Serveur d'exploration sur la maladie de Parkinson

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Neural correlates of bimanual anti-phase and in-phase movements in Parkinsons disease

Identifieur interne : 001A28 ( Main/Corpus ); précédent : 001A27; suivant : 001A29

Neural correlates of bimanual anti-phase and in-phase movements in Parkinsons disease

Auteurs : Tao Wu ; Liang Wang ; Mark Hallett ; Kuncheng Li ; Piu Chan

Source :

RBID : ISTEX:80A92875E1A5D6B811C58CB2C62EADF480DE3DB3

Abstract

Patients with Parkinsons disease have great difficulty in performing bimanual movements; this problem is more obvious when they perform bimanual anti-phase movements. The underlying mechanism of this problem remains unclear. In the current study, we used functional magnetic resonance imaging to study the bimanual coordination associated changes of brain activity and inter-regional interactions in Parkinsons disease. Subjects were asked to perform right-handed, bimanual in-phase and bimanual anti-phase movements. After practice, normal subjects performed all tasks correctly. Patients with Parkinsons disease performed in-phase movements correctly. However, some patients still made infrequent errors during anti-phase movements; they tended to revert to in-phase movement. Functional magnetic resonance imaging results showed that the supplementary motor area was more activated during anti-phase movement than in-phase movement in controls, but not in patients. In performing anti-phase movements, patients with Parkinsons disease showed less activity in the basal ganglia and supplementary motor area, and had more activation in the primary motor cortex, premotor cortex, inferior frontal gyrus, precuneus and cerebellum compared with normal subjects. The basal ganglia and dorsolateral prefrontal cortex were less connected with the supplementary motor area, whereas the primary motor cortex, parietal cortex, precuneus and cerebellum were more strongly connected with the supplementary motor area in patients with Parkinsons disease than in controls. Our findings suggest that dysfunction of the supplementary motor area and basal ganglia, abnormal interactions of brain networks and disrupted attentional networks are probably important reasons contributing to the difficulty of the patients in performing bimanual anti-phase movements. The patients require more brain activity and stronger connectivity in some brain regions to compensate for dysfunction of the supplementary motor area and basal ganglia in order to perform bimanual movements correctly.

