La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases.

Identifieur interne : 000A62 ( PubMed/Corpus ); précédent : 000A61; suivant : 000A63

Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases.

Auteurs : Jacques Fantini ; Nouara Yahi

Source :

RBID : pubmed:20807455

English descriptors

Abstract

Alzheimer, Parkinson and other neurodegenerative diseases involve a series of brain proteins, referred to as 'amyloidogenic proteins', with exceptional conformational plasticity and a high propensity for self-aggregation. Although the mechanisms by which amyloidogenic proteins kill neural cells are not fully understood, a common feature is the concentration of unstructured amyloidogenic monomers on bidimensional membrane lattices. Membrane-bound monomers undergo a series of lipid-dependent conformational changes, leading to the formation of oligomers of varying toxicity rich in beta-sheet structures (annular pores, amyloid fibrils) or in alpha-helix structures (transmembrane channels). Condensed membrane nano- or microdomains formed by sphingolipids and cholesterol are privileged sites for the binding and oligomerisation of amyloidogenic proteins. By controlling the balance between unstructured monomers and alpha or beta conformers (the chaperone effect), sphingolipids can either inhibit or stimulate the oligomerisation of amyloidogenic proteins. Cholesterol has a dual role: regulation of protein-sphingolipid interactions through a fine tuning of sphingolipid conformation (indirect effect), and facilitation of pore (or channel) formation through direct binding to amyloidogenic proteins. Deciphering this complex network of molecular interactions in the context of age- and disease-related evolution of brain lipid expression will help understanding of how amyloidogenic proteins induce neural toxicity and will stimulate the development of innovative therapies for neurodegenerative diseases.

