Serveur d'exploration sur la maladie de Parkinson

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor

Identifieur interne : 001349 ( Main/Corpus ); précédent : 001348; suivant : 001350

Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor

Auteurs : Robert E. Gross ; Paul Krack ; Maria C. Rodriguez-Oroz ; Ali R. Rezai ; Alim-Louis Benabid

Source :

RBID : ISTEX:B1528809FC653EA8BF1A04C37FDAC339B94062FB

English descriptors

Abstract

The vast majority of centers use electrophysiological mapping techniques to finalize target selection during the implantation of deep brain stimulation (DBS) leads for the treatment of Parkinson's disease and tremor. This review discusses the techniques used for physiological mapping and addresses the questions of how various mapping strategies modify target selection and outcome following subthalamic nucleus (STN), globus pallidus internus (GPi), and ventralis intermedius (Vim) deep brain stimulation. Mapping strategies vary greatly across centers, but can be broadly categorized into those that use microelectrode or semimicroelectrode techniques to optimize position prior to implantation and macrostimulation through a macroelectrode or the DBS lead, and those that rely solely on macrostimulation and its threshold for clinical effects (benefits and side effects). Microelectrode criteria for implantation into the STN or GPi include length of the nucleus recorded, presence of movement‐responsive neurons, and/or distance from the borders with adjacent structures. However, the threshold for the production of clinical benefits relative to side effects is, in most centers, the final, and sometimes only, determinant of DBS electrode position. Macrostimulation techniques for mapping, the utility of microelectrode mapping is reflected in its modification of electrode position in 17% to 87% of patients undergoing STN DBS, with average target adjustments of 1 to 4 mm. Nevertheless, with the absence of class I data, and in consideration of the large number of variables that impact clinical outcome, it is not possible to conclude that one technique is superior to the other in so far as motor Unified Parkinson's Disease Rating Scale outcome is concerned. Moreover, mapping technique is only one out of many variables that determine the outcome. The increase in surgical risk of intracranial hemorrhage correlated to the number of microelectrode trajectories must be considered against the risk of suboptimal benefits related to omission of this technique. © 2006 Movement Disorder Society