Url:
DOI: 10.1093/brain/awq151

Links to Exploration step

ISTEX:80A92875E1A5D6B811C58CB2C62EADF480DE3DB3

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Neural correlates of bimanual anti-phase and in-phase movements in Parkinsons disease</title>
<author>
<name sortKey="Wu, Tao" sort="Wu, Tao" uniqKey="Wu T" first="Tao" last="Wu">Tao Wu</name>
<affiliation>
<mods:affiliation>1 Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, People's Republic of China</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: wutao69@gmail.com</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Liang" sort="Wang, Liang" uniqKey="Wang L" first="Liang" last="Wang">Liang Wang</name>
<affiliation>
<mods:affiliation>2 Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 20892-1428, People's Republic of China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hallett, Mark" sort="Hallett, Mark" uniqKey="Hallett M" first="Mark" last="Hallett">Mark Hallett</name>
<affiliation>
<mods:affiliation>3 Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1428, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Kuncheng" sort="Li, Kuncheng" uniqKey="Li K" first="Kuncheng" last="Li">Kuncheng Li</name>
<affiliation>
<mods:affiliation>2 Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 20892-1428, People's Republic of China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chan, Piu" sort="Chan, Piu" uniqKey="Chan P" first="Piu" last="Chan">Piu Chan</name>
<affiliation>
<mods:affiliation>1 Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, People's Republic of China</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:80A92875E1A5D6B811C58CB2C62EADF480DE3DB3</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1093/brain/awq151</idno>
<idno type="url">https://api.istex.fr/document/80A92875E1A5D6B811C58CB2C62EADF480DE3DB3/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">001A28</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Neural correlates of bimanual anti-phase and in-phase movements in Parkinsons disease</title>
<author>
<name sortKey="Wu, Tao" sort="Wu, Tao" uniqKey="Wu T" first="Tao" last="Wu">Tao Wu</name>
<affiliation>
<mods:affiliation>1 Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, People's Republic of China</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: wutao69@gmail.com</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Liang" sort="Wang, Liang" uniqKey="Wang L" first="Liang" last="Wang">Liang Wang</name>
<affiliation>
<mods:affiliation>2 Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 20892-1428, People's Republic of China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hallett, Mark" sort="Hallett, Mark" uniqKey="Hallett M" first="Mark" last="Hallett">Mark Hallett</name>
<affiliation>
<mods:affiliation>3 Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1428, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Kuncheng" sort="Li, Kuncheng" uniqKey="Li K" first="Kuncheng" last="Li">Kuncheng Li</name>
<affiliation>
<mods:affiliation>2 Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 20892-1428, People's Republic of China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chan, Piu" sort="Chan, Piu" uniqKey="Chan P" first="Piu" last="Chan">Piu Chan</name>
<affiliation>
<mods:affiliation>1 Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, People's Republic of China</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Brain</title>
<idno type="ISSN">0006-8950</idno>
<idno type="eISSN">1460-2156</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published" when="2010-08">2010-08</date>
<biblScope unit="volume">133</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="2394">2394</biblScope>
<biblScope unit="page" to="2409">2409</biblScope>
</imprint>
<idno type="ISSN">0006-8950</idno>
</series>
<idno type="istex">80A92875E1A5D6B811C58CB2C62EADF480DE3DB3</idno>
<idno type="DOI">10.1093/brain/awq151</idno>
<idno type="ArticleID">awq151</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-8950</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Patients with Parkinsons disease have great difficulty in performing bimanual movements; this problem is more obvious when they perform bimanual anti-phase movements. The underlying mechanism of this problem remains unclear. In the current study, we used functional magnetic resonance imaging to study the bimanual coordination associated changes of brain activity and inter-regional interactions in Parkinsons disease. Subjects were asked to perform right-handed, bimanual in-phase and bimanual anti-phase movements. After practice, normal subjects performed all tasks correctly. Patients with Parkinsons disease performed in-phase movements correctly. However, some patients still made infrequent errors during anti-phase movements; they tended to revert to in-phase movement. Functional magnetic resonance imaging results showed that the supplementary motor area was more activated during anti-phase movement than in-phase movement in controls, but not in patients. In performing anti-phase movements, patients with Parkinsons disease showed less activity in the basal ganglia and supplementary motor area, and had more activation in the primary motor cortex, premotor cortex, inferior frontal gyrus, precuneus and cerebellum compared with normal subjects. The basal ganglia and dorsolateral prefrontal cortex were less connected with the supplementary motor area, whereas the primary motor cortex, parietal cortex, precuneus and cerebellum were more strongly connected with the supplementary motor area in patients with Parkinsons disease than in controls. Our findings suggest that dysfunction of the supplementary motor area and basal ganglia, abnormal interactions of brain networks and disrupted attentional networks are probably important reasons contributing to the difficulty of the patients in performing bimanual anti-phase movements. The patients require more brain activity and stronger connectivity in some brain regions to compensate for dysfunction of the supplementary motor area and basal ganglia in order to perform bimanual movements correctly.</div>
