La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1.

Identifieur interne : 000201 ( PubMed/Checkpoint ); précédent : 000200; suivant : 000202

Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1.

Auteurs : Michel Brahic [États-Unis] ; Luc Bousset [France] ; Gregor Bieri [États-Unis] ; Ronald Melki [France] ; Aaron D. Gitler [États-Unis]

Source :

RBID : pubmed:26820848

English descriptors

Abstract

Accruing evidence suggests that prion-like behavior of fibrillar forms of α-synuclein, β-amyloid peptide and mutant huntingtin are responsible for the spread of the lesions that characterize Parkinson disease, Alzheimer disease and Huntington disease, respectively. It is unknown whether these distinct protein assemblies are transported within and between neurons by similar or distinct mechanisms. It is also unclear if neuronal death or injury is required for neuron-to-neuron transfer. To address these questions, we used mouse primary cortical neurons grown in microfluidic devices to measure the amounts of α-synuclein, Aβ42 and HTTExon1 fibrils transported by axons in both directions (anterograde and retrograde), as well as to examine the mechanism of their release from axons after anterograde transport. We observed that the three fibrils were transported in both anterograde and retrograde directions but with strikingly different efficiencies. The amount of Aβ42 fibrils transported was ten times higher than that of the other two fibrils. HTTExon1 was efficiently transported in the retrograde direction but only marginally in the anterograde direction. Finally, using neurons from two distinct mutant mouse strains whose axons are highly resistant to neurodegeneration (Wld(S) and Sarm1(-/-)), we found that the three different fibrils were secreted by axons after anterograde transport, in the absence of axonal lysis, indicating that trans-neuronal spread can occur in intact healthy neurons. In summary, fibrils of α-synuclein, Aβ42 and HTTExon1 are all transported in axons but in directions and amounts that are specific of each fibril. After anterograde transport, the three fibrils were secreted in the medium in the absence of axon lysis. Continuous secretion could play an important role in the spread of pathology between neurons but may be amenable to pharmacological intervention.

