La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

[Animal models of neurodegenerative diseases].

Identifieur interne : 000C52 ( PubMed/Checkpoint ); précédent : 000C51; suivant : 000C53

[Animal models of neurodegenerative diseases].

Auteurs : Dominique Langui [France] ; François Lachapelle ; Charles Duyckaerts

Source :

RBID : pubmed:17291428

English descriptors

Abstract

Numerous evidences indicate that the phenotype of a neurodegenerative disease and its pathogenetic mechanism are only loosely linked. The phenotype is directly related to the topography of the lesions and is reproduced whatever the mechanism as soon as the same neurons are destroyed or deficient: the symptoms of Parkinson disease are mimicked by any destruction of the neurons of the substantia nigra, caused for instance by the toxin MPTP. This does not mean that idiopathic Parkinson disease is due to MPTP. In the same way, mouse lines such as Reeler, Weaver and Staggerer in which ataxia occurs spontaneously does not help to understand human ataxias: now that mutations responsible for these phenotypes have been identified, it appears that one is responsible for lissencephaly (mutation of the reelin gene) and the other two have no equivalent in man. Therapeutic attempts, however, rely on the understanding of the pathogenetic mechanisms. Introducing a mutated human transgene in the genome of an animal has, in many instances, significantly improved this understanding. Transgenic mice have proven useful in reproducing lesions seen in neurodegenerative disease such as the plaques of Alzheimer disease (in the APP mouse which has integrated the mutated gene of the amyloid protein precursor), the tau glial and neuronal accumulation (seen in cases of frontotemporal dementias due to tau mutation), the nuclear inclusions caused by CAG triplet expansion (seen in the mutation of Huntington disease and autosomal dominant spinocerebellar ataxias). These recent advances have fostered numerous therapeutic attempts. Transgenesis in drosophila and in the worm Caenorhabditis elegans have opened new possibilities in the screening of protein partners, modifier genes, and potential therapeutic molecules. However, it is also becoming clear that introducing a human mutated gene in an animal does not necessarily trigger pathogenetic cascades identical to those seen in the human disease. Human diseases have to be studied in parallel with their animal models to ensure that the model mimic at least a few original mechanisms, on which new therapeutics may be tested.