</front>
</TEI>
<istex>
<corpusName>oup</corpusName>
<author>
<json:item>
<name>Tao Wu</name>
<affiliations>
<json:string>1 Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, People's Republic of China</json:string>
<json:string>E-mail: wutao69@gmail.com</json:string>
</affiliations>
</json:item>
<json:item>
<name>Liang Wang</name>
<affiliations>
<json:string>2 Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 20892-1428, People's Republic of China</json:string>
</affiliations>
</json:item>
<json:item>
<name>Mark Hallett</name>
<affiliations>
<json:string>3 Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1428, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Kuncheng Li</name>
<affiliations>
<json:string>2 Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 20892-1428, People's Republic of China</json:string>
</affiliations>
</json:item>
<json:item>
<name>Piu Chan</name>
<affiliations>
<json:string>1 Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, People's Republic of China</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Original Articles</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Parkinsons disease</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>bimanual movements</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>fMRI</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>brain activity</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>effective connectivity</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>Patients with Parkinsons disease have great difficulty in performing bimanual movements; this problem is more obvious when they perform bimanual anti-phase movements. The underlying mechanism of this problem remains unclear. In the current study, we used functional magnetic resonance imaging to study the bimanual coordination associated changes of brain activity and inter-regional interactions in Parkinsons disease. Subjects were asked to perform right-handed, bimanual in-phase and bimanual anti-phase movements. After practice, normal subjects performed all tasks correctly. Patients with Parkinsons disease performed in-phase movements correctly. However, some patients still made infrequent errors during anti-phase movements; they tended to revert to in-phase movement. Functional magnetic resonance imaging results showed that the supplementary motor area was more activated during anti-phase movement than in-phase movement in controls, but not in patients. In performing anti-phase movements, patients with Parkinsons disease showed less activity in the basal ganglia and supplementary motor area, and had more activation in the primary motor cortex, premotor cortex, inferior frontal gyrus, precuneus and cerebellum compared with normal subjects. The basal ganglia and dorsolateral prefrontal cortex were less connected with the supplementary motor area, whereas the primary motor cortex, parietal cortex, precuneus and cerebellum were more strongly connected with the supplementary motor area in patients with Parkinsons disease than in controls. Our findings suggest that dysfunction of the supplementary motor area and basal ganglia, abnormal interactions of brain networks and disrupted attentional networks are probably important reasons contributing to the difficulty of the patients in performing bimanual anti-phase movements. The patients require more brain activity and stronger connectivity in some brain regions to compensate for dysfunction of the supplementary motor area and basal ganglia in order to perform bimanual movements correctly.</abstract>
<qualityIndicators>
<score>8.5</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>612.68 x 790.866 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>6</keywordCount>
<abstractCharCount>2066</abstractCharCount>
<pdfWordCount>8975</pdfWordCount>
<pdfCharCount>60676</pdfCharCount>
<pdfPageCount>16</pdfPageCount>
<abstractWordCount>279</abstractWordCount>
</qualityIndicators>
<title>Neural correlates of bimanual anti-phase and in-phase movements in Parkinsons disease</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>133</volume>
<pages>
<last>2409</last>
<first>2394</first>
</pages>
<issn>
<json:string>0006-8950</json:string>
</issn>
<issue>8</issue>
<genre></genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1460-2156</json:string>
</eissn>
<title>Brain</title>
</host>
<categories>
<wos>
<json:string>CLINICAL NEUROLOGY</json:string>
<json:string>NEUROSCIENCES</json:string>
</wos>
</categories>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1093/brain/awq151</json:string>
</doi>