Url:
DOI: 10.1002/mds.20960

Links to Exploration step

ISTEX:B1528809FC653EA8BF1A04C37FDAC339B94062FB

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor</title>
<author>
<name sortKey="Gross, Robert E" sort="Gross, Robert E" uniqKey="Gross R" first="Robert E." last="Gross">Robert E. Gross</name>
<affiliation>
<mods:affiliation>Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Krack, Paul" sort="Krack, Paul" uniqKey="Krack P" first="Paul" last="Krack">Paul Krack</name>
<affiliation>
<mods:affiliation>Department of Neurology, Grenoble University, Grenoble, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez Roz, Maria C" sort="Rodriguez Roz, Maria C" uniqKey="Rodriguez Roz M" first="Maria C." last="Rodriguez-Oroz">Maria C. Rodriguez-Oroz</name>
<affiliation>
<mods:affiliation>University of Navarra, Pamplona, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rezai, Ali R" sort="Rezai, Ali R" uniqKey="Rezai A" first="Ali R." last="Rezai">Ali R. Rezai</name>
<affiliation>
<mods:affiliation>Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Benabid, Alim Ouis" sort="Benabid, Alim Ouis" uniqKey="Benabid A" first="Alim-Louis" last="Benabid">Alim-Louis Benabid</name>
<affiliation>
<mods:affiliation>Department of Neurosurgery, Grenoble University Joseph Fourier, Grenoble, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B1528809FC653EA8BF1A04C37FDAC339B94062FB</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1002/mds.20960</idno>
<idno type="url">https://api.istex.fr/document/B1528809FC653EA8BF1A04C37FDAC339B94062FB/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">001349</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor</title>
<author>
<name sortKey="Gross, Robert E" sort="Gross, Robert E" uniqKey="Gross R" first="Robert E." last="Gross">Robert E. Gross</name>
<affiliation>
<mods:affiliation>Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Krack, Paul" sort="Krack, Paul" uniqKey="Krack P" first="Paul" last="Krack">Paul Krack</name>
<affiliation>
<mods:affiliation>Department of Neurology, Grenoble University, Grenoble, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez Roz, Maria C" sort="Rodriguez Roz, Maria C" uniqKey="Rodriguez Roz M" first="Maria C." last="Rodriguez-Oroz">Maria C. Rodriguez-Oroz</name>
<affiliation>
<mods:affiliation>University of Navarra, Pamplona, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rezai, Ali R" sort="Rezai, Ali R" uniqKey="Rezai A" first="Ali R." last="Rezai">Ali R. Rezai</name>
<affiliation>
<mods:affiliation>Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Benabid, Alim Ouis" sort="Benabid, Alim Ouis" uniqKey="Benabid A" first="Alim-Louis" last="Benabid">Alim-Louis Benabid</name>
<affiliation>
<mods:affiliation>Department of Neurosurgery, Grenoble University Joseph Fourier, Grenoble, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Movement Disorders</title>
<title level="j" type="sub">Official Journal of the Movement Disorder Society</title>
<title level="j" type="abbrev">Mov. Disord.</title>
<idno type="ISSN">0885-3185</idno>
<idno type="eISSN">1531-8257</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2006-06">2006-06</date>
<biblScope unit="volume">21</biblScope>
<biblScope unit="issue">S14</biblScope>
<biblScope unit="supplement">14</biblScope>
<biblScope unit="page" from="S259">S259</biblScope>
<biblScope unit="page" to="S283">S283</biblScope>
</imprint>
<idno type="ISSN">0885-3185</idno>
</series>
<idno type="istex">B1528809FC653EA8BF1A04C37FDAC339B94062FB</idno>
<idno type="DOI">10.1002/mds.20960</idno>
<idno type="ArticleID">MDS20960</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0885-3185</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>globus pallidus</term>
<term>stimulation</term>
<term>subthalamic nucleus</term>
<term>ventral intermedius</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The vast majority of centers use electrophysiological mapping techniques to finalize target selection during the implantation of deep brain stimulation (DBS) leads for the treatment of Parkinson's disease and tremor. This review discusses the techniques used for physiological mapping and addresses the questions of how various mapping strategies modify target selection and outcome following subthalamic nucleus (STN), globus pallidus internus (GPi), and ventralis intermedius (Vim) deep brain stimulation. Mapping strategies vary greatly across centers, but can be broadly categorized into those that use microelectrode or semimicroelectrode techniques to optimize position prior to implantation and macrostimulation through a macroelectrode or the DBS lead, and those that rely solely on macrostimulation and its threshold for clinical effects (benefits and side effects). Microelectrode criteria for implantation into the STN or GPi include length of the nucleus recorded, presence of movement‐responsive neurons, and/or distance from the borders with adjacent structures. However, the threshold for the production of clinical benefits relative to side effects is, in most centers, the final, and sometimes only, determinant of DBS electrode position. Macrostimulation techniques for mapping, the utility of microelectrode mapping is reflected in its modification of electrode position in 17% to 87% of patients undergoing STN DBS, with average target adjustments of 1 to 4 mm. Nevertheless, with the absence of class I data, and in consideration of the large number of variables that impact clinical outcome, it is not possible to conclude that one technique is superior to the other in so far as motor Unified Parkinson's Disease Rating Scale outcome is concerned. Moreover, mapping technique is only one out of many variables that determine the outcome. The increase in surgical risk of intracranial hemorrhage correlated to the number of microelectrode trajectories must be considered against the risk of suboptimal benefits related to omission of this technique. © 2006 Movement Disorder Society</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Robert E. Gross MD, PhD</name>
