La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Striatal molecular signature of subchronic subthalamic nucleus high frequency stimulation in parkinsonian rat.

Identifieur interne : 000747 ( PubMed/Corpus ); précédent : 000746; suivant : 000748

Striatal molecular signature of subchronic subthalamic nucleus high frequency stimulation in parkinsonian rat.

Auteurs : Sylviane Lortet ; Emilie Lacombe ; Nicolas Boulanger ; Pascal Rihet ; Catherine Nguyen ; Lydia Kerkerian-Le Goff ; Pascal Salin

Source :

RBID : pubmed:23593219

English descriptors

Abstract

This study addresses the molecular mechanisms underlying the action of subthalamic nucleus high frequency stimulation (STN-HFS) in the treatment of Parkinson's disease and its interaction with levodopa (L-DOPA), focusing on the striatum. Striatal gene expression profile was assessed in rats with nigral dopamine neuron lesion, either treated or not, using agilent microarrays and qPCR verification. The treatments consisted in anti-akinetic STN-HFS (5 days), chronic L-DOPA treatment inducing dyskinesia (LIDs) or the combination of the two treatments that exacerbated LIDs. STN-HFS modulated 71 striatal genes. The main biological processes associated with the differentially expressed gene products include regulation of growth, of apoptosis and of synaptic transmission, and extracellular region is a major cellular component implicated. In particular, several of these genes have been shown to support survival or differentiation of striatal or of dopaminergic neurons. These results indicate that STN HFS may induce widespread anatomo-functional rearrangements in the striatum and create a molecular environment favorable for neuroprotection and neuroplasticity. STN-HFS and L-DOPA treatment share very few common gene regulation features indicating that the molecular substrates underlying their striatal action are mostly different; among the common effects is the down-regulation of Adrb1, which encodes the adrenergic beta-1-receptor, supporting a major role of this receptor in Parkinson's disease. In addition to genes already reported to be associated with LIDs (preprodynorphin, thyrotropin-releasing hormone, metabotropic glutamate receptor 4, cannabinoid receptor 1), the comparison between DOPA and DOPA/HFS identifies immunity-related genes as potential players in L-DOPA side effects.