<id>80A92875E1A5D6B811C58CB2C62EADF480DE3DB3</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/80A92875E1A5D6B811C58CB2C62EADF480DE3DB3/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/80A92875E1A5D6B811C58CB2C62EADF480DE3DB3/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/80A92875E1A5D6B811C58CB2C62EADF480DE3DB3/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Neural correlates of bimanual anti-phase and in-phase movements in Parkinsons disease</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Oxford University Press</publisher>
<availability>
<p>OUP</p>
</availability>
<date>2010-06-20</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Neural correlates of bimanual anti-phase and in-phase movements in Parkinsons disease</title>
<author corresp="yes">
<persName>
<forename type="first">Tao</forename>
<surname>Wu</surname>
</persName>
<email>wutao69@gmail.com</email>
<affiliation>1 Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, People's Republic of China</affiliation>
</author>
<author>
<persName>
<forename type="first">Liang</forename>
<surname>Wang</surname>
</persName>
<affiliation>2 Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 20892-1428, People's Republic of China</affiliation>
</author>
<author>
<persName>
<forename type="first">Mark</forename>
<surname>Hallett</surname>
</persName>
<affiliation>3 Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1428, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Kuncheng</forename>
<surname>Li</surname>
</persName>
<affiliation>2 Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 20892-1428, People's Republic of China</affiliation>
</author>
<author>
<persName>
<forename type="first">Piu</forename>
<surname>Chan</surname>
</persName>
<affiliation>1 Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, People's Republic of China</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Brain</title>
<idno type="pISSN">0006-8950</idno>
<idno type="eISSN">1460-2156</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published" when="2010-08"></date>
<biblScope unit="volume">133</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="2394">2394</biblScope>
<biblScope unit="page" to="2409">2409</biblScope>
</imprint>
</monogr>
<idno type="istex">80A92875E1A5D6B811C58CB2C62EADF480DE3DB3</idno>
<idno type="DOI">10.1093/brain/awq151</idno>
<idno type="ArticleID">awq151</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2010-06-20</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Patients with Parkinsons disease have great difficulty in performing bimanual movements; this problem is more obvious when they perform bimanual anti-phase movements. The underlying mechanism of this problem remains unclear. In the current study, we used functional magnetic resonance imaging to study the bimanual coordination associated changes of brain activity and inter-regional interactions in Parkinsons disease. Subjects were asked to perform right-handed, bimanual in-phase and bimanual anti-phase movements. After practice, normal subjects performed all tasks correctly. Patients with Parkinsons disease performed in-phase movements correctly. However, some patients still made infrequent errors during anti-phase movements; they tended to revert to in-phase movement. Functional magnetic resonance imaging results showed that the supplementary motor area was more activated during anti-phase movement than in-phase movement in controls, but not in patients. In performing anti-phase movements, patients with Parkinsons disease showed less activity in the basal ganglia and supplementary motor area, and had more activation in the primary motor cortex, premotor cortex, inferior frontal gyrus, precuneus and cerebellum compared with normal subjects. The basal ganglia and dorsolateral prefrontal cortex were less connected with the supplementary motor area, whereas the primary motor cortex, parietal cortex, precuneus and cerebellum were more strongly connected with the supplementary motor area in patients with Parkinsons disease than in controls. Our findings suggest that dysfunction of the supplementary motor area and basal ganglia, abnormal interactions of brain networks and disrupted attentional networks are probably important reasons contributing to the difficulty of the patients in performing bimanual anti-phase movements. The patients require more brain activity and stronger connectivity in some brain regions to compensate for dysfunction of the supplementary motor area and basal ganglia in order to perform bimanual movements correctly.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<item>
<term>Original Articles</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Parkinsons disease</term>
</item>
<item>
<term>bimanual movements</term>
</item>
<item>
<term>fMRI</term>
</item>
<item>
<term>brain activity</term>
</item>
<item>
<term>effective connectivity</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2010-06-20">Created</change>
<change when="2010-08">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/80A92875E1A5D6B811C58CB2C62EADF480DE3DB3/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus oup" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="publisher-id">brainj</journal-id>
<journal-id journal-id-type="hwp">brain</journal-id>
<journal-title>Brain</journal-title>
<issn pub-type="ppub">0006-8950</issn>
<issn pub-type="epub">1460-2156</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1093/brain/awq151</article-id>
<article-id pub-id-type="publisher-id">awq151</article-id>
