La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lack of miRNA Misregulation at Early Pathological Stages in Drosophila Neurodegenerative Disease Models.

Identifieur interne : 000795 ( PubMed/Checkpoint ); précédent : 000794; suivant : 000796

Lack of miRNA Misregulation at Early Pathological Stages in Drosophila Neurodegenerative Disease Models.

Auteurs : Anita Reinhardt [France] ; Sébastien Feuillette ; Marlène Cassar ; Céline Callens ; Hélène Thomassin ; Serge Birman ; Magalie Lecourtois ; Christophe Antoniewski ; Hervé Tricoire

Source :

RBID : pubmed:23115562

Abstract

Late onset neurodegenerative diseases represent a major public health concern as the population in many countries ages. Both frequent diseases such as Alzheimer disease (AD, 14% incidence for 80-84 year-old Europeans) or Parkinson disease (PD, 1.4% prevalence for >55 years old) share, with other low-incidence neurodegenerative pathologies such as spinocerebellar ataxias (SCAs, 0.01% prevalence) and frontotemporal lobar degeneration (FTLD, 0.02% prevalence), a lack of efficient treatment in spite of important research efforts. Besides significant progress, studies with animal models have revealed unexpected complexities in the degenerative process, emphasizing a need to better understand the underlying pathological mechanisms. Recently, microRNAs (miRNAs), a class of small regulatory non-coding RNAs, have been implicated in some neurodegenerative diseases. The current data supporting a role of miRNAs in PD, tauopathies, dominant ataxias, and FTLD will first be discussed to emphasize the different levels of the pathological processes which may be affected by miRNAs. To investigate a potential involvement of miRNA dysregulation in the early stages of these neurodegenerative diseases we have used Drosophila models for seven diseases (PD, 3 FTLD, 3 dominant ataxias) that recapitulate many features of the human diseases. We performed deep sequencing of head small RNAs after 3 days of pathological protein expression in the fly head neurons. We found no evidence for a statistically significant difference in miRNA expression in this early stage of the pathological process. In addition, we could not identify small non-coding CAG repeat RNAs (sCAG) in polyQ disease models. Thus our data suggest that transcriptional deregulation of miRNAs or sCAG is unlikely to play a significant role in the initial stages of neurodegenerative diseases.

