo method</topic>
<topic>metabolic profile</topic>
<topic>Parkinson's disease</topic>
<topic>personalized medicine</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Synapse</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Synapse</title>
</titleInfo>
<genre type="Journal">journal</genre>
<note type="content"> Additional Supporting Information may be found in the online version of this article.Supporting Info Item: Figure S1. Graph of significant two‐site combinations for HO - Figure S2. Scatter plots of total dopamine, nitrogen dioxide, and dopac quinone in response to manipulations of MAO with VMAT2 and of COMT with DAT - Supporting Information - </note>
<subject>
<genre>article category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0887-4476</identifier>
<identifier type="eISSN">1098-2396</identifier>
<identifier type="DOI">10.1002/(ISSN)1098-2396</identifier>
<identifier type="PublisherID">SYN</identifier>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>63</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>12</number>
</detail>
<extent unit="pages">
<start>1133</start>
<end>1142</end>
<total>10</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">4D8906CBF780D75F05A02C104E08EA32F5130E3D</identifier>
<identifier type="DOI">10.1002/syn.20686</identifier>
<identifier type="ArticleID">SYN20686</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2009 Wiley‐Liss, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A84 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001A84 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:4D8906CBF780D75F05A02C104E08EA32F5130E3D
   |texte=   Computational analysis of determinants of dopamine (DA) dysfunction in DA nerve terminals
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 18:06:51 2016. Site generation: Wed Mar 6 18:46:03 2024