La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Environmental enrichment during adolescence regulates gene expression in the striatum of mice.

Identifieur interne : 000C36 ( PubMed/Curation ); précédent : 000C35; suivant : 000C37

Environmental enrichment during adolescence regulates gene expression in the striatum of mice.

Auteurs : Nathalie Thiriet [France] ; Lahouari Amar ; Xavier Toussay ; Virginie Lardeux ; Bruce Ladenheim ; Kevin G. Becker ; Jean Lud Cadet ; Marcello Solinas ; Mohamed Jaber

Source :

RBID : pubmed:18585688

English descriptors

Abstract

We have previously shown that environmental enrichment decreases the activating and rewarding effects of the psychostimulant cocaine and increases resistance to the neurotoxic effect of the Parkinson-inducing drug MPTP. These effects were accompanied by an increase in the striatal expression of the neurotrophin BDNF, an increase in the striatal levels of delta-Fos B and by a decrease in striatal levels of the dopamine transporter, the main molecular target for cocaine and MPTP. Here, we used cDNA arrays to investigate the effects of rearing mice in enriched environments from weaning to adulthood on the profile of expression of genes in the striatum focusing on genes involved in intracellular signalling and functioning. We found that mice reared in an enriched environment show several alterations in the levels of mRNA coding for proteins involved in cell proliferation, cell differentiation, signal transduction, transcription and translation, cell structure and metabolism. Several of these findings were further confirmed by real-time quantitative PCR and, in the case of protein kinase C lambda, also by western blot. These findings are the first description of alterations in striatal gene expression by an enriched environment. The striatal gene expression regulation by environment that we report here may play a role in the resistance to the effects of drugs of abuse and dopaminergic neurotoxins previously reported.