DOI: 10.1371/journal.pone.0060447
PubMed: 23593219

Links to Exploration step

pubmed:23593219

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Striatal molecular signature of subchronic subthalamic nucleus high frequency stimulation in parkinsonian rat.</title>
<author>
<name sortKey="Lortet, Sylviane" sort="Lortet, Sylviane" uniqKey="Lortet S" first="Sylviane" last="Lortet">Sylviane Lortet</name>
<affiliation>
<nlm:affiliation>Aix-Marseille Université, CNRS, IBDM UMR 7288, Marseille, France. sylviane.lortet@univ-amu.fr</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lacombe, Emilie" sort="Lacombe, Emilie" uniqKey="Lacombe E" first="Emilie" last="Lacombe">Emilie Lacombe</name>
</author>
<author>
<name sortKey="Boulanger, Nicolas" sort="Boulanger, Nicolas" uniqKey="Boulanger N" first="Nicolas" last="Boulanger">Nicolas Boulanger</name>
</author>
<author>
<name sortKey="Rihet, Pascal" sort="Rihet, Pascal" uniqKey="Rihet P" first="Pascal" last="Rihet">Pascal Rihet</name>
</author>
<author>
<name sortKey="Nguyen, Catherine" sort="Nguyen, Catherine" uniqKey="Nguyen C" first="Catherine" last="Nguyen">Catherine Nguyen</name>
</author>
<author>
<name sortKey="Kerkerian Le Goff, Lydia" sort="Kerkerian Le Goff, Lydia" uniqKey="Kerkerian Le Goff L" first="Lydia" last="Kerkerian-Le Goff">Lydia Kerkerian-Le Goff</name>
</author>
<author>
<name sortKey="Salin, Pascal" sort="Salin, Pascal" uniqKey="Salin P" first="Pascal" last="Salin">Pascal Salin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23593219</idno>
<idno type="pmid">23593219</idno>
<idno type="doi">10.1371/journal.pone.0060447</idno>
<idno type="wicri:Area/PubMed/Corpus">000747</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000747</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Striatal molecular signature of subchronic subthalamic nucleus high frequency stimulation in parkinsonian rat.</title>
<author>
<name sortKey="Lortet, Sylviane" sort="Lortet, Sylviane" uniqKey="Lortet S" first="Sylviane" last="Lortet">Sylviane Lortet</name>
<affiliation>
<nlm:affiliation>Aix-Marseille Université, CNRS, IBDM UMR 7288, Marseille, France. sylviane.lortet@univ-amu.fr</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lacombe, Emilie" sort="Lacombe, Emilie" uniqKey="Lacombe E" first="Emilie" last="Lacombe">Emilie Lacombe</name>
</author>
<author>
<name sortKey="Boulanger, Nicolas" sort="Boulanger, Nicolas" uniqKey="Boulanger N" first="Nicolas" last="Boulanger">Nicolas Boulanger</name>
</author>
<author>
<name sortKey="Rihet, Pascal" sort="Rihet, Pascal" uniqKey="Rihet P" first="Pascal" last="Rihet">Pascal Rihet</name>
</author>
<author>
<name sortKey="Nguyen, Catherine" sort="Nguyen, Catherine" uniqKey="Nguyen C" first="Catherine" last="Nguyen">Catherine Nguyen</name>
</author>
<author>
<name sortKey="Kerkerian Le Goff, Lydia" sort="Kerkerian Le Goff, Lydia" uniqKey="Kerkerian Le Goff L" first="Lydia" last="Kerkerian-Le Goff">Lydia Kerkerian-Le Goff</name>
</author>
<author>
<name sortKey="Salin, Pascal" sort="Salin, Pascal" uniqKey="Salin P" first="Pascal" last="Salin">Pascal Salin</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Behavior, Animal (drug effects)</term>
<term>Cluster Analysis</term>
<term>Corpus Striatum (metabolism)</term>
<term>Deep Brain Stimulation</term>
<term>Denervation</term>
<term>Disease Models, Animal</term>
<term>Electric Stimulation</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation (drug effects)</term>
<term>Levodopa (pharmacology)</term>
<term>Metabolic Networks and Pathways (genetics)</term>
<term>Parkinson Disease (genetics)</term>
<term>Parkinson Disease (metabolism)</term>
<term>Rats</term>
<term>Subthalamic Nucleus (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Levodopa</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Behavior, Animal</term>
<term>Gene Expression Regulation</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Metabolic Networks and Pathways</term>
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Corpus Striatum</term>
<term>Parkinson Disease</term>
<term>Subthalamic Nucleus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cluster Analysis</term>
<term>Deep Brain Stimulation</term>
<term>Denervation</term>
<term>Disease Models, Animal</term>
<term>Electric Stimulation</term>
<term>Gene Expression Profiling</term>
<term>Rats</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study addresses the molecular mechanisms underlying the action of subthalamic nucleus high frequency stimulation (STN-HFS) in the treatment of Parkinson's disease and its interaction with levodopa (L-DOPA), focusing on the striatum. Striatal gene expression profile was assessed in rats with nigral dopamine neuron lesion, either treated or not, using agilent microarrays and qPCR verification. The treatments consisted in anti-akinetic STN-HFS (5 days), chronic L-DOPA treatment inducing dyskinesia (LIDs) or the combination of the two treatments that exacerbated LIDs. STN-HFS modulated 71 striatal genes. The main biological processes associated with the differentially expressed gene products include regulation of growth, of apoptosis and of synaptic transmission, and extracellular region is a major cellular component implicated. In