DOI: 10.1007/s00401-016-1538-0
PubMed: 26820848


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26820848

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1.</title>
<author>
<name sortKey="Brahic, Michel" sort="Brahic, Michel" uniqKey="Brahic M" first="Michel" last="Brahic">Michel Brahic</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5120, USA. mbrahic@stanford.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5120</wicri:regionArea>
<wicri:noRegion>94305-5120</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bousset, Luc" sort="Bousset, Luc" uniqKey="Bousset L" first="Luc" last="Bousset">Luc Bousset</name>
<affiliation wicri:level="3">
<nlm:affiliation>Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Gif-sur-Yvette</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bieri, Gregor" sort="Bieri, Gregor" uniqKey="Bieri G" first="Gregor" last="Bieri">Gregor Bieri</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5120, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5120</wicri:regionArea>
<wicri:noRegion>94305-5120</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Melki, Ronald" sort="Melki, Ronald" uniqKey="Melki R" first="Ronald" last="Melki">Ronald Melki</name>
<affiliation wicri:level="3">
<nlm:affiliation>Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Gif-sur-Yvette</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gitler, Aaron D" sort="Gitler, Aaron D" uniqKey="Gitler A" first="Aaron D" last="Gitler">Aaron D. Gitler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5120, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5120</wicri:regionArea>
<wicri:noRegion>94305-5120</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26820848</idno>
<idno type="pmid">26820848</idno>
<idno type="doi">10.1007/s00401-016-1538-0</idno>
<idno type="wicri:Area/PubMed/Corpus">000161</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000161</idno>
<idno type="wicri:Area/PubMed/Curation">000161</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000161</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000161</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000161</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1.</title>
<author>
<name sortKey="Brahic, Michel" sort="Brahic, Michel" uniqKey="Brahic M" first="Michel" last="Brahic">Michel Brahic</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5120, USA. mbrahic@stanford.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5120</wicri:regionArea>
<wicri:noRegion>94305-5120</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bousset, Luc" sort="Bousset, Luc" uniqKey="Bousset L" first="Luc" last="Bousset">Luc Bousset</name>
<affiliation wicri:level="3">
<nlm:affiliation>Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Gif-sur-Yvette</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bieri, Gregor" sort="Bieri, Gregor" uniqKey="Bieri G" first="Gregor" last="Bieri">Gregor Bieri</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5120, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5120</wicri:regionArea>
<wicri:noRegion>94305-5120</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Melki, Ronald" sort="Melki, Ronald" uniqKey="Melki R" first="Ronald" last="Melki">Ronald Melki</name>
<affiliation wicri:level="3">
<nlm:affiliation>Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Gif-sur-Yvette</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gitler, Aaron D" sort="Gitler, Aaron D" uniqKey="Gitler A" first="Aaron D" last="Gitler">Aaron D. Gitler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5120, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5120</wicri:regionArea>
<wicri:noRegion>94305-5120</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Acta neuropathologica</title>
<idno type="eISSN">1432-0533</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amyloid beta-Peptides (metabolism)</term>
<term>Animals</term>
<term>Armadillo Domain Proteins (genetics)</term>
<term>Armadillo Domain Proteins (metabolism)</term>
<term>Axonal Transport (physiology)</term>
<term>Brain (pathology)</term>
<term>Cholera Toxin (metabolism)</term>
<term>Cytoskeletal Proteins (genetics)</term>
<term>Cytoskeletal Proteins (metabolism)</term>
<term>Embryo, Mammalian</term>
<term>Glutathione Peroxidase (metabolism)</term>
<term>Humans</term>
<term>Huntingtin Protein (genetics)</term>
<term>Huntingtin Protein (metabolism)</term>
<term>Lab-On-A-Chip Devices</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Neurons (metabolism)</term>
<term>Peptide Fragments (metabolism)</term>
<term>Peptide Termination Factors (metabolism)</term>
<term>Polyglutamic Acid (genetics)</term>
<term>Polyglutamic Acid (metabolism)</term>
<term>Prions (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>alpha-Synuclein (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Armadillo Domain Proteins</term>
<term>Cytoskeletal Proteins</term>
<term>Huntingtin Protein</term>
<term>Polyglutamic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amyloid beta-Peptides</term>
<term>Armadillo Domain Proteins</term>
<term>Cholera Toxin</term>
<term>Cytoskeletal Proteins</term>
<term>Glutathione Peroxidase</term>
<term>Huntingtin Protein</term>
<term>Multiprotein Complexes</term>
<term>Peptide Fragments</term>
<term>Peptide Termination Factors</term>
<term>Polyglutamic Acid</term>
<term>Prions</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>alpha-Synuclein</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Neurons</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Brain</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Axonal Transport</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Embryo, Mammalian</term>
