La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Integrating neurotransmission in striatal medium spiny neurons.

Identifieur interne : 000896 ( PubMed/Corpus ); précédent : 000895; suivant : 000897

Integrating neurotransmission in striatal medium spiny neurons.

Auteurs : Jean-Antoine Girault

Source :

RBID : pubmed:22351066

English descriptors

Abstract

The striatum is a major entry structure of the basal ganglia. Its role in information processing in close interaction with the cerebral cortex and thalamus has various behavioral consequences depending on the regions concerned, including control of body movements and motivation. A general feature of striatal information processing is the control by reward-related dopamine signals of glutamatergic striatal inputs and of their plasticity. This relies on specific sets of receptors and signaling proteins in medium-sized spiny neurons which belong to two groups, striatonigral and striatopallidal neurons. Some signaling pathways are activated only by dopamine or glutamate, but many provide multiple levels of interactions. For example, the cAMP pathway is mostly regulated by dopamine D1 receptors in striatonigral neurons, whereas the ERK pathway detects a combination of glutamate and dopamine signals and is essential for long-lasting modifications. These adaptations require changes in gene expression, and the signaling pathways linking synaptic activity to nuclear function and epigenetic changes are beginning to be deciphered. Their alteration underlies many aspects of striatal dysfunction in pathological conditions which include a decrease or an increase in dopamine transmission, as encountered in Parkinson's disease or exposure to addictive drugs, respectively.