DOI: 10.3389/fgene.2012.00226
PubMed: 23115562


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23115562

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lack of miRNA Misregulation at Early Pathological Stages in Drosophila Neurodegenerative Disease Models.</title>
<author>
<name sortKey="Reinhardt, Anita" sort="Reinhardt, Anita" uniqKey="Reinhardt A" first="Anita" last="Reinhardt">Anita Reinhardt</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire de Génétique du Stress et du Vieillissement, Unité de Biologie Fonctionnelle et Adaptative, CNRS EAC 4413, Université Paris Diderot Sorbonne Paris Cité, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Génétique du Stress et du Vieillissement, Unité de Biologie Fonctionnelle et Adaptative, CNRS EAC 4413, Université Paris Diderot Sorbonne Paris Cité, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Feuillette, Sebastien" sort="Feuillette, Sebastien" uniqKey="Feuillette S" first="Sébastien" last="Feuillette">Sébastien Feuillette</name>
</author>
<author>
<name sortKey="Cassar, Marlene" sort="Cassar, Marlene" uniqKey="Cassar M" first="Marlène" last="Cassar">Marlène Cassar</name>
</author>
<author>
<name sortKey="Callens, Celine" sort="Callens, Celine" uniqKey="Callens C" first="Céline" last="Callens">Céline Callens</name>
</author>
<author>
<name sortKey="Thomassin, Helene" sort="Thomassin, Helene" uniqKey="Thomassin H" first="Hélène" last="Thomassin">Hélène Thomassin</name>
</author>
<author>
<name sortKey="Birman, Serge" sort="Birman, Serge" uniqKey="Birman S" first="Serge" last="Birman">Serge Birman</name>
</author>
<author>
<name sortKey="Lecourtois, Magalie" sort="Lecourtois, Magalie" uniqKey="Lecourtois M" first="Magalie" last="Lecourtois">Magalie Lecourtois</name>
</author>
<author>
<name sortKey="Antoniewski, Christophe" sort="Antoniewski, Christophe" uniqKey="Antoniewski C" first="Christophe" last="Antoniewski">Christophe Antoniewski</name>
</author>
<author>
<name sortKey="Tricoire, Herve" sort="Tricoire, Herve" uniqKey="Tricoire H" first="Hervé" last="Tricoire">Hervé Tricoire</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23115562</idno>
<idno type="pmid">23115562</idno>
<idno type="doi">10.3389/fgene.2012.00226</idno>
<idno type="wicri:Area/PubMed/Corpus">000819</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000819</idno>
<idno type="wicri:Area/PubMed/Curation">000783</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000783</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000783</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000783</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lack of miRNA Misregulation at Early Pathological Stages in Drosophila Neurodegenerative Disease Models.</title>
<author>
<name sortKey="Reinhardt, Anita" sort="Reinhardt, Anita" uniqKey="Reinhardt A" first="Anita" last="Reinhardt">Anita Reinhardt</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire de Génétique du Stress et du Vieillissement, Unité de Biologie Fonctionnelle et Adaptative, CNRS EAC 4413, Université Paris Diderot Sorbonne Paris Cité, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Génétique du Stress et du Vieillissement, Unité de Biologie Fonctionnelle et Adaptative, CNRS EAC 4413, Université Paris Diderot Sorbonne Paris Cité, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Feuillette, Sebastien" sort="Feuillette, Sebastien" uniqKey="Feuillette S" first="Sébastien" last="Feuillette">Sébastien Feuillette</name>
</author>
<author>
<name sortKey="Cassar, Marlene" sort="Cassar, Marlene" uniqKey="Cassar M" first="Marlène" last="Cassar">Marlène Cassar</name>
</author>
<author>
<name sortKey="Callens, Celine" sort="Callens, Celine" uniqKey="Callens C" first="Céline" last="Callens">Céline Callens</name>
</author>
<author>
<name sortKey="Thomassin, Helene" sort="Thomassin, Helene" uniqKey="Thomassin H" first="Hélène" last="Thomassin">Hélène Thomassin</name>
</author>
<author>
<name sortKey="Birman, Serge" sort="Birman, Serge" uniqKey="Birman S" first="Serge" last="Birman">Serge Birman</name>
</author>
<author>
<name sortKey="Lecourtois, Magalie" sort="Lecourtois, Magalie" uniqKey="Lecourtois M" first="Magalie" last="Lecourtois">Magalie Lecourtois</name>
</author>
<author>
<name sortKey="Antoniewski, Christophe" sort="Antoniewski, Christophe" uniqKey="Antoniewski C" first="Christophe" last="Antoniewski">Christophe Antoniewski</name>
</author>
<author>
<name sortKey="Tricoire, Herve" sort="Tricoire, Herve" uniqKey="Tricoire H" first="Hervé" last="Tricoire">Hervé Tricoire</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in genetics</title>
<idno type="eISSN">1664-8021</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Late onset neurodegenerative diseases represent a major public health concern as the population in many countries ages. Both frequent diseases such as Alzheimer disease (AD, 14% incidence for 80-84 year-old Europeans) or Parkinson disease (PD, 1.4% prevalence for >55 years old) share, with other low-incidence neurodegenerative pathologies such as spinocerebellar ataxias (SCAs, 0.01% prevalence) and frontotemporal lobar degeneration (FTLD, 0.02% prevalence), a lack of efficient treatment in spite of important research efforts. Besides significant progress, studies with animal models have revealed unexpected complexities in the degenerative process, emphasizing a need to better understand the underlying pathological mechanisms. Recently, microRNAs (miRNAs), a class of small regulatory non-coding RNAs, have been implicated in some neurodegenerative diseases. The current data supporting a role of miRNAs in PD, tauopathies, dominant ataxias, and FTLD will first be discussed to emphasize the different levels of the pathological processes which may be affected by miRNAs. To investigate a potential involvement of miRNA dysregulation in the early stages of these neurodegenerative diseases we have used Drosophila models for seven diseases (PD, 3 FTLD, 3 dominant ataxias) that recapitulate many features of the human diseases. We performed deep sequencing of head small RNAs after 3 days of pathological protein expression in the fly head neurons. We found no evidence for a statistically significant difference in miRNA expression in this early stage of the pathological process. In addition, we could not identify small non-coding CAG repeat RNAs (sCAG) in polyQ disease models. Thus our data suggest that transcriptional deregulation of miRNAs or sCAG is unlikely to play a significant role in the initial stages of neurodegenerative diseases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">23115562</PMID>
<DateCreated>
<Year>2012</Year>
<Month>11</Month>
<Day>01</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>11</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>08</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1664-8021</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>3</Volume>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in genetics</Title>
<ISOAbbreviation>Front Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Lack of miRNA Misregulation at Early Pathological Stages in Drosophila Neurodegenerative Disease Models.</ArticleTitle>
<Pagination>
<MedlinePgn>226</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fgene.2012.00226</ELocationID>
<Abstract>
<AbstractText>Late onset neurodegenerative diseases represent a major public health concern as the population in many countries ages. Both frequent diseases such as Alzheimer disease (AD, 14% incidence for 80-84 year-old Europeans) or Parkinson disease (PD, 1.4% prevalence for >55 years old) share, with other low-incidence neurodegenerative pathologies such as spinocerebellar ataxias (SCAs, 0.01% prevalence) and frontotemporal lobar degeneration (FTLD, 0.02% prevalence), a lack of efficient treatment in spite of important research efforts. Besides significant progress, studies with animal models have revealed unexpected complexities in the degenerative process, emphasizing a need to better understand the underlying pathological mechanisms. Recently, microRNAs (miRNAs), a class of small regulatory non-coding RNAs, have been implicated in some neurodegenerative diseases. The current data supporting a role of miRNAs in PD, tauopathies, dominant ataxias, and FTLD will first be discussed to emphasize the different levels of the pathological processes which may be affected by miRNAs. To investigate a potential involvement of miRNA dysregulation in the early stages of these neurodegenerative diseases we have used Drosophila models for seven diseases (PD, 3 FTLD, 3 dominant ataxias) that recapitulate many features of the human diseases. We performed deep sequencing of head small RNAs after 3 days of pathological protein expression in the fly head neurons. We found no evidence for a statistically significant difference in miRNA expression in this early stage of the pathological process. In addition, we could not identify small non-coding CAG repeat RNAs (sCAG) in polyQ disease models. Thus our data suggest that transcriptional deregulation of miRNAs or sCAG is unlikely to play a significant role in the initial stages of neurodegenerative diseases.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Reinhardt</LastName>
<ForeName>Anita</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de Génétique du Stress et du Vieillissement, Unité de Biologie Fonctionnelle et Adaptative, CNRS EAC 4413, Université Paris Diderot Sorbonne Paris Cité, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Feuillette</LastName>
<ForeName>Sébastien</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cassar</LastName>
<ForeName>Marlène</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Callens</LastName>
<ForeName>Céline</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thomassin</LastName>
<ForeName>Hélène</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Birman</LastName>
<ForeName>Serge</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lecourtois</LastName>
<ForeName>Magalie</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Antoniewski</LastName>
<ForeName>Christophe</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tricoire</LastName>
<ForeName>Hervé</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Genet</MedlineTA>
<NlmUniqueID>101560621</NlmUniqueID>
<ISSNLinking>1664-8021</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5614-9</RefSource>
<PMID Version="1">18385371</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6415-20</RefSource>
<PMID Version="1">18434550</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2008 Jun 19;453(7198):1107-11</RefSource>
<PMID Version="1">18449188</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2008 Jun 3;18(11):795-802</RefSource>
<PMID Version="1">18501606</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2008 Oct;11(10):1137-9</RefSource>