<affiliations>
<json:string>Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Paul Krack MD</name>
<affiliations>
<json:string>Department of Neurology, Grenoble University, Grenoble, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Maria C. Rodriguez‐Oroz MD, PhD</name>
<affiliations>
<json:string>University of Navarra, Pamplona, Spain</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ali R. Rezai MD</name>
<affiliations>
<json:string>Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Alim‐Louis Benabid MD</name>
<affiliations>
<json:string>Department of Neurosurgery, Grenoble University Joseph Fourier, Grenoble, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>subthalamic nucleus</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>globus pallidus</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ventral intermedius</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>stimulation</value>
</json:item>
</subject>
<articleId>
<json:string>MDS20960</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>The vast majority of centers use electrophysiological mapping techniques to finalize target selection during the implantation of deep brain stimulation (DBS) leads for the treatment of Parkinson's disease and tremor. This review discusses the techniques used for physiological mapping and addresses the questions of how various mapping strategies modify target selection and outcome following subthalamic nucleus (STN), globus pallidus internus (GPi), and ventralis intermedius (Vim) deep brain stimulation. Mapping strategies vary greatly across centers, but can be broadly categorized into those that use microelectrode or semimicroelectrode techniques to optimize position prior to implantation and macrostimulation through a macroelectrode or the DBS lead, and those that rely solely on macrostimulation and its threshold for clinical effects (benefits and side effects). Microelectrode criteria for implantation into the STN or GPi include length of the nucleus recorded, presence of movement‐responsive neurons, and/or distance from the borders with adjacent structures. However, the threshold for the production of clinical benefits relative to side effects is, in most centers, the final, and sometimes only, determinant of DBS electrode position. Macrostimulation techniques for mapping, the utility of microelectrode mapping is reflected in its modification of electrode position in 17% to 87% of patients undergoing STN DBS, with average target adjustments of 1 to 4 mm. Nevertheless, with the absence of class I data, and in consideration of the large number of variables that impact clinical outcome, it is not possible to conclude that one technique is superior to the other in so far as motor Unified Parkinson's Disease Rating Scale outcome is concerned. Moreover, mapping technique is only one out of many variables that determine the outcome. The increase in surgical risk of intracranial hemorrhage correlated to the number of microelectrode trajectories must be considered against the risk of suboptimal benefits related to omission of this technique. © 2006 Movement Disorder Society</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>594 x 792 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>4</keywordCount>
<abstractCharCount>2104</abstractCharCount>
<pdfWordCount>15030</pdfWordCount>
<pdfCharCount>97343</pdfCharCount>
<pdfPageCount>25</pdfPageCount>
<abstractWordCount>305</abstractWordCount>
</qualityIndicators>
<title>Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>21</volume>
<publisherId>
<json:string>MDS</json:string>
</publisherId>
<pages>
<total>25</total>
<last>S283</last>
<first>S259</first>
</pages>
<issn>
<json:string>0885-3185</json:string>
</issn>
<issue>S14</issue>
<author>
<json:item>
<name>Anthony E. Lang</name>
</json:item>
<json:item>
<name>Günther Deuschl</name>
</json:item>
<json:item>
<name>Ali R. Rezai</name>
</json:item>
</author>
<subject>
<json:item>
<value>VI</value>
</json:item>
</subject>
<genre>
<json:string>Journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1531-8257</json:string>
</eissn>
<title>Movement Disorders</title>
<doi>
<json:string>10.1002/(ISSN)1531-8257</json:string>
</doi>
</host>
<publicationDate>2006</publicationDate>
<copyrightDate>2006</copyrightDate>
<doi>
<json:string>10.1002/mds.20960</json:string>
</doi>
<id>B1528809FC653EA8BF1A04C37FDAC339B94062FB</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/B1528809FC653EA8BF1A04C37FDAC339B94062FB/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/B1528809FC653EA8BF1A04C37FDAC339B94062FB/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/B1528809FC653EA8BF1A04C37FDAC339B94062FB/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2006</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor</title>
<author>
<persName>
<forename type="first">Robert E.</forename>
<surname>Gross</surname>
</persName>
<roleName type="degree">MD, PhD</roleName>
<note type="correspondence">