DOI: 10.1017/S1462399410001602
PubMed: 20807455

Links to Exploration step

pubmed:20807455

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases.</title>
<author>
<name sortKey="Fantini, Jacques" sort="Fantini, Jacques" uniqKey="Fantini J" first="Jacques" last="Fantini">Jacques Fantini</name>
<affiliation>
<nlm:affiliation>Laboratoire des Interactions Moléculaires et Systèmes Membranaires, Marseille, France. jacques.fantini@univ-cezanne.fr</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yahi, Nouara" sort="Yahi, Nouara" uniqKey="Yahi N" first="Nouara" last="Yahi">Nouara Yahi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20807455</idno>
<idno type="pmid">20807455</idno>
<idno type="doi">10.1017/S1462399410001602</idno>
<idno type="wicri:Area/PubMed/Corpus">000A62</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000A62</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases.</title>
<author>
<name sortKey="Fantini, Jacques" sort="Fantini, Jacques" uniqKey="Fantini J" first="Jacques" last="Fantini">Jacques Fantini</name>
<affiliation>
<nlm:affiliation>Laboratoire des Interactions Moléculaires et Systèmes Membranaires, Marseille, France. jacques.fantini@univ-cezanne.fr</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yahi, Nouara" sort="Yahi, Nouara" uniqKey="Yahi N" first="Nouara" last="Yahi">Nouara Yahi</name>
</author>
</analytic>
<series>
<title level="j">Expert reviews in molecular medicine</title>
<idno type="eISSN">1462-3994</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amyloid (metabolism)</term>
<term>Animals</term>
<term>Cell Membrane (metabolism)</term>
<term>Cholesterol (metabolism)</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Neurodegenerative Diseases (metabolism)</term>
<term>Sphingolipids (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amyloid</term>
<term>Cholesterol</term>
<term>Sphingolipids</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Neurodegenerative Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Models, Biological</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Alzheimer, Parkinson and other neurodegenerative diseases involve a series of brain proteins, referred to as 'amyloidogenic proteins', with exceptional conformational plasticity and a high propensity for self-aggregation. Although the mechanisms by which amyloidogenic proteins kill neural cells are not fully understood, a common feature is the concentration of unstructured amyloidogenic monomers on bidimensional membrane lattices. Membrane-bound monomers undergo a series of lipid-dependent conformational changes, leading to the formation of oligomers of varying toxicity rich in beta-sheet structures (annular pores, amyloid fibrils) or in alpha-helix structures (transmembrane channels). Condensed membrane nano- or microdomains formed by sphingolipids and cholesterol are privileged sites for the binding and oligomerisation of amyloidogenic proteins. By controlling the balance between unstructured monomers and alpha or beta conformers (the chaperone effect), sphingolipids can either inhibit or stimulate the oligomerisation of amyloidogenic proteins. Cholesterol has a dual role: regulation of protein-sphingolipid interactions through a fine tuning of sphingolipid conformation (indirect effect), and facilitation of pore (or channel) formation through direct binding to amyloidogenic proteins. Deciphering this complex network of molecular interactions in the context of age- and disease-related evolution of brain lipid expression will help understanding of how amyloidogenic proteins induce neural toxicity and will stimulate the development of innovative therapies for neurodegenerative diseases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20807455</PMID>
<DateCreated>
<Year>2010</Year>
<Month>09</Month>
<Day>02</Day>
</DateCreated>
<DateCompleted>
<Year>2010</Year>
<Month>09</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>12</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1462-3994</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<PubDate>
<Year>2010</Year>
<Month>Sep</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Expert reviews in molecular medicine</Title>
<ISOAbbreviation>Expert Rev Mol Med</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases.</ArticleTitle>
<Pagination>
<MedlinePgn>e27</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1017/S1462399410001602</ELocationID>
<Abstract>
<AbstractText>Alzheimer, Parkinson and other neurodegenerative diseases involve a series of brain proteins, referred to as 'amyloidogenic proteins', with exceptional conformational plasticity and a high propensity for self-aggregation. Although the mechanisms by which amyloidogenic proteins kill neural cells are not fully understood, a common feature is the concentration of unstructured amyloidogenic monomers on bidimensional membrane lattices. Membrane-bound monomers undergo a series of lipid-dependent conformational changes, leading to the formation of oligomers of varying toxicity rich in beta-sheet structures (annular pores, amyloid fibrils) or in alpha-helix structures (transmembrane channels). Condensed membrane nano- or microdomains formed by sphingolipids and cholesterol are privileged sites for the binding and oligomerisation of amyloidogenic proteins. By controlling the balance between unstructured monomers and alpha or beta conformers (the chaperone effect), sphingolipids can either inhibit or stimulate the oligomerisation of amyloidogenic proteins. Cholesterol has a dual role: regulation of protein-sphingolipid interactions through a fine tuning of sphingolipid conformation (indirect effect), and facilitation of pore (or channel) formation through direct binding to amyloidogenic proteins. Deciphering this complex network of molecular interactions in the context of age- and disease-related evolution of brain lipid expression will help understanding of how amyloidogenic proteins induce neural toxicity and will stimulate the development of innovative therapies for neurodegenerative diseases.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fantini</LastName>
<ForeName>Jacques</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire des Interactions Moléculaires et Systèmes Membranaires, Marseille, France. jacques.fantini@univ-cezanne.fr</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yahi</LastName>
<ForeName>Nouara</ForeName>