<PMID Version="1">18758459</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Dec 31;28(53):14341-6</RefSource>
<PMID Version="1">19118166</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2009 Sep 1;18(17):3334-43</RefSource>
<PMID Version="1">19542537</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Bull. 2009 Oct 28;80(4-5):268-73</RefSource>
<PMID Version="1">19683563</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2009 Dec;10(12):837-41</RefSource>
<PMID Version="1">19904280</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2009 Dec;66(6):843-57</RefSource>
<PMID Version="1">20035504</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Semin Cell Dev Biol. 2010 Sep;21(7):768-73</RefSource>
<PMID Version="1">20080199</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropathol Appl Neurobiol. 2010 Jun;36(4):320-30</RefSource>
<PMID Version="1">20202123</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS J. 2010 May;277(10):2268-81</RefSource>
<PMID Version="1">20423455</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2010 May 12;30(19):6763-75</RefSource>
<PMID Version="1">20463238</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell. 2010 May 14;38(3):323-32</RefSource>
<PMID Version="1">20471939</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 2010;184:17-33</RefSource>
<PMID Version="1">20887868</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2011 Jan 3;487(1):94-8</RefSource>
<PMID Version="1">20934487</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2011 Feb;41(2):398-406</RefSource>
<PMID Version="1">20951205</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2010;11(10):R106</RefSource>
<PMID Version="1">20979621</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2011 Jan;116(2):240-7</RefSource>
<PMID Version="1">21062284</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2011 Feb;21(2):203-15</RefSource>
<PMID Version="1">21177969</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Alzheimers Dement. 2011 Jan;7(1):61-73</RefSource>
<PMID Version="1">21255744</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Environ Health Perspect. 2011 Jun;119(6):866-72</RefSource>
<PMID Version="1">21269927</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2011 Jul 1;20(13):2510-23</RefSource>
<PMID Version="1">21487023</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2011 Aug 1;20(15):3067-78</RefSource>
<PMID Version="1">21558425</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Jun 1;31(22):8306-19</RefSource>
<PMID Version="1">21632951</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2011 Sep 1;20(17):3467-77</RefSource>
<PMID Version="1">21672921</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):E655-62</RefSource>
<PMID Version="1">21795609</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Oct 12;31(41):14820-30</RefSource>
<PMID Version="1">21994399</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2011 Oct;70(4):532-40</RefSource>
<PMID Version="1">22028219</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Aging. 2012 May;33(5):1008.e1-15</RefSource>
<PMID Version="1">22118902</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2012 May;46(2):285-90</RefSource>
<PMID Version="1">22285895</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Neurobiol. 2012 Aug;46(1):11-9</RefSource>
<PMID Version="1">22302353</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3347-52</RefSource>
<PMID Version="1">22323604</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2012;8(2):e1002481</RefSource>
<PMID Version="1">22383888</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Front Neurosci. 2012;6:48</RefSource>
<PMID Version="1">22509148</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Toxicol. 2012;2012:870150</RefSource>
<PMID Version="1">22523492</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(7):e40569</RefSource>
<PMID Version="1">22808195</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(1):e16417</RefSource>
<PMID Version="1">21283659</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2009 Aug 7;459(2):100-4</RefSource>
<PMID Version="1">19406203</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Neurosci. 2010 May;41(1):210-8</RefSource>
<PMID Version="1">20091141</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Dev. 2010 Jun 1;24(11):1086-92</RefSource>
<PMID Version="1">20516194</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2010;5(6):e11070</RefSource>
<PMID Version="1">20552018</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2010 Nov;38(20):7219-35</RefSource>
<PMID Version="1">20591823</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2010 Oct 1;19(19):3747-58</RefSource>
<PMID Version="1">20624856</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2010 Oct 15;19(20):3959-69</RefSource>
<PMID Version="1">20660113</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Genet. 2010 Sep;11(9):597-610</RefSource>
<PMID Version="1">20661255</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2010 Jul 29;466(7306):637-41</RefSource>
<PMID Version="1">20671708</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2010 Sep;6(9):e1001087</RefSource>
<PMID Version="1">20824130</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Mol Life Sci. 2011 Apr;68(7):1255-67</RefSource>
<PMID Version="1">20848157</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2000 Mar 23;404(6776):394-8</RefSource>