particular, several of these genes have been shown to support survival or differentiation of striatal or of dopaminergic neurons. These results indicate that STN HFS may induce widespread anatomo-functional rearrangements in the striatum and create a molecular environment favorable for neuroprotection and neuroplasticity. STN-HFS and L-DOPA treatment share very few common gene regulation features indicating that the molecular substrates underlying their striatal action are mostly different; among the common effects is the down-regulation of Adrb1, which encodes the adrenergic beta-1-receptor, supporting a major role of this receptor in Parkinson's disease. In addition to genes already reported to be associated with LIDs (preprodynorphin, thyrotropin-releasing hormone, metabotropic glutamate receptor 4, cannabinoid receptor 1), the comparison between DOPA and DOPA/HFS identifies immunity-related genes as potential players in L-DOPA side effects.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23593219</PMID>
<DateCreated>
<Year>2013</Year>
<Month>04</Month>
<Day>17</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>11</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>10</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Striatal molecular signature of subchronic subthalamic nucleus high frequency stimulation in parkinsonian rat.</ArticleTitle>
<Pagination>
<MedlinePgn>e60447</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0060447</ELocationID>
<Abstract>
<AbstractText>This study addresses the molecular mechanisms underlying the action of subthalamic nucleus high frequency stimulation (STN-HFS) in the treatment of Parkinson's disease and its interaction with levodopa (L-DOPA), focusing on the striatum. Striatal gene expression profile was assessed in rats with nigral dopamine neuron lesion, either treated or not, using agilent microarrays and qPCR verification. The treatments consisted in anti-akinetic STN-HFS (5 days), chronic L-DOPA treatment inducing dyskinesia (LIDs) or the combination of the two treatments that exacerbated LIDs. STN-HFS modulated 71 striatal genes. The main biological processes associated with the differentially expressed gene products include regulation of growth, of apoptosis and of synaptic transmission, and extracellular region is a major cellular component implicated. In particular, several of these genes have been shown to support survival or differentiation of striatal or of dopaminergic neurons. These results indicate that STN HFS may induce widespread anatomo-functional rearrangements in the striatum and create a molecular environment favorable for neuroprotection and neuroplasticity. STN-HFS and L-DOPA treatment share very few common gene regulation features indicating that the molecular substrates underlying their striatal action are mostly different; among the common effects is the down-regulation of Adrb1, which encodes the adrenergic beta-1-receptor, supporting a major role of this receptor in Parkinson's disease. In addition to genes already reported to be associated with LIDs (preprodynorphin, thyrotropin-releasing hormone, metabotropic glutamate receptor 4, cannabinoid receptor 1), the comparison between DOPA and DOPA/HFS identifies immunity-related genes as potential players in L-DOPA side effects.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lortet</LastName>
<ForeName>Sylviane</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Aix-Marseille Université, CNRS, IBDM UMR 7288, Marseille, France. sylviane.lortet@univ-amu.fr</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lacombe</LastName>
<ForeName>Emilie</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boulanger</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rihet</LastName>
<ForeName>Pascal</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nguyen</LastName>
<ForeName>Catherine</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kerkerian-Le Goff</LastName>
<ForeName>Lydia</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Salin</LastName>
<ForeName>Pascal</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>46627O600J</RegistryNumber>
<NameOfSubstance UI="D007980">Levodopa</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2003;119(4):965-77</RefSource>
<PMID Version="1">12831856</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2003 Sep 11;39(6):889-909</RefSource>
<PMID Version="1">12971891</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2003 Oct;183(2):458-68</RefSource>
<PMID Version="1">14552886</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2003 Dec;130(24):6013-25</RefSource>
<PMID Version="1">14573522</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2004 Mar 3;24(9):2133-42</RefSource>
<PMID Version="1">14999064</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2004 Jun;16(1):110-23</RefSource>
<PMID Version="1">15207268</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2004 Sep;20(5):1255-66</RefSource>
<PMID Version="1">15341597</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2004 Sep;90(6):1348-58</RefSource>
<PMID Version="1">15341519</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2004 Nov;17(2):219-36</RefSource>