DOI: 10.1051/medsci/2007232180
PubMed: 17291428


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:17291428

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">[Animal models of neurodegenerative diseases].</title>
<author>
<name sortKey="Langui, Dominique" sort="Langui, Dominique" uniqKey="Langui D" first="Dominique" last="Langui">Dominique Langui</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire de Neuropathologie Raymond Escourolle, Hôpital de la Salpêtrière, 47, boulevard de l'Hôpital, 75651 Paris Cedex 13, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Neuropathologie Raymond Escourolle, Hôpital de la Salpêtrière, 47, boulevard de l'Hôpital, 75651 Paris Cedex 13</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lachapelle, Francois" sort="Lachapelle, Francois" uniqKey="Lachapelle F" first="François" last="Lachapelle">François Lachapelle</name>
</author>
<author>
<name sortKey="Duyckaerts, Charles" sort="Duyckaerts, Charles" uniqKey="Duyckaerts C" first="Charles" last="Duyckaerts">Charles Duyckaerts</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17291428</idno>
<idno type="pmid">17291428</idno>
<idno type="doi">10.1051/medsci/2007232180</idno>
<idno type="wicri:Area/PubMed/Corpus">000E07</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E07</idno>
<idno type="wicri:Area/PubMed/Curation">000D67</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000D67</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000D67</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000D67</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">[Animal models of neurodegenerative diseases].</title>
<author>
<name sortKey="Langui, Dominique" sort="Langui, Dominique" uniqKey="Langui D" first="Dominique" last="Langui">Dominique Langui</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire de Neuropathologie Raymond Escourolle, Hôpital de la Salpêtrière, 47, boulevard de l'Hôpital, 75651 Paris Cedex 13, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Neuropathologie Raymond Escourolle, Hôpital de la Salpêtrière, 47, boulevard de l'Hôpital, 75651 Paris Cedex 13</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lachapelle, Francois" sort="Lachapelle, Francois" uniqKey="Lachapelle F" first="François" last="Lachapelle">François Lachapelle</name>
</author>
<author>
<name sortKey="Duyckaerts, Charles" sort="Duyckaerts, Charles" uniqKey="Duyckaerts C" first="Charles" last="Duyckaerts">Charles Duyckaerts</name>
</author>
</analytic>
<series>
<title level="j">Medecine sciences : M/S</title>
<idno type="ISSN">0767-0974</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alzheimer Disease (genetics)</term>
<term>Amyloid beta-Peptides (deficiency)</term>
<term>Amyloid beta-Peptides (genetics)</term>
<term>Amyloid beta-Peptides (physiology)</term>
<term>Animals</term>
<term>Animals, Genetically Modified</term>
<term>Ataxia (genetics)</term>
<term>Caenorhabditis elegans (genetics)</term>
<term>Dementia (genetics)</term>
<term>Disease Models, Animal</term>
<term>Drosophila melanogaster (genetics)</term>
<term>Gene Targeting</term>
<term>Genes, Recessive</term>
<term>Heredodegenerative Disorders, Nervous System (genetics)</term>
<term>Humans</term>
<term>Lewy Body Disease (metabolism)</term>
<term>Mice</term>
<term>Mice, Knockout</term>
<term>Mice, Neurologic Mutants</term>
<term>Minisatellite Repeats</term>
<term>Neurodegenerative Diseases (chemically induced)</term>
<term>Neurotoxins (toxicity)</term>
<term>Parkinsonian Disorders</term>
<term>Prion Diseases (genetics)</term>
<term>Species Specificity</term>
<term>alpha-Synuclein (genetics)</term>
<term>alpha-Synuclein (metabolism)</term>
<term>tau Proteins (deficiency)</term>
<term>tau Proteins (genetics)</term>
<term>tau Proteins (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Amyloid beta-Peptides</term>
<term>tau Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemically induced" xml:lang="en">
<term>Neurodegenerative Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Alzheimer Disease</term>
<term>Amyloid beta-Peptides</term>
<term>Ataxia</term>
<term>Caenorhabditis elegans</term>
<term>Dementia</term>
<term>Drosophila melanogaster</term>
<term>Heredodegenerative Disorders, Nervous System</term>
<term>Prion Diseases</term>
<term>alpha-Synuclein</term>
<term>tau Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lewy Body Disease</term>
<term>alpha-Synuclein</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Amyloid beta-Peptides</term>
<term>tau Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Neurotoxins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Animals, Genetically Modified</term>
<term>Disease Models, Animal</term>
<term>Gene Targeting</term>
<term>Genes, Recessive</term>
<term>Humans</term>
<term>Mice</term>
<term>Mice, Knockout</term>
<term>Mice, Neurologic Mutants</term>
<term>Minisatellite Repeats</term>
<term>Parkinsonian Disorders</term>
<term>Species Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Numerous evidences indicate that the phenotype of a neurodegenerative disease and its pathogenetic mechanism are only loosely linked. The phenotype is directly related to the topography of the lesions and is reproduced whatever the mechanism as soon as the same neurons are destroyed or deficient: the symptoms of Parkinson disease are mimicked by any destruction of the neurons of the substantia nigra, caused for instance by the toxin MPTP. This does not mean that idiopathic Parkinson disease is due to MPTP. In the same way, mouse lines such as Reeler, Weaver and Staggerer in which ataxia occurs spontaneously does not help to understand human ataxias: now that mutations responsible for these phenotypes have been identified, it appears that one is responsible for lissencephaly (mutation of the reelin gene) and the other two have no equivalent in man. Therapeutic attempts, however, rely on the understanding of the pathogenetic mechanisms. Introducing a mutated human transgene in the genome of an animal has, in many instances, significantly improved this understanding. Transgenic mice have proven useful in reproducing lesions seen in neurodegenerative disease such as the plaques of Alzheimer disease (in the APP mouse which has integrated the mutated gene of the amyloid protein precursor), the tau glial and neuronal accumulation (seen in cases of frontotemporal dementias due to tau mutation), the nuclear inclusions caused by CAG triplet expansion (seen in the mutation of Huntington disease and autosomal dominant spinocerebellar ataxias). These recent advances have fostered numerous therapeutic attempts. Transgenesis in drosophila and in the worm Caenorhabditis elegans have opened new possibilities in the screening of protein partners, modifier genes, and potential therapeutic molecules. However, it is also becoming clear that introducing a human mutated gene in an animal does not necessarily trigger pathogenetic cascades identical to those seen in the human disease. Human diseases have to be studied in parallel with their animal models to ensure that the model mimic at least a few original mechanisms, on which new therapeutics may be tested.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17291428</PMID>