DOI: 10.1007/978-3-7091-0932-8_18
PubMed: 22351066

Links to Exploration step

pubmed:22351066

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Integrating neurotransmission in striatal medium spiny neurons.</title>
<author>
<name sortKey="Girault, Jean Antoine" sort="Girault, Jean Antoine" uniqKey="Girault J" first="Jean-Antoine" last="Girault">Jean-Antoine Girault</name>
<affiliation>
<nlm:affiliation>Institut du Fer à Moulin, UMR-S 839, Inserm and Université Pierre et Marie Curie, 17 rue du Fer à Moulin, 75005 Paris, France. jean-antoine.girault@inserm.fr</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22351066</idno>
<idno type="pmid">22351066</idno>
<idno type="doi">10.1007/978-3-7091-0932-8_18</idno>
<idno type="wicri:Area/PubMed/Corpus">000896</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000896</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Integrating neurotransmission in striatal medium spiny neurons.</title>
<author>
<name sortKey="Girault, Jean Antoine" sort="Girault, Jean Antoine" uniqKey="Girault J" first="Jean-Antoine" last="Girault">Jean-Antoine Girault</name>
<affiliation>
<nlm:affiliation>Institut du Fer à Moulin, UMR-S 839, Inserm and Université Pierre et Marie Curie, 17 rue du Fer à Moulin, 75005 Paris, France. jean-antoine.girault@inserm.fr</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Advances in experimental medicine and biology</title>
<idno type="ISSN">0065-2598</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Nucleus (genetics)</term>
<term>Cell Nucleus (metabolism)</term>
<term>Cerebral Cortex (physiology)</term>
<term>Corpus Striatum (physiology)</term>
<term>Dopamine (metabolism)</term>
<term>Dopamine and cAMP-Regulated Phosphoprotein 32 (genetics)</term>
<term>Dopamine and cAMP-Regulated Phosphoprotein 32 (metabolism)</term>
<term>Epigenesis, Genetic (physiology)</term>
<term>Extracellular Signal-Regulated MAP Kinases (genetics)</term>
<term>Extracellular Signal-Regulated MAP Kinases (metabolism)</term>
<term>Gene Expression (physiology)</term>
<term>Glutamic Acid (metabolism)</term>
<term>Humans</term>
<term>Motivation (physiology)</term>
<term>Neuronal Plasticity (physiology)</term>
<term>Neurons (physiology)</term>
<term>Parkinson Disease (genetics)</term>
<term>Parkinson Disease (metabolism)</term>
<term>Receptors, Dopamine D2 (genetics)</term>
<term>Receptors, Dopamine D2 (metabolism)</term>
<term>Receptors, Glutamate (genetics)</term>
<term>Receptors, Glutamate (metabolism)</term>
<term>Synapses (genetics)</term>
<term>Synapses (metabolism)</term>
<term>Synaptic Transmission (physiology)</term>
<term>Thalamus (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Dopamine and cAMP-Regulated Phosphoprotein 32</term>
<term>Extracellular Signal-Regulated MAP Kinases</term>
<term>Receptors, Dopamine D2</term>
<term>Receptors, Glutamate</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Dopamine</term>
<term>Dopamine and cAMP-Regulated Phosphoprotein 32</term>
<term>Extracellular Signal-Regulated MAP Kinases</term>
<term>Glutamic Acid</term>
<term>Receptors, Dopamine D2</term>
<term>Receptors, Glutamate</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Nucleus</term>
<term>Parkinson Disease</term>
<term>Synapses</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Parkinson Disease</term>
<term>Synapses</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cerebral Cortex</term>
<term>Corpus Striatum</term>
<term>Epigenesis, Genetic</term>
<term>Gene Expression</term>
<term>Motivation</term>
<term>Neuronal Plasticity</term>
<term>Neurons</term>
<term>Synaptic Transmission</term>
<term>Thalamus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The striatum is a major entry structure of the basal ganglia. Its role in information processing in close interaction with the cerebral cortex and thalamus has various behavioral consequences depending on the regions concerned, including control of body movements and motivation. A general feature of striatal information processing is the control by reward-related dopamine signals of glutamatergic striatal inputs and of their plasticity. This relies on specific sets of receptors and signaling proteins in medium-sized spiny neurons which belong to two groups, striatonigral and striatopallidal neurons. Some signaling pathways are activated only by dopamine or glutamate, but many provide multiple levels of interactions. For example, the cAMP pathway is mostly regulated by dopamine D1 receptors in striatonigral neurons, whereas the ERK pathway detects a combination of glutamate and dopamine signals and is essential for long-lasting modifications. These adaptations require changes in gene expression, and the signaling pathways linking synaptic activity to nuclear function and epigenetic changes are beginning to be deciphered. Their alteration underlies many aspects of striatal dysfunction in pathological conditions which include a decrease or an increase in dopamine transmission, as encountered in Parkinson's disease or exposure to addictive drugs, respectively.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22351066</PMID>
<DateCreated>
<Year>2012</Year>
<Month>02</Month>
<Day>21</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>06</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0065-2598</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>970</Volume>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>Advances in experimental medicine and biology</Title>
<ISOAbbreviation>Adv. Exp. Med. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Integrating neurotransmission in striatal medium spiny neurons.</ArticleTitle>
<Pagination>
<MedlinePgn>407-29</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/978-3-7091-0932-8_18</ELocationID>
<Abstract>
<AbstractText>The striatum is a major entry structure of the basal ganglia. Its role in information processing in close interaction with the cerebral cortex and thalamus has various behavioral consequences depending on the regions concerned, including control of body movements and motivation. A general feature of striatal information processing is the control by reward-related dopamine signals of glutamatergic striatal inputs and of their plasticity. This relies on specific sets of receptors and signaling proteins in medium-sized spiny neurons which belong to two groups, striatonigral and striatopallidal neurons. Some signaling pathways are activated only by dopamine or glutamate, but many provide multiple levels of interactions. For example, the cAMP pathway is mostly regulated by dopamine D1 receptors in striatonigral neurons, whereas the ERK pathway detects a combination of glutamate and dopamine signals and is essential for long-lasting modifications. These adaptations require changes in gene expression, and the signaling pathways linking synaptic activity to nuclear function and epigenetic changes are beginning to be deciphered. Their alteration underlies many aspects of striatal dysfunction in pathological conditions which include a decrease or an increase in dopamine transmission, as encountered in Parkinson's disease or exposure to addictive drugs, respectively.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Girault</LastName>
<ForeName>Jean-Antoine</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Institut du Fer à Moulin, UMR-S 839, Inserm and Université Pierre et Marie Curie, 17 rue du Fer à Moulin, 75005 Paris, France. jean-antoine.girault@inserm.fr</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Adv Exp Med Biol</MedlineTA>
<NlmUniqueID>0121103</NlmUniqueID>
<ISSNLinking>0065-2598</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051937">Dopamine and cAMP-Regulated Phosphoprotein 32</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017448">Receptors, Dopamine D2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017470">Receptors, Glutamate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3KX376GY7L</RegistryNumber>
<NameOfSubstance UI="D018698">Glutamic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="D048049">Extracellular Signal-Regulated MAP Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>VTD58H1Z2X</RegistryNumber>
<NameOfSubstance UI="D004298">Dopamine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002540" MajorTopicYN="N">Cerebral Cortex</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003342" MajorTopicYN="N">Corpus Striatum</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004298" MajorTopicYN="N">Dopamine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051937" MajorTopicYN="N">Dopamine and cAMP-Regulated Phosphoprotein 32</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044127" MajorTopicYN="N">Epigenesis, Genetic</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048049" MajorTopicYN="N">Extracellular Signal-Regulated MAP Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018698" MajorTopicYN="N">Glutamic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009042" MajorTopicYN="N">Motivation</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009473" MajorTopicYN="N">Neuronal Plasticity</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009474" MajorTopicYN="N">Neurons</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010300" MajorTopicYN="N">Parkinson Disease</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017448" MajorTopicYN="N">Receptors, Dopamine D2</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017470" MajorTopicYN="N">Receptors, Glutamate</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013569" MajorTopicYN="N">Synapses</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009435" MajorTopicYN="N">Synaptic Transmission</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013788" MajorTopicYN="N">Thalamus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22351066</ArticleId>
<ArticleId IdType="doi">10.1007/978-3-7091-0932-8_18</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000896 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000896 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22351066
   |texte=   Integrating neurotransmission in striatal medium spiny neurons.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22351066" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonFranceV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024