<PMID Version="1">15474360</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 1986 May 6;66(1):106-12</RefSource>
<PMID Version="1">2872630</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1990;80(3):489-500</RefSource>
<PMID Version="1">2387350</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 1995 Dec;18(12):527-35</RefSource>
<PMID Version="1">8638293</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 1998 Aug;10(8):2694-706</RefSource>
<PMID Version="1">9767399</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2005 Jun;132(12):2721-32</RefSource>
<PMID Version="1">15901659</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2005 Oct;20(1):93-103</RefSource>
<PMID Version="1">16137570</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2006 Mar;9(3):443-52</RefSource>
<PMID Version="1">16491081</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2006 Mar 3;281(9):5373-82</RefSource>
<PMID Version="1">16361258</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stereotact Funct Neurosurg. 2006;84(4):176-9</RefSource>
<PMID Version="1">16905880</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2006 Sep;24(6):1802-14</RefSource>
<PMID Version="1">17004943</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Feb 28;27(9):2377-86</RefSource>
<PMID Version="1">17329435</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Psychiatry. 2007 Apr 1;61(7):836-44</RefSource>
<PMID Version="1">16950226</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2007 Jul 30;22(10):1379-89; quiz 1523</RefSource>
<PMID Version="1">17427940</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Pharmacol Exp Ther. 2007 Sep;322(3):913-22</RefSource>
<PMID Version="1">17565007</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2007 Sep;26(6):1670-80</RefSource>
<PMID Version="1">17822436</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Nov 21;27(47):12989-99</RefSource>
<PMID Version="1">18032672</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parkinsonism Relat Disord. 2007;13 Suppl 3:S263-7</RefSource>
<PMID Version="1">18267248</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2009 Aug 25;1286:230-8</RefSource>
<PMID Version="1">19563788</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2009;4(8):e6606</RefSource>
<PMID Version="1">19672298</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2009 Aug;5(8):e1000604</RefSource>
<PMID Version="1">19680447</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Pharmacol. 2009 Oct 1;78(7):677-85</RefSource>
<PMID Version="1">19433069</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neurobiol. 2009 Sep;89(1):79-123</RefSource>
<PMID Version="1">19559747</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2009 Oct;36(1):116-25</RefSource>
<PMID Version="1">19615446</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychopharmacology. 2009 Nov;34(12):2477-88</RefSource>
<PMID Version="1">19606087</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parkinsonism Relat Disord. 2009 Dec;15 Suppl 3:S156-61</RefSource>
<PMID Version="1">20082980</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parkinsonism Relat Disord. 2009 Dec;15 Suppl 3:S237-40</RefSource>
<PMID Version="1">20082999</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Behav Immun. 2010 May;24(4):525-8</RefSource>
<PMID Version="1">19896530</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2010 May;113(4):1046-59</RefSource>
<PMID Version="1">20236221</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2010 Aug;1804(8):1658-65</RefSource>
<PMID Version="1">19766741</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2008 Nov;214(1):125-34</RefSource>
<PMID Version="1">18778705</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Neuropathol. 2010 Nov;120(5):623-31</RefSource>
<PMID Version="1">20740286</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2010;5(11):e13861</RefSource>
<PMID Version="1">21085660</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 2011 Jan;31(2):277-86</RefSource>
<PMID Version="1">21078874</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):840-5</RefSource>
<PMID Version="1">21187382</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2011 Jun;42(3):284-91</RefSource>
<PMID Version="1">21296669</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2011 Jun 3;286(22):19840-59</RefSource>
<PMID Version="1">21467032</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2011 Jun;69(6):919-27</RefSource>
<PMID Version="1">21681795</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2011 Aug;25(8):2563-73</RefSource>
<PMID Version="1">21507900</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Aug 31;31(35):12483-90</RefSource>
<PMID Version="1">21880910</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neural Transm (Vienna). 2011 Dec;118(12):1717-25</RefSource>
<PMID Version="1">21188436</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neural Transm (Vienna). 2011 Dec;118(12):1661-90</RefSource>
<PMID Version="1">21881839</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neurobiol. 2012 Jan;96(1):69-86</RefSource>
<PMID Version="1">22075179</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Neurodegener. 2011;6:83</RefSource>