<Initials>N</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>09</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Expert Rev Mol Med</MedlineTA>
<NlmUniqueID>100939725</NlmUniqueID>
<ISSNLinking>1462-3994</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000682">Amyloid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013107">Sphingolipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>97C5T2UQ7J</RegistryNumber>
<NameOfSubstance UI="D002784">Cholesterol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2009;10 Suppl 1:S7</RefSource>
<PMID Version="1">19594884</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Sci. 2009 Aug 15;283(1-2):230-4</RefSource>
<PMID Version="1">19321181</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2009 Oct 30;393(3):765-75</RefSource>
<PMID Version="1">19720065</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2009 Nov;1788(11):2345-61</RefSource>
<PMID Version="1">19733149</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Colloids Surf B Biointerfaces. 2009 Dec 1;74(2):436-56</RefSource>
<PMID Version="1">19726167</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Glycoconj J. 2009 Nov;26(8):999-1006</RefSource>
<PMID Version="1">19052862</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomed Biotechnol. 2010;2010:568068</RefSource>
<PMID Version="1">20011072</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2009 Dec;111(6):1275-308</RefSource>
<PMID Version="1">20050287</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2010 Jan 1;327(5961):46-50</RefSource>
<PMID Version="1">20044567</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2010 Feb;221(2):267-74</RefSource>
<PMID Version="1">19944097</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Aging. 2010 Mar;31(3):398-408</RefSource>
<PMID Version="1">18547682</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2010 Feb 9;49(5):862-71</RefSource>
<PMID Version="1">20041693</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Neurosci. 2010 Jan;43(1):33-42</RefSource>
<PMID Version="1">19660552</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2010;5(2):e9079</RefSource>
<PMID Version="1">20140095</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Aging Clin Exp Res. 2009 Dec;21(6):386-406</RefSource>
<PMID Version="1">20154508</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 1999 Oct 22;293(2):321-31</RefSource>
<PMID Version="1">10550212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Lipid Res. 2002 Oct;43(10):1670-9</RefSource>
<PMID Version="1">12364551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 1995 Oct;1(10):1062-6</RefSource>
<PMID Version="1">7489364</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 1996 Dec 10;35(49):15663-71</RefSource>
<PMID Version="1">8961929</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 1997 Feb 3;402(2-3):95-8</RefSource>
<PMID Version="1">9037173</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1997 Jun 5;387(6633):569-72</RefSource>
<PMID Version="1">9177342</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1998 Feb 20;273(8):4506-15</RefSource>
<PMID Version="1">9468505</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Genet. 1998 Jan;102(1):57-62</RefSource>
<PMID Version="1">9490299</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1998 Apr 3;273(14):7967-71</RefSource>
<PMID Version="1">9525894</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 1998 Aug 4;37(31):11064-77</RefSource>
<PMID Version="1">9693002</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Struct Biol. 1998 Aug;8(4):525-33</RefSource>
<PMID Version="1">9729746</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13363-83</RefSource>
<PMID Version="1">9811807</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Virol. 1999 Jun;73(6):5244-8</RefSource>
<PMID Version="1">10233996</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1999 Jul 23;274(30):20763-71</RefSource>
<PMID Version="1">10409615</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2004 Nov 5;279(45):46363-6</RefSource>
<PMID Version="1">15385542</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2005 Jan;92(1):171-82</RefSource>
<PMID Version="1">15606906</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Subcell Biochem. 2005;38:179-202</RefSource>
<PMID Version="1">15709479</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2005 Mar 11;280(10):9595-603</RefSource>
<PMID Version="1">15615727</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2002 Oct;16(12):1526-36</RefSource>
<PMID Version="1">12374775</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2002 Oct 15;22(20):8797-807</RefSource>
<PMID Version="1">12388586</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Micron. 2002;33(7-8):609-26</RefSource>
<PMID Version="1">12475558</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2003 Jan 28;42(3):829-37</RefSource>
<PMID Version="1">12534296</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 2003 Apr 4;303(2):514-8</RefSource>
<PMID Version="1">12659848</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2003 Apr 18;300(5618):486-9</RefSource>
<PMID Version="1">12702875</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2006 Aug;1761(8):927-46</RefSource>
<PMID Version="1">16901751</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Q Rev Biophys. 2006 May;39(2):167-201</RefSource>
<PMID Version="1">16978447</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS J. 2006 Dec;273(24):5724-35</RefSource>
<PMID Version="1">17212787</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2007 Feb 20;46(7):1868-77</RefSource>
<PMID Version="1">17253773</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS J. 2007 Apr;274(7):1862-77</RefSource>
<PMID Version="1">17381514</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2002 Jan;16(1):77-83</RefSource>
<PMID Version="1">11772939</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2002 Feb 1;315(5):1241-56</RefSource>
<PMID Version="1">11827491</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3563-8</RefSource>
<PMID Version="1">11891310</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2002 Mar 29;277(13):11292-6</RefSource>
<PMID Version="1">11792705</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2002 Apr 15;21(8):1899-908</RefSource>
<PMID Version="1">11953309</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2007 Aug;1768(8):1935-42</RefSource>