<article-categories>
<subj-group>
<subject>Original Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Neural correlates of bimanual anti-phase and in-phase movements in Parkinson’s disease</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Wu</surname>
<given-names>Tao</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Liang</given-names>
</name>
<xref ref-type="aff" rid="AFF2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hallett</surname>
<given-names>Mark</given-names>
</name>
<xref ref-type="aff" rid="AFF3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Kuncheng</given-names>
</name>
<xref ref-type="aff" rid="AFF2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chan</surname>
<given-names>Piu</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
</contrib>
</contrib-group>
<aff id="AFF1">1 Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, People's Republic of China</aff>
<aff id="AFF2">2 Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 20892-1428, People's Republic of China</aff>
<aff id="AFF3">3 Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1428, USA</aff>
<author-notes>
<corresp>Correspondence to: Tao Wu, Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, People's Republic of China E-mail:
<email>wutao69@gmail.com</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>8</month>
<year>2010</year>
</pub-date>
<pub-date pub-type="epub">
<day>20</day>
<month>6</month>
<year>2010</year>
</pub-date>
<volume>133</volume>
<issue>8</issue>
<fpage>2394</fpage>
<lpage>2409</lpage>
<history>
<date date-type="received">
<day>5</day>
<month>1</month>
<year>2010</year>
</date>
<date date-type="rev-recd">
<day>29</day>
<month>4</month>
<year>2010</year>
</date>
<date date-type="accepted">
<day>30</day>
<month>4</month>
<year>2010</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author (2010). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org</copyright-statement>
<copyright-year>2010</copyright-year>
</permissions>
<abstract>
<p>Patients with Parkinson’s disease have great difficulty in performing bimanual movements; this problem is more obvious when they perform bimanual anti-phase movements. The underlying mechanism of this problem remains unclear. In the current study, we used functional magnetic resonance imaging to study the bimanual coordination associated changes of brain activity and inter-regional interactions in Parkinson’s disease. Subjects were asked to perform right-handed, bimanual in-phase and bimanual anti-phase movements. After practice, normal subjects performed all tasks correctly. Patients with Parkinson’s disease performed in-phase movements correctly. However, some patients still made infrequent errors during anti-phase movements; they tended to revert to in-phase movement. Functional magnetic resonance imaging results showed that the supplementary motor area was more activated during anti-phase movement than in-phase movement in controls, but not in patients. In performing anti-phase movements, patients with Parkinson’s disease showed less activity in the basal ganglia and supplementary motor area, and had more activation in the primary motor cortex, premotor cortex, inferior frontal gyrus, precuneus and cerebellum compared with normal subjects. The basal ganglia and dorsolateral prefrontal cortex were less connected with the supplementary motor area, whereas the primary motor cortex, parietal cortex, precuneus and cerebellum were more strongly connected with the supplementary motor area in patients with Parkinson’s disease than in controls. Our findings suggest that dysfunction of the supplementary motor area and basal ganglia, abnormal interactions of brain networks and disrupted attentional networks are probably important reasons contributing to the difficulty of the patients in performing bimanual anti-phase movements. The patients require more brain activity and stronger connectivity in some brain regions to compensate for dysfunction of the supplementary motor area and basal ganglia in order to perform bimanual movements correctly.</p>
</abstract>
<kwd-group>
<kwd>Parkinson’s disease</kwd>
<kwd>bimanual movements</kwd>
<kwd>fMRI</kwd>
<kwd>brain activity</kwd>
<kwd>effective connectivity</kwd>
</kwd-group>
</article-meta>
</front>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Neural correlates of bimanual anti-phase and in-phase movements in Parkinsons disease</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Neural correlates of bimanual anti-phase and in-phase movements in Parkinsons disease</title>
</titleInfo>
<name type="personal" displayLabel="corresp">
<namePart type="given">Tao</namePart>
<namePart type="family">Wu</namePart>
<affiliation>1 Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, People's Republic of China</affiliation>
<affiliation>E-mail: wutao69@gmail.com</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang</namePart>
<namePart type="family">Wang</namePart>
<affiliation>2 Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 20892-1428, People's Republic of China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Hallett</namePart>
<affiliation>3 Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1428, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kuncheng</namePart>
<namePart type="family">Li</namePart>
<affiliation>2 Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 20892-1428, People's Republic of China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Piu</namePart>