<p>Correspondence: Suite 6200, 1365 Clifton Road, N.E., Atlanta, GA 30322</p>
</note>
<affiliation>Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Paul</forename>
<surname>Krack</surname>
</persName>
<roleName type="degree">MD</roleName>
<affiliation>Department of Neurology, Grenoble University, Grenoble, France</affiliation>
</author>
<author>
<persName>
<forename type="first">Maria C.</forename>
<surname>Rodriguez‐Oroz</surname>
</persName>
<roleName type="degree">MD, PhD</roleName>
<affiliation>University of Navarra, Pamplona, Spain</affiliation>
</author>
<author>
<persName>
<forename type="first">Ali R.</forename>
<surname>Rezai</surname>
</persName>
<roleName type="degree">MD</roleName>
<affiliation>Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Alim‐Louis</forename>
<surname>Benabid</surname>
</persName>
<roleName type="degree">MD</roleName>
<affiliation>Department of Neurosurgery, Grenoble University Joseph Fourier, Grenoble, France</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Movement Disorders</title>
<title level="j" type="sub">Official Journal of the Movement Disorder Society</title>
<title level="j" type="abbrev">Mov. Disord.</title>
<idno type="pISSN">0885-3185</idno>
<idno type="eISSN">1531-8257</idno>
<idno type="DOI">10.1002/(ISSN)1531-8257</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2006-06"></date>
<biblScope unit="volume">21</biblScope>
<biblScope unit="issue">S14</biblScope>
<biblScope unit="supplement">14</biblScope>
<biblScope unit="page" from="S259">S259</biblScope>
<biblScope unit="page" to="S283">S283</biblScope>
</imprint>
</monogr>
<idno type="istex">B1528809FC653EA8BF1A04C37FDAC339B94062FB</idno>
<idno type="DOI">10.1002/mds.20960</idno>
<idno type="ArticleID">MDS20960</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2006</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The vast majority of centers use electrophysiological mapping techniques to finalize target selection during the implantation of deep brain stimulation (DBS) leads for the treatment of Parkinson's disease and tremor. This review discusses the techniques used for physiological mapping and addresses the questions of how various mapping strategies modify target selection and outcome following subthalamic nucleus (STN), globus pallidus internus (GPi), and ventralis intermedius (Vim) deep brain stimulation. Mapping strategies vary greatly across centers, but can be broadly categorized into those that use microelectrode or semimicroelectrode techniques to optimize position prior to implantation and macrostimulation through a macroelectrode or the DBS lead, and those that rely solely on macrostimulation and its threshold for clinical effects (benefits and side effects). Microelectrode criteria for implantation into the STN or GPi include length of the nucleus recorded, presence of movement‐responsive neurons, and/or distance from the borders with adjacent structures. However, the threshold for the production of clinical benefits relative to side effects is, in most centers, the final, and sometimes only, determinant of DBS electrode position. Macrostimulation techniques for mapping, the utility of microelectrode mapping is reflected in its modification of electrode position in 17% to 87% of patients undergoing STN DBS, with average target adjustments of 1 to 4 mm. Nevertheless, with the absence of class I data, and in consideration of the large number of variables that impact clinical outcome, it is not possible to conclude that one technique is superior to the other in so far as motor Unified Parkinson's Disease Rating Scale outcome is concerned. Moreover, mapping technique is only one out of many variables that determine the outcome. The increase in surgical risk of intracranial hemorrhage correlated to the number of microelectrode trajectories must be considered against the risk of suboptimal benefits related to omission of this technique. © 2006 Movement Disorder Society</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>subthalamic nucleus</term>
</item>
<item>
<term>globus pallidus</term>
</item>
<item>
<term>ventral intermedius</term>
</item>
<item>
<term>stimulation</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article category</head>
<item>
<term>VI</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2006-06">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/B1528809FC653EA8BF1A04C37FDAC339B94062FB/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1531-8257</doi>
<issn type="print">0885-3185</issn>
<issn type="electronic">1531-8257</issn>
<idGroup>
<id type="product" value="MDS"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="MOVEMENT DISORDERS">Movement Disorders</title>
<title type="subtitle">Official Journal of the Movement Disorder Society</title>
<title type="short">Mov. Disord.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="65">
<doi origin="wiley" registered="yes">10.1002/mds.v21:14+</doi>
<titleGroup>
<title type="supplementTitle">Deep Brain Stimulation for Parkinson's Disease</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="21">21</numbering>
<numbering type="journalIssue">S14</numbering>
<numbering type="supplement" number="14">14</numbering>
</numberingGroup>
<creators>
<creator xml:id="sped1" creatorRole="sponsoringEditor">
<personName>
<givenNames>Anthony E.</givenNames>
<familyName>Lang</familyName>
</personName>
</creator>
<creator xml:id="sped2" creatorRole="sponsoringEditor">
<personName>
<givenNames>Günther</givenNames>
<familyName>Deuschl</familyName>