<PMID Version="1">17382287</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2007 Aug;1768(8):1862-85</RefSource>
<PMID Version="1">17493579</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2007 Oct;103(1):17-37</RefSource>
<PMID Version="1">17623039</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Aging. 2007 Dec;28(12):1863-72</RefSource>
<PMID Version="1">17007963</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2007 Nov;103 Suppl 1:159-70</RefSource>
<PMID Version="1">17986151</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2007 Nov 23;318(5854):1258-65</RefSource>
<PMID Version="1">17962520</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Med Chem. 2007;14(27):2911-7</RefSource>
<PMID Version="1">18045136</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2007 Dec 18;46(50):14369-79</RefSource>
<PMID Version="1">18031063</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2008 Feb 1;375(5):1394-404</RefSource>
<PMID Version="1">18082181</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biotechnol Bioeng. 2008 Mar 1;99(4):753-63</RefSource>
<PMID Version="1">17994591</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur Biophys J. 2008 Mar;37(3):247-55</RefSource>
<PMID Version="1">18030461</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Chem Biol. 2008 Apr;4(4):229-30</RefSource>
<PMID Version="1">18347590</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Lipid Res. 2008 May;49(5):1077-89</RefSource>
<PMID Version="1">18263852</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 2008 Jun 6;370(3):525-9</RefSource>
<PMID Version="1">18395518</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2008 Jun;105(5):1656-67</RefSource>
<PMID Version="1">18248604</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Lipid Res. 2008 Jun;49(6):1157-75</RefSource>
<PMID Version="1">18334715</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2008 May 20;70(21):1972-9</RefSource>
<PMID Version="1">18401018</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2008 Aug;106(3):1459-70</RefSource>
<PMID Version="1">18498440</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Lipid Res. 2008 Oct;49(10):2268-75</RefSource>
<PMID Version="1">18603643</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2008 Oct 17;382(4):1066-74</RefSource>
<PMID Version="1">18692507</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Micron. 2008 Dec;39(8):1192-6</RefSource>
<PMID Version="1">18586500</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2008 Oct 1;130(39):12856-7</RefSource>
<PMID Version="1">18774805</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2008 Oct 31;283(44):29639-43</RefSource>
<PMID Version="1">18723507</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Death Differ. 2008 Dec;15(12):1824-37</RefSource>
<PMID Version="1">18670435</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2008 Dec 23;47(51):13604-9</RefSource>
<PMID Version="1">19049426</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19666-71</RefSource>
<PMID Version="1">19066219</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3348-53</RefSource>
<PMID Version="1">19204293</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Aging. 2009 Apr;30(4):591-9</RefSource>
<PMID Version="1">17888544</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Lipid Res. 2009 Apr;50 Suppl:S440-5</RefSource>
<PMID Version="1">18845618</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Lett. 2009 Jun 18;278(2):164-73</RefSource>
<PMID Version="1">19216024</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2009 Jun 26;389(5):907-20</RefSource>
<PMID Version="1">19427320</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 2009 Aug 5;20(12):1043-6</RefSource>
<PMID Version="1">19590389</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Neurol. 2005 Jul;62(7):1047-51</RefSource>
<PMID Version="1">16009757</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2005 Jul 29;280(30):28110-7</RefSource>
<PMID Version="1">15923191</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10427-32</RefSource>
<PMID Version="1">16020533</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2005 Sep 9;280(36):31664-72</RefSource>
<PMID Version="1">16020543</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Mol Life Sci. 2005 Oct;62(19-20):2283-94</RefSource>
<PMID Version="1">16158191</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2005 Nov;7(11):1118-23</RefSource>
<PMID Version="1">16227967</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Chem Biol. 2006 May;2(5):249-53</RefSource>
<PMID Version="1">16565714</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2006 May;97(4):1071-7</RefSource>
<PMID Version="1">16606366</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS J. 2006 Apr;273(7):1389-402</RefSource>
<PMID Version="1">16689927</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2006 Jun;20(8):1248-50</RefSource>
<PMID Version="1">16636105</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem J. 2006 Aug 1;397(3):483-90</RefSource>
<PMID Version="1">16626304</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2006 Aug;98(4):1032-45</RefSource>
<PMID Version="1">16895578</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2006 Sep 12;45(36):10957-62</RefSource>
<PMID Version="1">16953581</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2007 May;101(4):1072-84</RefSource>
<PMID Version="1">17437537</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2007 Aug 10;371(2):481-9</RefSource>
<PMID Version="1">17582434</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2007 Aug 24;371(4):924-33</RefSource>
<PMID Version="1">17597153</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2000;54(11 Suppl 5):S10-5</RefSource>
<PMID Version="1">10854355</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2000 Jul;164(1):121-9</RefSource>
<PMID Version="1">10877922</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2000 Nov 3;275(44):34328-34</RefSource>
<PMID Version="1">10915790</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2001 Apr 20;276(16):12945-50</RefSource>
<PMID Version="1">11134035</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Peptides. 2001 Jul;22(7):1099-106</RefSource>
<PMID Version="1">11445240</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2001 Aug 24;311(4):723-34</RefSource>