<term>Humans</term>
<term>Lab-On-A-Chip Devices</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Accruing evidence suggests that prion-like behavior of fibrillar forms of α-synuclein, β-amyloid peptide and mutant huntingtin are responsible for the spread of the lesions that characterize Parkinson disease, Alzheimer disease and Huntington disease, respectively. It is unknown whether these distinct protein assemblies are transported within and between neurons by similar or distinct mechanisms. It is also unclear if neuronal death or injury is required for neuron-to-neuron transfer. To address these questions, we used mouse primary cortical neurons grown in microfluidic devices to measure the amounts of α-synuclein, Aβ42 and HTTExon1 fibrils transported by axons in both directions (anterograde and retrograde), as well as to examine the mechanism of their release from axons after anterograde transport. We observed that the three fibrils were transported in both anterograde and retrograde directions but with strikingly different efficiencies. The amount of Aβ42 fibrils transported was ten times higher than that of the other two fibrils. HTTExon1 was efficiently transported in the retrograde direction but only marginally in the anterograde direction. Finally, using neurons from two distinct mutant mouse strains whose axons are highly resistant to neurodegeneration (Wld(S) and Sarm1(-/-)), we found that the three different fibrils were secreted by axons after anterograde transport, in the absence of axonal lysis, indicating that trans-neuronal spread can occur in intact healthy neurons. In summary, fibrils of α-synuclein, Aβ42 and HTTExon1 are all transported in axons but in directions and amounts that are specific of each fibril. After anterograde transport, the three fibrils were secreted in the medium in the absence of axon lysis. Continuous secretion could play an important role in the spread of pathology between neurons but may be amenable to pharmacological intervention.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26820848</PMID>
<DateCreated>
<Year>2016</Year>
<Month>03</Month>
<Day>14</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>12</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>12</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-0533</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>131</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2016</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Acta neuropathologica</Title>
<ISOAbbreviation>Acta Neuropathol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1.</ArticleTitle>
<Pagination>
<MedlinePgn>539-48</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00401-016-1538-0</ELocationID>
<Abstract>
<AbstractText>Accruing evidence suggests that prion-like behavior of fibrillar forms of α-synuclein, β-amyloid peptide and mutant huntingtin are responsible for the spread of the lesions that characterize Parkinson disease, Alzheimer disease and Huntington disease, respectively. It is unknown whether these distinct protein assemblies are transported within and between neurons by similar or distinct mechanisms. It is also unclear if neuronal death or injury is required for neuron-to-neuron transfer. To address these questions, we used mouse primary cortical neurons grown in microfluidic devices to measure the amounts of α-synuclein, Aβ42 and HTTExon1 fibrils transported by axons in both directions (anterograde and retrograde), as well as to examine the mechanism of their release from axons after anterograde transport. We observed that the three fibrils were transported in both anterograde and retrograde directions but with strikingly different efficiencies. The amount of Aβ42 fibrils transported was ten times higher than that of the other two fibrils. HTTExon1 was efficiently transported in the retrograde direction but only marginally in the anterograde direction. Finally, using neurons from two distinct mutant mouse strains whose axons are highly resistant to neurodegeneration (Wld(S) and Sarm1(-/-)), we found that the three different fibrils were secreted by axons after anterograde transport, in the absence of axonal lysis, indicating that trans-neuronal spread can occur in intact healthy neurons. In summary, fibrils of α-synuclein, Aβ42 and HTTExon1 are all transported in axons but in directions and amounts that are specific of each fibril. After anterograde transport, the three fibrils were secreted in the medium in the absence of axon lysis. Continuous secretion could play an important role in the spread of pathology between neurons but may be amenable to pharmacological intervention.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Brahic</LastName>
<ForeName>Michel</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5120, USA. mbrahic@stanford.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bousset</LastName>
<ForeName>Luc</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bieri</LastName>
<ForeName>Gregor</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5120, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Melki</LastName>
<ForeName>Ronald</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gitler</LastName>
<ForeName>Aaron D</ForeName>
<Initials>AD</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305-5120, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>1DP1OD019046</GrantID>
<Acronym>OD</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<Agency>Howard Hughes Medical Institute</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>01</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Acta Neuropathol</MedlineTA>
<NlmUniqueID>0412041</NlmUniqueID>