DOI: 10.1016/j.brainres.2008.05.030
PubMed: 18585688

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:18585688

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Environmental enrichment during adolescence regulates gene expression in the striatum of mice.</title>
<author>
<name sortKey="Thiriet, Nathalie" sort="Thiriet, Nathalie" uniqKey="Thiriet N" first="Nathalie" last="Thiriet">Nathalie Thiriet</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de Biologie et Physiologie Cellulaires, University of Poitiers, 40 Avenue du Recteur Pineau, Poitiers, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut de Biologie et Physiologie Cellulaires, University of Poitiers, 40 Avenue du Recteur Pineau, Poitiers</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Amar, Lahouari" sort="Amar, Lahouari" uniqKey="Amar L" first="Lahouari" last="Amar">Lahouari Amar</name>
</author>
<author>
<name sortKey="Toussay, Xavier" sort="Toussay, Xavier" uniqKey="Toussay X" first="Xavier" last="Toussay">Xavier Toussay</name>
</author>
<author>
<name sortKey="Lardeux, Virginie" sort="Lardeux, Virginie" uniqKey="Lardeux V" first="Virginie" last="Lardeux">Virginie Lardeux</name>
</author>
<author>
<name sortKey="Ladenheim, Bruce" sort="Ladenheim, Bruce" uniqKey="Ladenheim B" first="Bruce" last="Ladenheim">Bruce Ladenheim</name>
</author>
<author>
<name sortKey="Becker, Kevin G" sort="Becker, Kevin G" uniqKey="Becker K" first="Kevin G" last="Becker">Kevin G. Becker</name>
</author>
<author>
<name sortKey="Cadet, Jean Lud" sort="Cadet, Jean Lud" uniqKey="Cadet J" first="Jean Lud" last="Cadet">Jean Lud Cadet</name>
</author>
<author>
<name sortKey="Solinas, Marcello" sort="Solinas, Marcello" uniqKey="Solinas M" first="Marcello" last="Solinas">Marcello Solinas</name>
</author>
<author>
<name sortKey="Jaber, Mohamed" sort="Jaber, Mohamed" uniqKey="Jaber M" first="Mohamed" last="Jaber">Mohamed Jaber</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18585688</idno>
<idno type="pmid">18585688</idno>
<idno type="doi">10.1016/j.brainres.2008.05.030</idno>
<idno type="wicri:Area/PubMed/Corpus">000C76</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000C76</idno>
<idno type="wicri:Area/PubMed/Curation">000C36</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000C36</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Environmental enrichment during adolescence regulates gene expression in the striatum of mice.</title>
<author>
<name sortKey="Thiriet, Nathalie" sort="Thiriet, Nathalie" uniqKey="Thiriet N" first="Nathalie" last="Thiriet">Nathalie Thiriet</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de Biologie et Physiologie Cellulaires, University of Poitiers, 40 Avenue du Recteur Pineau, Poitiers, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut de Biologie et Physiologie Cellulaires, University of Poitiers, 40 Avenue du Recteur Pineau, Poitiers</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Amar, Lahouari" sort="Amar, Lahouari" uniqKey="Amar L" first="Lahouari" last="Amar">Lahouari Amar</name>
</author>
<author>
<name sortKey="Toussay, Xavier" sort="Toussay, Xavier" uniqKey="Toussay X" first="Xavier" last="Toussay">Xavier Toussay</name>
</author>
<author>
<name sortKey="Lardeux, Virginie" sort="Lardeux, Virginie" uniqKey="Lardeux V" first="Virginie" last="Lardeux">Virginie Lardeux</name>
</author>
<author>
<name sortKey="Ladenheim, Bruce" sort="Ladenheim, Bruce" uniqKey="Ladenheim B" first="Bruce" last="Ladenheim">Bruce Ladenheim</name>
</author>
<author>
<name sortKey="Becker, Kevin G" sort="Becker, Kevin G" uniqKey="Becker K" first="Kevin G" last="Becker">Kevin G. Becker</name>
</author>
<author>
<name sortKey="Cadet, Jean Lud" sort="Cadet, Jean Lud" uniqKey="Cadet J" first="Jean Lud" last="Cadet">Jean Lud Cadet</name>
</author>
<author>
<name sortKey="Solinas, Marcello" sort="Solinas, Marcello" uniqKey="Solinas M" first="Marcello" last="Solinas">Marcello Solinas</name>
</author>
<author>
<name sortKey="Jaber, Mohamed" sort="Jaber, Mohamed" uniqKey="Jaber M" first="Mohamed" last="Jaber">Mohamed Jaber</name>
</author>
</analytic>
<series>
<title level="j">Brain research</title>
<idno type="ISSN">0006-8993</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Differentiation (genetics)</term>
<term>Cell Proliferation</term>
<term>Cluster Analysis</term>
<term>Corpus Striatum (cytology)</term>
<term>Corpus Striatum (metabolism)</term>
<term>Environment</term>
<term>Gene Expression Profiling (methods)</term>
<term>Gene Expression Regulation, Developmental (genetics)</term>
<term>Gene Expression Regulation, Developmental (physiology)</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Oligonucleotide Array Sequence Analysis (methods)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Signal Transduction (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Corpus Striatum</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Differentiation</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Corpus Striatum</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gene Expression Regulation, Developmental</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Proliferation</term>
<term>Cluster Analysis</term>
<term>Environment</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have previously shown that environmental enrichment decreases the activating and rewarding effects of the psychostimulant cocaine and increases resistance to the neurotoxic effect of the Parkinson-inducing drug MPTP. These effects were accompanied by an increase in the striatal expression of the neurotrophin BDNF, an increase in the striatal levels of delta-Fos B and by a decrease in striatal levels of the dopamine transporter, the main molecular target for cocaine and MPTP. Here, we used cDNA arrays to investigate the effects of rearing mice in enriched environments from weaning to adulthood on the profile of expression of genes in the striatum focusing on genes involved in intracellular signalling and functioning. We found that mice reared in an enriched environment show several alterations in the levels of mRNA coding for proteins involved in cell proliferation, cell differentiation, signal transduction, transcription and translation, cell structure and metabolism. Several of these findings were further confirmed by real-time quantitative PCR and, in the case of protein kinase C lambda, also by western blot. These findings are the first description of alterations in striatal gene expression by an enriched environment. The striatal gene expression regulation by environment that we report here may play a role in the resistance to the effects of drugs of abuse and dopaminergic neurotoxins previously reported.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18585688</PMID>