<DateCreated>
<Year>2007</Year>
<Month>02</Month>
<Day>12</Day>
</DateCreated>
<DateCompleted>
<Year>2007</Year>
<Month>07</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2010</Year>
<Month>11</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0767-0974</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>23</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2007</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Medecine sciences : M/S</Title>
<ISOAbbreviation>Med Sci (Paris)</ISOAbbreviation>
</Journal>
<ArticleTitle>[Animal models of neurodegenerative diseases].</ArticleTitle>
<Pagination>
<MedlinePgn>180-6</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Numerous evidences indicate that the phenotype of a neurodegenerative disease and its pathogenetic mechanism are only loosely linked. The phenotype is directly related to the topography of the lesions and is reproduced whatever the mechanism as soon as the same neurons are destroyed or deficient: the symptoms of Parkinson disease are mimicked by any destruction of the neurons of the substantia nigra, caused for instance by the toxin MPTP. This does not mean that idiopathic Parkinson disease is due to MPTP. In the same way, mouse lines such as Reeler, Weaver and Staggerer in which ataxia occurs spontaneously does not help to understand human ataxias: now that mutations responsible for these phenotypes have been identified, it appears that one is responsible for lissencephaly (mutation of the reelin gene) and the other two have no equivalent in man. Therapeutic attempts, however, rely on the understanding of the pathogenetic mechanisms. Introducing a mutated human transgene in the genome of an animal has, in many instances, significantly improved this understanding. Transgenic mice have proven useful in reproducing lesions seen in neurodegenerative disease such as the plaques of Alzheimer disease (in the APP mouse which has integrated the mutated gene of the amyloid protein precursor), the tau glial and neuronal accumulation (seen in cases of frontotemporal dementias due to tau mutation), the nuclear inclusions caused by CAG triplet expansion (seen in the mutation of Huntington disease and autosomal dominant spinocerebellar ataxias). These recent advances have fostered numerous therapeutic attempts. Transgenesis in drosophila and in the worm Caenorhabditis elegans have opened new possibilities in the screening of protein partners, modifier genes, and potential therapeutic molecules. However, it is also becoming clear that introducing a human mutated gene in an animal does not necessarily trigger pathogenetic cascades identical to those seen in the human disease. Human diseases have to be studied in parallel with their animal models to ensure that the model mimic at least a few original mechanisms, on which new therapeutics may be tested.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Langui</LastName>
<ForeName>Dominique</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de Neuropathologie Raymond Escourolle, Hôpital de la Salpêtrière, 47, boulevard de l'Hôpital, 75651 Paris Cedex 13, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lachapelle</LastName>
<ForeName>François</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Duyckaerts</LastName>
<ForeName>Charles</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>fre</Language>
<PublicationTypeList>
<PublicationType UI="D004740">English Abstract</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<VernacularTitle>Modèles animaux des maladies neuro-dégénératives.</VernacularTitle>
</Article>
<MedlineJournalInfo>
<Country>France</Country>
<MedlineTA>Med Sci (Paris)</MedlineTA>
<NlmUniqueID>8710980</NlmUniqueID>
<ISSNLinking>0767-0974</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016229">Amyloid beta-Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009498">Neurotoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051844">alpha-Synuclein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016875">tau Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000544" MajorTopicYN="N">Alzheimer Disease</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016229" MajorTopicYN="N">Amyloid beta-Peptides</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030801" MajorTopicYN="N">Animals, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001259" MajorTopicYN="N">Ataxia</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017173" MajorTopicYN="N">Caenorhabditis elegans</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003704" MajorTopicYN="N">Dementia</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="Y">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004331" MajorTopicYN="N">Drosophila melanogaster</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018390" MajorTopicYN="N">Gene Targeting</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005808" MajorTopicYN="N">Genes, Recessive</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020271" MajorTopicYN="N">Heredodegenerative Disorders, Nervous System</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020961" MajorTopicYN="N">Lewy Body Disease</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008818" MajorTopicYN="N">Mice, Neurologic Mutants</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018598" MajorTopicYN="N">Minisatellite Repeats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019636" MajorTopicYN="Y">Neurodegenerative Diseases</DescriptorName>
<QualifierName UI="Q000139" MajorTopicYN="N">chemically induced</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009498" MajorTopicYN="N">Neurotoxins</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020734" MajorTopicYN="N">Parkinsonian Disorders</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017096" MajorTopicYN="N">Prion Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051844" MajorTopicYN="N">alpha-Synuclein</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016875" MajorTopicYN="N">tau Proteins</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>54</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17291428</ArticleId>
<ArticleId IdType="pii">00/00/0A/4F/</ArticleId>
<ArticleId IdType="doi">10.1051/medsci/2007232180</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Paris</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Duyckaerts, Charles" sort="Duyckaerts, Charles" uniqKey="Duyckaerts C" first="Charles" last="Duyckaerts">Charles Duyckaerts</name>
<name sortKey="Lachapelle, Francois" sort="Lachapelle, Francois" uniqKey="Lachapelle F" first="François" last="Lachapelle">François Lachapelle</name>
</noCountry>
<country name="France">
<region name="Île-de-France">
<name sortKey="Langui, Dominique" sort="Langui, Dominique" uniqKey="Langui D" first="Dominique" last="Langui">Dominique Langui</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C52 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000C52 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:17291428
   |texte=   [Animal models of neurodegenerative diseases].
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:17291428" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonFranceV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024