<ISSNLinking>0001-6322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016229">Amyloid beta-Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051186">Armadillo Domain Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003598">Cytoskeletal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C086055">HTT protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071058">Huntingtin Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010446">Peptide Fragments</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010454">Peptide Termination Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011328">Prions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C543961">SARM1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C068068">SUP35 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051844">alpha-Synuclein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C075222">amyloid beta-protein (1-42)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>25513-46-6</RegistryNumber>
<NameOfSubstance UI="D011099">Polyglutamic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9012-63-9</RegistryNumber>
<NameOfSubstance UI="D002772">Cholera Toxin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.9</RegistryNumber>
<NameOfSubstance UI="D005979">Glutathione Peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.9</RegistryNumber>
<NameOfSubstance UI="C067020">URE2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2015 Jun 18;522(7556):340-4</RefSource>
<PMID Version="1">26061766</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2012 Feb 23;73(4):685-97</RefSource>
<PMID Version="1">22365544</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2002 Jun 25;58(12):1791-800</RefSource>
<PMID Version="1">12084879</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Pathol. 2002 Nov;161(5):1869-79</RefSource>
<PMID Version="1">12414533</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol. 2002 Oct;249 Suppl 3:III/1-5</RefSource>
<PMID Version="1">12528692</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neural Transm (Vienna). 2003 May;110(5):517-36</RefSource>
<PMID Version="1">12721813</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2003 Oct 1;23(26):8967-77</RefSource>
<PMID Version="1">14523099</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 1984 Mar 8;310(10):661-3</RefSource>
<PMID Version="1">6363926</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Methods. 1988 Jul;24(3):225-35</RefSource>
<PMID Version="1">2458510</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9717-20</RefSource>
<PMID Version="1">8415768</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Methods. 1996 Mar;65(1):101-12</RefSource>
<PMID Version="1">8815303</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1999 May 7;274(19):13666-74</RefSource>
<PMID Version="1">10224139</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Methods. 2005 Aug;2(8):599-605</RefSource>
<PMID Version="1">16094385</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS J. 2005 Aug;272(16):4023-33</RefSource>
<PMID Version="1">16098186</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Aging. 2005 Oct;26(9):1235-44</RefSource>
<PMID Version="1">16023263</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 2006 Feb 22;25(4):822-33</RefSource>
<PMID Version="1">16467849</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Mar 21;27(12):3131-8</RefSource>
<PMID Version="1">17376974</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Sci STKE. 2007 Dec 18;2007(417):pe73</RefSource>
<PMID Version="1">18089857</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2008 May;14(5):501-3</RefSource>
<PMID Version="1">18391963</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2009 Feb;11(2):219-25</RefSource>
<PMID Version="1">19151706</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS J. 2009 Mar;276(5):1266-81</RefSource>
<PMID Version="1">19175671</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5907-12</RefSource>
<PMID Version="1">19321417</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2009 Jul;11(7):909-13</RefSource>
<PMID Version="1">19503072</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2009 Oct;111(1):192-203</RefSource>
<PMID Version="1">19686384</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2009 Dec;220(2):224-5</RefSource>
<PMID Version="1">19786018</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Commun. 2013;4:2575</RefSource>
<PMID Version="1">24108358</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscientist. 2014 Feb;20(1):71-81</RefSource>
<PMID Version="1">23912032</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2014 Jul;76(1):31-42</RefSource>
<PMID Version="1">24798518</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2014 Aug;17(8):1064-72</RefSource>
<PMID Version="1">25017010</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2014 Nov 12;34(46):15281-7</RefSource>
<PMID Version="1">25392495</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2014 Dec 20;23(25):6732-45</RefSource>
<PMID Version="1">25092884</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2015 Jan 30;290(5):2560-76</RefSource>
<PMID Version="1">25505179</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20051-6</RefSource>
<PMID Version="1">19892735</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Sci. 2010 Apr 15;123(Pt 8):1191-201</RefSource>
<PMID Version="1">20356930</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2010 May 19;30(20):6838-51</RefSource>
<PMID Version="1">20484626</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2010 Jul 7;30(27):9166-71</RefSource>
<PMID Version="1">20610750</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2010 Nov 5;285(45):34885-98</RefSource>