<DateCreated>
<Year>2008</Year>
<Month>07</Month>
<Day>15</Day>
</DateCreated>
<DateCompleted>
<Year>2008</Year>
<Month>11</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>10</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0006-8993</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>1222</Volume>
<PubDate>
<Year>2008</Year>
<Month>Jul</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>Brain research</Title>
<ISOAbbreviation>Brain Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Environmental enrichment during adolescence regulates gene expression in the striatum of mice.</ArticleTitle>
<Pagination>
<MedlinePgn>31-41</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.brainres.2008.05.030</ELocationID>
<Abstract>
<AbstractText>We have previously shown that environmental enrichment decreases the activating and rewarding effects of the psychostimulant cocaine and increases resistance to the neurotoxic effect of the Parkinson-inducing drug MPTP. These effects were accompanied by an increase in the striatal expression of the neurotrophin BDNF, an increase in the striatal levels of delta-Fos B and by a decrease in striatal levels of the dopamine transporter, the main molecular target for cocaine and MPTP. Here, we used cDNA arrays to investigate the effects of rearing mice in enriched environments from weaning to adulthood on the profile of expression of genes in the striatum focusing on genes involved in intracellular signalling and functioning. We found that mice reared in an enriched environment show several alterations in the levels of mRNA coding for proteins involved in cell proliferation, cell differentiation, signal transduction, transcription and translation, cell structure and metabolism. Several of these findings were further confirmed by real-time quantitative PCR and, in the case of protein kinase C lambda, also by western blot. These findings are the first description of alterations in striatal gene expression by an enriched environment. The striatal gene expression regulation by environment that we report here may play a role in the resistance to the effects of drugs of abuse and dopaminergic neurotoxins previously reported.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Thiriet</LastName>
<ForeName>Nathalie</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Institut de Biologie et Physiologie Cellulaires, University of Poitiers, 40 Avenue du Recteur Pineau, Poitiers, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Amar</LastName>
<ForeName>Lahouari</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Toussay</LastName>
<ForeName>Xavier</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lardeux</LastName>
<ForeName>Virginie</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ladenheim</LastName>
<ForeName>Bruce</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Becker</LastName>
<ForeName>Kevin G</ForeName>
<Initials>KG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cadet</LastName>
<ForeName>Jean Lud</ForeName>
<Initials>JL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Solinas</LastName>
<ForeName>Marcello</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jaber</LastName>
<ForeName>Mohamed</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>Z01 AG000616-01</GrantID>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>05</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Brain Res</MedlineTA>
<NlmUniqueID>0045503</NlmUniqueID>
<ISSNLinking>0006-8993</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Learn Mem. 1996 Sep;66(2):93-6</RefSource>
<PMID Version="1">8946401</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Physiol Scand. 1989 Sep;137(1):1-13</RefSource>
<PMID Version="1">2678895</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1997 Apr 3;386(6624):493-5</RefSource>
<PMID Version="1">9087407</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 1999 Apr;5(4):448-53</RefSource>
<PMID Version="1">10202938</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 1999;93(2):433-9</RefSource>
<PMID Version="1">10465425</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene Expr Patterns. 2005 Apr;5(4):517-23</RefSource>
<PMID Version="1">15749080</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2005 Mar 11;120(5):701-13</RefSource>
<PMID Version="1">15766532</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Mol Brain Res. 2005 Mar 24;134(1):170-9</RefSource>
<PMID Version="1">15790541</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2005 Jun 1;25(22):5273-9</RefSource>
<PMID Version="1">15930374</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2005 Sep 9;385(2):173-8</RefSource>
<PMID Version="1">15964140</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 2005 Aug;28(8):429-35</RefSource>
<PMID Version="1">15922461</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2005 Sep 2;280(35):31109-15</RefSource>
<PMID Version="1">15994303</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2005 Nov;8(11):1481-9</RefSource>
<PMID Version="1">16251991</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Neuroendocrinol. 2005 Oct-Dec;26(3-4):163-74</RefSource>
<PMID Version="1">16309736</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2006 Apr 7;125(1):173-86</RefSource>
<PMID Version="1">16615898</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuropathol Exp Neurol. 2006 Apr;65(4):319-26</RefSource>
<PMID Version="1">16691113</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Aging. 2006 Jul;27(7):1010-9</RefSource>