<namePart type="family">Chan</namePart>
<affiliation>1 Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, People's Republic of China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article"></genre>
<subject>
<topic>Original Articles</topic>
</subject>
<originInfo>
<publisher>Oxford University Press</publisher>
<dateIssued encoding="w3cdtf">2010-08</dateIssued>
<dateCreated encoding="w3cdtf">2010-06-20</dateCreated>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>Patients with Parkinsons disease have great difficulty in performing bimanual movements; this problem is more obvious when they perform bimanual anti-phase movements. The underlying mechanism of this problem remains unclear. In the current study, we used functional magnetic resonance imaging to study the bimanual coordination associated changes of brain activity and inter-regional interactions in Parkinsons disease. Subjects were asked to perform right-handed, bimanual in-phase and bimanual anti-phase movements. After practice, normal subjects performed all tasks correctly. Patients with Parkinsons disease performed in-phase movements correctly. However, some patients still made infrequent errors during anti-phase movements; they tended to revert to in-phase movement. Functional magnetic resonance imaging results showed that the supplementary motor area was more activated during anti-phase movement than in-phase movement in controls, but not in patients. In performing anti-phase movements, patients with Parkinsons disease showed less activity in the basal ganglia and supplementary motor area, and had more activation in the primary motor cortex, premotor cortex, inferior frontal gyrus, precuneus and cerebellum compared with normal subjects. The basal ganglia and dorsolateral prefrontal cortex were less connected with the supplementary motor area, whereas the primary motor cortex, parietal cortex, precuneus and cerebellum were more strongly connected with the supplementary motor area in patients with Parkinsons disease than in controls. Our findings suggest that dysfunction of the supplementary motor area and basal ganglia, abnormal interactions of brain networks and disrupted attentional networks are probably important reasons contributing to the difficulty of the patients in performing bimanual anti-phase movements. The patients require more brain activity and stronger connectivity in some brain regions to compensate for dysfunction of the supplementary motor area and basal ganglia in order to perform bimanual movements correctly.</abstract>
<subject>
<genre>Keywords</genre>
<topic>Parkinsons disease</topic>
<topic>bimanual movements</topic>
<topic>fMRI</topic>
<topic>brain activity</topic>
<topic>effective connectivity</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Brain</title>
</titleInfo>
<genre type="Journal">journal</genre>
<identifier type="ISSN">0006-8950</identifier>
<identifier type="eISSN">1460-2156</identifier>
<identifier type="PublisherID">brainj</identifier>
<identifier type="PublisherID-hwp">brain</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>133</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>2394</start>
<end>2409</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">80A92875E1A5D6B811C58CB2C62EADF480DE3DB3</identifier>
<identifier type="DOI">10.1093/brain/awq151</identifier>
<identifier type="ArticleID">awq151</identifier>
<accessCondition type="use and reproduction" contentType="copyright">The Author (2010). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org</accessCondition>
<recordInfo>
<recordContentSource>OUP</recordContentSource>
</recordInfo>
</mods>
</metadata>
<covers>
<json:item>
<original>true</original>
<mimetype>image/tiff</mimetype>
<extension>tiff</extension>
<uri>https://api.istex.fr/document/80A92875E1A5D6B811C58CB2C62EADF480DE3DB3/covers/tiff</uri>
</json:item>
<json:item>
<original>true</original>
<mimetype>text/html</mimetype>
<extension>html</extension>
<uri>https://api.istex.fr/document/80A92875E1A5D6B811C58CB2C62EADF480DE3DB3/covers/html</uri>
</json:item>
</covers>
<annexes>
<json:item>
<original>true</original>
<mimetype>image/jpeg</mimetype>
<extension>jpeg</extension>
<uri>https://api.istex.fr/document/80A92875E1A5D6B811C58CB2C62EADF480DE3DB3/annexes/jpeg</uri>
</json:item>
<json:item>
<original>true</original>
<mimetype>image/gif</mimetype>
<extension>gif</extension>
<uri>https://api.istex.fr/document/80A92875E1A5D6B811C58CB2C62EADF480DE3DB3/annexes/gif</uri>
</json:item>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/80A92875E1A5D6B811C58CB2C62EADF480DE3DB3/annexes/pdf</uri>
</json:item>
</annexes>
<enrichments>
<istex:catWosTEI uri="https://api.istex.fr/document/80A92875E1A5D6B811C58CB2C62EADF480DE3DB3/enrichments/catWos">
<teiHeader>
<profileDesc>
<textClass>
<classCode scheme="WOS">CLINICAL NEUROLOGY</classCode>
<classCode scheme="WOS">NEUROSCIENCES</classCode>
</textClass>
</profileDesc>
</teiHeader>
</istex:catWosTEI>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A28 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001A28 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:80A92875E1A5D6B811C58CB2C62EADF480DE3DB3
   |texte=   Neural correlates of bimanual anti-phase and in-phase movements in Parkinsons disease
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 18:06:51 2016. Site generation: Wed Mar 6 18:46:03 2024