<PMID Version="1">20805224</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2010 Nov 12;330(6006):980-2</RefSource>
<PMID Version="1">20966215</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2011 Feb;121(2):715-25</RefSource>
<PMID Version="1">21245577</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Traffic. 2012 May;13(5):681-93</RefSource>
<PMID Version="1">22309053</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Med. 2012 May 7;209(5):975-86</RefSource>
<PMID Version="1">22508839</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2012 Jun 1;287(23):19440-51</RefSource>
<PMID Version="1">22461630</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2012 Jun 20;102(12):2894-905</RefSource>
<PMID Version="1">22735540</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2012 Jul 27;337(6093):481-4</RefSource>
<PMID Version="1">22678360</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2012 Oct;72(4):517-24</RefSource>
<PMID Version="1">23109146</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2012 Nov 16;338(6109):949-53</RefSource>
<PMID Version="1">23161999</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2013 Jan 18;288(3):1856-70</RefSource>
<PMID Version="1">23188818</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2013 Sep 12;154(6):1182-4</RefSource>
<PMID Version="1">24034239</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2013 Sep 12;154(6):1257-68</RefSource>
<PMID Version="1">24034249</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Neuropathol Commun. 2015;3:13</RefSource>
<PMID Version="1">25853980</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2011 Jun;42(3):360-7</RefSource>
<PMID Version="1">21303699</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2011 May 12;70(3):441-54</RefSource>
<PMID Version="1">21555071</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2011 Oct 6;72(1):57-71</RefSource>
<PMID Version="1">21982369</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2012 Jan 9;196(1):7-18</RefSource>
<PMID Version="1">22232700</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropathol Appl Neurobiol. 2016 Feb;42(2):137-52</RefSource>
<PMID Version="1">26111612</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016229" MajorTopicYN="N">Amyloid beta-Peptides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051186" MajorTopicYN="N">Armadillo Domain Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001370" MajorTopicYN="N">Axonal Transport</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001921" MajorTopicYN="N">Brain</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002772" MajorTopicYN="N">Cholera Toxin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003598" MajorTopicYN="N">Cytoskeletal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004622" MajorTopicYN="N">Embryo, Mammalian</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005979" MajorTopicYN="N">Glutathione Peroxidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071058" MajorTopicYN="N">Huntingtin Protein</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056656" MajorTopicYN="N">Lab-On-A-Chip Devices</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009474" MajorTopicYN="N">Neurons</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010446" MajorTopicYN="N">Peptide Fragments</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010454" MajorTopicYN="N">Peptide Termination Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011099" MajorTopicYN="N">Polyglutamic Acid</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011328" MajorTopicYN="N">Prions</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051844" MajorTopicYN="N">alpha-Synuclein</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4789229</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Axonal transport</Keyword>
<Keyword MajorTopicYN="N">Aβ42</Keyword>
<Keyword MajorTopicYN="N">HTTExon1</Keyword>
<Keyword MajorTopicYN="N">Secretion</Keyword>
<Keyword MajorTopicYN="N">α-Synuclein</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>06</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>01</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>01</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26820848</ArticleId>
<ArticleId IdType="doi">10.1007/s00401-016-1538-0</ArticleId>
<ArticleId IdType="pii">10.1007/s00401-016-1538-0</ArticleId>
<ArticleId IdType="pmc">PMC4789229</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
<li>États-Unis</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Gif-sur-Yvette</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Brahic, Michel" sort="Brahic, Michel" uniqKey="Brahic M" first="Michel" last="Brahic">Michel Brahic</name>
</noRegion>
<name sortKey="Bieri, Gregor" sort="Bieri, Gregor" uniqKey="Bieri G" first="Gregor" last="Bieri">Gregor Bieri</name>
<name sortKey="Gitler, Aaron D" sort="Gitler, Aaron D" uniqKey="Gitler A" first="Aaron D" last="Gitler">Aaron D. Gitler</name>
</country>
<country name="France">
<region name="Île-de-France">
<name sortKey="Bousset, Luc" sort="Bousset, Luc" uniqKey="Bousset L" first="Luc" last="Bousset">Luc Bousset</name>
</region>
<name sortKey="Melki, Ronald" sort="Melki, Ronald" uniqKey="Melki R" first="Ronald" last="Melki">Ronald Melki</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000201 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000201 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:26820848
   |texte=   Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:26820848" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonFranceV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024