</personName>
</creator>
<creator xml:id="sped3" creatorRole="sponsoringEditor">
<personName>
<givenNames>Ali R.</givenNames>
<familyName>Rezai</familyName>
</personName>
</creator>
</creators>
<coverDate startDate="2006-06">June 2006</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="80" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/mds.20960</doi>
<idGroup>
<id type="unit" value="MDS20960"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="25"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">VI</title>
<title type="tocHeading1">VI</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright © 2006 Movement Disorder Society</copyright>
<eventGroup>
<event type="firstOnline" date="2006-06-29"></event>
<event type="publishedOnlineFinalForm" date="2006-06-29"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:FullText result:FullText" date="2010-03-09"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-02"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-01"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">S259</numbering>
<numbering type="pageLast">S283</numbering>
</numberingGroup>
<correspondenceTo>Suite 6200, 1365 Clifton Road, N.E., Atlanta, GA 30322</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:MDS.MDS20960.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="5"></count>
<count type="tableTotal" number="3"></count>
<count type="referenceTotal" number="134"></count>
<count type="wordTotal" number="17481"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor</title>
<title type="short" xml:lang="en">Electrophysiological Mapping</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Robert E.</givenNames>
<familyName>Gross</familyName>
<degrees>MD, PhD</degrees>
</personName>
<contactDetails>
<email>robert_gross@emory.org</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Paul</givenNames>
<familyName>Krack</familyName>
<degrees>MD</degrees>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Maria C.</givenNames>
<familyName>Rodriguez‐Oroz</familyName>
<degrees>MD, PhD</degrees>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af4">
<personName>
<givenNames>Ali R.</givenNames>
<familyName>Rezai</familyName>
<degrees>MD</degrees>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af5">
<personName>
<givenNames>Alim‐Louis</givenNames>
<familyName>Benabid</familyName>
<degrees>MD</degrees>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="FR" type="organization">
<unparsedAffiliation>Department of Neurology, Grenoble University, Grenoble, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="ES" type="organization">
<unparsedAffiliation>University of Navarra, Pamplona, Spain</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af4" countryCode="US" type="organization">
<unparsedAffiliation>Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af5" countryCode="FR" type="organization">
<unparsedAffiliation>Department of Neurosurgery, Grenoble University Joseph Fourier, Grenoble, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">subthalamic nucleus</keyword>
<keyword xml:id="kwd2">globus pallidus</keyword>
<keyword xml:id="kwd3">ventral intermedius</keyword>
<keyword xml:id="kwd4">stimulation</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>The vast majority of centers use electrophysiological mapping techniques to finalize target selection during the implantation of deep brain stimulation (DBS) leads for the treatment of Parkinson's disease and tremor. This review discusses the techniques used for physiological mapping and addresses the questions of how various mapping strategies modify target selection and outcome following subthalamic nucleus (STN), globus pallidus internus (GPi), and ventralis intermedius (Vim) deep brain stimulation. Mapping strategies vary greatly across centers, but can be broadly categorized into those that use microelectrode or semimicroelectrode techniques to optimize position prior to implantation and macrostimulation through a macroelectrode or the DBS lead, and those that rely solely on macrostimulation and its threshold for clinical effects (benefits and side effects). Microelectrode criteria for implantation into the STN or GPi include length of the nucleus recorded, presence of movement‐responsive neurons, and/or distance from the borders with adjacent structures. However, the threshold for the production of clinical benefits relative to side effects is, in most centers, the final, and sometimes only, determinant of DBS electrode position. Macrostimulation techniques for mapping, the utility of microelectrode mapping is reflected in its modification of electrode position in 17% to 87% of patients undergoing STN DBS, with average target adjustments of 1 to 4 mm. Nevertheless, with the absence of class I data, and in consideration of the large number of variables that impact clinical outcome, it is not possible to conclude that one technique is superior to the other in so far as motor Unified Parkinson's Disease Rating Scale outcome is concerned. Moreover, mapping technique is only one out of many variables that determine the outcome. The increase in surgical risk of intracranial hemorrhage correlated to the number of microelectrode trajectories must be considered against the risk of suboptimal benefits related to omission of this technique. © 2006 Movement Disorder Society</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Electrophysiological Mapping</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor</title>
</titleInfo>
<name type="personal">