<PMID Version="1">10746727</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2000 Nov 2;408(6808):101-6</RefSource>
<PMID Version="1">11081516</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13726-31</RefSource>
<PMID Version="1">11095759</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2001 Jul 27;293(5530):711-4</RefSource>
<PMID Version="1">11408621</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12596-601</RefSource>
<PMID Version="1">11675495</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2004 Sep 30;5:74</RefSource>
<PMID Version="1">15458575</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2004 Nov 11;432(7014):235-40</RefSource>
<PMID Version="1">15531877</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2006 Mar;4(3):e67</RefSource>
<PMID Version="1">16494529</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Cell. 2006 Oct;11(4):441-50</RefSource>
<PMID Version="1">17011485</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell. 2006 Oct 6;24(1):157-63</RefSource>
<PMID Version="1">17018300</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 Nov 1;26(44):11474-86</RefSource>
<PMID Version="1">17079677</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2006 Dec;7(12):911-20</RefSource>
<PMID Version="1">17115073</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Cells. 2006 Dec;11(12):1317-35</RefSource>
<PMID Version="1">17121541</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2006 Dec 29;127(7):1335-47</RefSource>
<PMID Version="1">17190598</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Mar 7;27(10):2457-67</RefSource>
<PMID Version="1">17344383</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Mar 7;27(10):2483-92</RefSource>
<PMID Version="1">17344386</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Cell Dev Biol. 2007;23:175-205</RefSource>
<PMID Version="1">17506695</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2007 Jun 14;447(7146):859-63</RefSource>
<PMID Version="1">17568747</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Med. 2007 Jul 9;204(7):1553-8</RefSource>
<PMID Version="1">17606634</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Biol. 2007;8(8):R173</RefSource>
<PMID Version="1">17711588</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2007 Aug 31;317(5842):1220-4</RefSource>
<PMID Version="1">17761882</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Pathol. 2008;3:41-66</RefSource>
<PMID Version="1">18039130</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2008 Mar;29(3):438-45</RefSource>
<PMID Version="1">18082412</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>RNA. 2008 Mar;14(3):432-44</RefSource>
<PMID Version="1">18230762</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC3483601</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Parkinson disease</Keyword>
<Keyword MajorTopicYN="N">ataxia</Keyword>
<Keyword MajorTopicYN="N">deep sequencing</Keyword>
<Keyword MajorTopicYN="N">frontotemporal lobar degeneration</Keyword>
<Keyword MajorTopicYN="N">miRNA</Keyword>
<Keyword MajorTopicYN="N">neurodegenerative diseases</Keyword>
<Keyword MajorTopicYN="N">polyQ diseases</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>07</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>10</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>11</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>11</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>11</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23115562</ArticleId>
<ArticleId IdType="doi">10.3389/fgene.2012.00226</ArticleId>
<ArticleId IdType="pmc">PMC3483601</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Paris</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Antoniewski, Christophe" sort="Antoniewski, Christophe" uniqKey="Antoniewski C" first="Christophe" last="Antoniewski">Christophe Antoniewski</name>
<name sortKey="Birman, Serge" sort="Birman, Serge" uniqKey="Birman S" first="Serge" last="Birman">Serge Birman</name>
<name sortKey="Callens, Celine" sort="Callens, Celine" uniqKey="Callens C" first="Céline" last="Callens">Céline Callens</name>
<name sortKey="Cassar, Marlene" sort="Cassar, Marlene" uniqKey="Cassar M" first="Marlène" last="Cassar">Marlène Cassar</name>
<name sortKey="Feuillette, Sebastien" sort="Feuillette, Sebastien" uniqKey="Feuillette S" first="Sébastien" last="Feuillette">Sébastien Feuillette</name>
<name sortKey="Lecourtois, Magalie" sort="Lecourtois, Magalie" uniqKey="Lecourtois M" first="Magalie" last="Lecourtois">Magalie Lecourtois</name>
<name sortKey="Thomassin, Helene" sort="Thomassin, Helene" uniqKey="Thomassin H" first="Hélène" last="Thomassin">Hélène Thomassin</name>
<name sortKey="Tricoire, Herve" sort="Tricoire, Herve" uniqKey="Tricoire H" first="Hervé" last="Tricoire">Hervé Tricoire</name>
</noCountry>
<country name="France">
<region name="Île-de-France">
<name sortKey="Reinhardt, Anita" sort="Reinhardt, Anita" uniqKey="Reinhardt A" first="Anita" last="Reinhardt">Anita Reinhardt</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000795 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000795 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:23115562
   |texte=   Lack of miRNA Misregulation at Early Pathological Stages in Drosophila Neurodegenerative Disease Models.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:23115562" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonFranceV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024