<PMID Version="1">15979213</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2006 Sep;7(9):697-709</RefSource>
<PMID Version="1">16924259</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 1996 May;139(1):25-33</RefSource>
<PMID Version="1">8635565</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>DNA Cell Biol. 1996 Aug;15(8):631-42</RefSource>
<PMID Version="1">8769565</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Biotechnol. 2006 Sep;24(9):1151-61</RefSource>
<PMID Version="1">16964229</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stroke. 2006 Nov;37(11):2824-9</RefSource>
<PMID Version="1">17008628</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 Nov 15;26(46):11992-2002</RefSource>
<PMID Version="1">17108173</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 2006 Dec;29(12):695-703</RefSource>
<PMID Version="1">17084911</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Pharmacol. 2007 Feb;7(1):77-85</RefSource>
<PMID Version="1">17085074</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Bull. 2007 Mar 30;71(6):568-77</RefSource>
<PMID Version="1">17292799</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pharmacol Biochem Behav. 2007 Feb;86(2):189-99</RefSource>
<PMID Version="1">17222895</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 2007 May 11;356(3):733-8</RefSource>
<PMID Version="1">17382295</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Aging. 2007 Jun;28(6):831-44</RefSource>
<PMID Version="1">16730391</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Rev. 2007 Aug;55(1):78-88</RefSource>
<PMID Version="1">17561265</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2008 Aug;31(2):159-68</RefSource>
<PMID Version="1">18585920</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychopharmacology. 2009 Apr;34(5):1102-11</RefSource>
<PMID Version="1">18463628</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2000 Mar;3(3):238-44</RefSource>
<PMID Version="1">10700255</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9127-32</RefSource>
<PMID Version="1">10922068</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12880-4</RefSource>
<PMID Version="1">11070096</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2000 Dec;1(3):191-8</RefSource>
<PMID Version="1">11257907</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2001 Feb 5;1538(1):10-9</RefSource>
<PMID Version="1">11341978</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychopharmacology (Berl). 2001 May;155(3):278-84</RefSource>
<PMID Version="1">11432690</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Mol Brain Res. 2001 Jul 13;91(1-2):50-6</RefSource>
<PMID Version="1">11457492</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2002;112(3):573-82</RefSource>
<PMID Version="1">12074899</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychopharmacology (Berl). 2002 Aug;162(4):373-8</RefSource>
<PMID Version="1">12172690</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Mol Cell Biol. 2002 Sep;3(9):663-72</RefSource>
<PMID Version="1">12209126</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2002 Dec;16(14):1887-94</RefSource>
<PMID Version="1">12468453</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Synapse. 2003 Jun 1;48(3):149-53</RefSource>
<PMID Version="1">12645040</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Diagn. 2003 May;5(2):73-81</RefSource>
<PMID Version="1">12707371</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Learn Mem. 2003 Jul;80(1):80-95</RefSource>
<PMID Version="1">12737936</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10523-8</RefSource>
<PMID Version="1">12939407</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2003 Dec 3;23(35):10999-1007</RefSource>
<PMID Version="1">14657156</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2004 Mar 3;24(9):2270-6</RefSource>
<PMID Version="1">14999077</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Mol Cell Biol. 2004 Feb;5(2):133-47</RefSource>
<PMID Version="1">15040446</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Mol Brain Res. 2004 Aug 23;127(1-2):79-88</RefSource>
<PMID Version="1">15306123</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am Psychol. 1966 Apr;21(4):321-32</RefSource>
<PMID Version="1">5910063</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1966 Sep;128(1):117-26</RefSource>
<PMID Version="1">4165855</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1969 Feb 21;163(3869):825-6</RefSource>
<PMID Version="1">5764479</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Psychobiol. 1969;2(2):87-95</RefSource>
<PMID Version="1">5407659</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurobiol. 1976 Jan;7(1):75-85</RefSource>
<PMID Version="1">1249575</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropharmacology. 1996;35(11):1503-19</RefSource>
<PMID Version="1">9025098</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002454" MajorTopicYN="N">Cell Differentiation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003342" MajorTopicYN="N">Corpus Striatum</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="Y">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS81232</OtherID>
<OtherID Source="NLM">PMC2692267</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>03</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2008</Year>
<Month>05</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18585688</ArticleId>
<ArticleId IdType="pii">S0006-8993(08)01121-9</ArticleId>
<ArticleId IdType="doi">10.1016/j.brainres.2008.05.030</ArticleId>
<ArticleId IdType="pmc">PMC2692267</ArticleId>
<ArticleId IdType="mid">NIHMS81232</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C36 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000C36 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:18585688
   |texte=   Environmental enrichment during adolescence regulates gene expression in the striatum of mice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:18585688" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonFranceV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024