<namePart type="given">Robert E.</namePart>
<namePart type="family">Gross</namePart>
<namePart type="termsOfAddress">MD, PhD</namePart>
<affiliation>Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA</affiliation>
<description>Correspondence: Suite 6200, 1365 Clifton Road, N.E., Atlanta, GA 30322</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Krack</namePart>
<namePart type="termsOfAddress">MD</namePart>
<affiliation>Department of Neurology, Grenoble University, Grenoble, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria C.</namePart>
<namePart type="family">Rodriguez‐Oroz</namePart>
<namePart type="termsOfAddress">MD, PhD</namePart>
<affiliation>University of Navarra, Pamplona, Spain</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ali R.</namePart>
<namePart type="family">Rezai</namePart>
<namePart type="termsOfAddress">MD</namePart>
<affiliation>Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alim‐Louis</namePart>
<namePart type="family">Benabid</namePart>
<namePart type="termsOfAddress">MD</namePart>
<affiliation>Department of Neurosurgery, Grenoble University Joseph Fourier, Grenoble, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2006-06</dateIssued>
<copyrightDate encoding="w3cdtf">2006</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">5</extent>
<extent unit="tables">3</extent>
<extent unit="references">134</extent>
<extent unit="words">17481</extent>
</physicalDescription>
<abstract lang="en">The vast majority of centers use electrophysiological mapping techniques to finalize target selection during the implantation of deep brain stimulation (DBS) leads for the treatment of Parkinson's disease and tremor. This review discusses the techniques used for physiological mapping and addresses the questions of how various mapping strategies modify target selection and outcome following subthalamic nucleus (STN), globus pallidus internus (GPi), and ventralis intermedius (Vim) deep brain stimulation. Mapping strategies vary greatly across centers, but can be broadly categorized into those that use microelectrode or semimicroelectrode techniques to optimize position prior to implantation and macrostimulation through a macroelectrode or the DBS lead, and those that rely solely on macrostimulation and its threshold for clinical effects (benefits and side effects). Microelectrode criteria for implantation into the STN or GPi include length of the nucleus recorded, presence of movement‐responsive neurons, and/or distance from the borders with adjacent structures. However, the threshold for the production of clinical benefits relative to side effects is, in most centers, the final, and sometimes only, determinant of DBS electrode position. Macrostimulation techniques for mapping, the utility of microelectrode mapping is reflected in its modification of electrode position in 17% to 87% of patients undergoing STN DBS, with average target adjustments of 1 to 4 mm. Nevertheless, with the absence of class I data, and in consideration of the large number of variables that impact clinical outcome, it is not possible to conclude that one technique is superior to the other in so far as motor Unified Parkinson's Disease Rating Scale outcome is concerned. Moreover, mapping technique is only one out of many variables that determine the outcome. The increase in surgical risk of intracranial hemorrhage correlated to the number of microelectrode trajectories must be considered against the risk of suboptimal benefits related to omission of this technique. © 2006 Movement Disorder Society</abstract>
<subject lang="en">
<genre>Keywords</genre>
<topic>subthalamic nucleus</topic>
<topic>globus pallidus</topic>
<topic>ventral intermedius</topic>
<topic>stimulation</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Movement Disorders</title>
<subTitle>Official Journal of the Movement Disorder Society</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>Mov. Disord.</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anthony E.</namePart>
<namePart type="family">Lang</namePart>
</name>
<name type="personal">
<namePart type="given">Günther</namePart>
<namePart type="family">Deuschl</namePart>
</name>
<name type="personal">
<namePart type="given">Ali R.</namePart>
<namePart type="family">Rezai</namePart>
</name>
<genre type="Journal">journal</genre>
<subject>
<genre>article category</genre>
<topic>VI</topic>
</subject>
<identifier type="ISSN">0885-3185</identifier>
<identifier type="eISSN">1531-8257</identifier>
<identifier type="DOI">10.1002/(ISSN)1531-8257</identifier>
<identifier type="PublisherID">MDS</identifier>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>21</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>S14</number>
</detail>
<detail type="supplement">
<caption>Suppl. no.</caption>
<number>14</number>
</detail>
<extent unit="pages">
<start>S259</start>
<end>S283</end>
<total>25</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">B1528809FC653EA8BF1A04C37FDAC339B94062FB</identifier>
<identifier type="DOI">10.1002/mds.20960</identifier>
<identifier type="ArticleID">MDS20960</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2006 Movement Disorder Society</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001349 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001349 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:B1528809FC653EA8BF1A04C37FDAC339B94062FB
   |texte=   Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 18:06:51 2016. Site generation: Wed Mar 6 18:46:03 2024