<PMID Version="1">11518526</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Struct Biol. 2001 Sep;8(9):770-4</RefSource>
<PMID Version="1">11524679</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2001 Sep 7;276(36):33561-8</RefSource>
<PMID Version="1">11438533</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2010 Mar 19;397(1):202-18</RefSource>
<PMID Version="1">20114052</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2010 May 3;584(9):1748-59</RefSource>
<PMID Version="1">20006608</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2010 Jun;1798(6):1090-9</RefSource>
<PMID Version="1">20226163</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2010 Aug;1801(8):868-77</RefSource>
<PMID Version="1">20117237</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2010 Aug;1801(8):975-82</RefSource>
<PMID Version="1">20304095</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2002 Jun 11;41(23):7385-90</RefSource>
<PMID Version="1">12044171</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Neurol Scand. 2002 Jul;106(1):54-7</RefSource>
<PMID Version="1">12067330</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Jul 18;418(6895):291</RefSource>
<PMID Version="1">12124613</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2010 Apr;1802(4):406-15</RefSource>
<PMID Version="1">20060899</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2010 Feb 22;188(4):581-94</RefSource>
<PMID Version="1">20176925</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Angew Chem Int Ed Engl. 2010 Aug 2;49(33):5628-54</RefSource>
<PMID Version="1">20623810</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Aging. 2010 Nov;31(11):1843-53</RefSource>
<PMID Version="1">19036474</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biopolymers. 2003 May;69(1):29-41</RefSource>
<PMID Version="1">12717720</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Mol Life Sci. 2003 Jun;60(6):1027-32</RefSource>
<PMID Version="1">12866532</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomol Struct Dyn. 2003 Oct;21(2):211-34</RefSource>
<PMID Version="1">12956606</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2003 Nov 11;42(44):12919-26</RefSource>
<PMID Version="1">14596606</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Lipid Res. 2003 Nov;44(11):2019-29</RefSource>
<PMID Version="1">12951356</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Expert Rev Mol Med. 2002 Dec;4(27):1-22</RefSource>
<PMID Version="1">14987385</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2004 Feb 27;560(1-3):14-8</RefSource>
<PMID Version="1">14987990</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Drug Deliv Rev. 2004 Apr 19;56(6):779-94</RefSource>
<PMID Version="1">15063589</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO Rep. 2004 Aug;5(8):777-82</RefSource>
<PMID Version="1">15289826</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochemistry. 2004 Aug 17;43(32):10302-7</RefSource>
<PMID Version="1">15301528</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biol Cell. 2004 Sep;15(9):4031-42</RefSource>
<PMID Version="1">15229281</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pediatr Res. 2004 Sep;56(3):449-63</RefSource>
<PMID Version="1">15240864</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem J. 2004 Sep 15;382(Pt 3):987-94</RefSource>
<PMID Version="1">15202933</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEMS Microbiol Lett. 2004 Sep 15;238(2):281-9</RefSource>
<PMID Version="1">15358412</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2004 Nov;36(11):1225-9</RefSource>
<PMID Version="1">15502825</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 1987 Jun 24;906(2):137-60</RefSource>
<PMID Version="1">3036228</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Phys Lipids. 1990 Jan;52(1):1-10</RefSource>
<PMID Version="1">2306786</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 1990 Oct 8;1031(3):277-89</RefSource>
<PMID Version="1">2171656</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1991 Jul 19;253(5017):320-3</RefSource>
<PMID Version="1">1857969</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1992 Apr 10;256(5054):184-5</RefSource>
<PMID Version="1">1566067</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Virol. 1992 Aug;66(8):4848-54</RefSource>
<PMID Version="1">1378511</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):567-71</RefSource>
<PMID Version="1">8380642</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurochem Int. 1992 Apr;20(3):433-8</RefSource>
<PMID Version="1">1304338</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 1994 Mar;62(3):1039-47</RefSource>
<PMID Version="1">8113790</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Virology. 1994 Jun;201(2):206-14</RefSource>
<PMID Version="1">8184533</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 1994 Nov;63(5):1802-11</RefSource>
<PMID Version="1">7931336</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biochem. 1994 Nov 23;140(2):119-25</RefSource>
<PMID Version="1">7898484</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem J. 1995 Oct 1;311 ( Pt 1):1-16</RefSource>
<PMID Version="1">7575439</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000682" MajorTopicYN="N">Amyloid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002784" MajorTopicYN="N">Cholesterol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019636" MajorTopicYN="N">Neurodegenerative Diseases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013107" MajorTopicYN="N">Sphingolipids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>150</NumberOfReferences>
<OtherID Source="NLM">PMC2931503</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>9</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>9</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20807455</ArticleId>
<ArticleId IdType="pii">S1462399410001602</ArticleId>
<ArticleId IdType="doi">10.1017/S1462399410001602</ArticleId>
<ArticleId IdType="pmc">PMC2931503</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A62 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000A62 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20807455
   |texte=   Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20807455" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonFranceV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024