<PMID Version="1">22165993</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Neurosci. 2012 Mar;46(3):545-53</RefSource>
<PMID Version="1">21932041</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 Mar 7;32(10):3376-87</RefSource>
<PMID Version="1">22399759</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2012 Apr;13(4):225-39</RefSource>
<PMID Version="1">22430016</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem J. 2012 May 1;443(3):769-78</RefSource>
<PMID Version="1">22332999</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 Apr 18;32(16):5688-703</RefSource>
<PMID Version="1">22514330</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychopharmacology (Berl). 2013 Feb;225(3):543-51</RefSource>
<PMID Version="1">22932776</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2013 Feb;136(Pt 2):374-84</RefSource>
<PMID Version="1">22344583</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 1999 Mar;126(6):1317-26</RefSource>
<PMID Version="1">10021349</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2008 Mar;104(6):1599-612</RefSource>
<PMID Version="1">17996028</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Aging. 2008 Nov;29(11):1721-32</RefSource>
<PMID Version="1">17512093</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet Neurol. 2009 Jan;8(1):67-81</RefSource>
<PMID Version="1">19081516</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2008;3(12):e4090</RefSource>
<PMID Version="1">19116652</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2009 May;34(2):340-50</RefSource>
<PMID Version="1">19233275</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 1999 Dec 3;276(2):71-4</RefSource>
<PMID Version="1">10624794</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2000 Feb 15;20(4):1318-23</RefSource>
<PMID Version="1">10662821</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2000 Apr;47(4 Suppl 1):S60-8; discussion S68-9</RefSource>
<PMID Version="1">10762133</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2000 Apr 28;863(1-2):112-9</RefSource>
<PMID Version="1">10773199</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuropathol Exp Neurol. 2001 Jan;60(1):15-24</RefSource>
<PMID Version="1">11202172</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2000 Dec;28(3):713-26</RefSource>
<PMID Version="1">11163261</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Biol. 2000;7(6):819-37</RefSource>
<PMID Version="1">11382364</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2001 Aug;2(8):577-88</RefSource>
<PMID Version="1">11484001</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2002 Jun 15;22(12):5137-48</RefSource>
<PMID Version="1">12077209</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neurobiol. 2002 Jun;67(3):203-33</RefSource>
<PMID Version="1">12169297</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurol. 2002 Nov;9 Suppl 3:1-6</RefSource>
<PMID Version="1">12464115</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2003 Feb 12;19(3):368-75</RefSource>
<PMID Version="1">12584122</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Mol Brain Res. 2003 Feb 20;110(2):169-76</RefSource>
<PMID Version="1">12591154</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2003 May;85(3):601-9</RefSource>
<PMID Version="1">12694386</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2003;4(5):P3</RefSource>
<PMID Version="1">12734009</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2003 Jun 15;23(12):5272-82</RefSource>
<PMID Version="1">12832552</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001522" MajorTopicYN="N">Behavior, Animal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003342" MajorTopicYN="N">Corpus Striatum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046690" MajorTopicYN="Y">Deep Brain Stimulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003714" MajorTopicYN="N">Denervation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004558" MajorTopicYN="N">Electric Stimulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007980" MajorTopicYN="N">Levodopa</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010300" MajorTopicYN="N">Parkinson Disease</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020531" MajorTopicYN="N">Subthalamic Nucleus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3617149</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>11</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>02</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>4</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>4</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23593219</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0060447</ArticleId>
<ArticleId IdType="pii">PONE-D-12-36103</ArticleId>
<ArticleId IdType="pmc">PMC3617149</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000747 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000747 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23593219
   |texte=   Striatal molecular signature of subchronic subthalamic nucleus high frequency stimulation in parkinsonian rat.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23593219" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonFranceV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024