La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Leucine‐rich repeat kinase 2 interacts with p21‐activated kinase 6 to control neurite complexity in mammalian brain

Identifieur interne : 000141 ( Pmc/Corpus ); précédent : 000140; suivant : 000142

Leucine‐rich repeat kinase 2 interacts with p21‐activated kinase 6 to control neurite complexity in mammalian brain

Auteurs : Laura Civiero ; Maria Daniela Cirnaru ; Alexandra Beilina ; Umberto Rodella ; Isabella Russo ; Elisa Belluzzi ; Evy Lobbestael ; Lauran Reyniers ; Geshanthi Hondhamuni ; Patrick A. Lewis ; Chris Van Den Haute ; Veerle Baekelandt ; Rina Bandopadhyay ; Luigi Bubacco ; Giovanni Piccoli ; Mark R. Cookson ; Jean-Marc Taymans ; Elisa Greggio

Source :

RBID : PMC:4715492

Abstract

Abstract

Leucine‐rich repeat kinase 2 (LRRK2) is a causative gene for Parkinson's disease, but the physiological function and the mechanism(s) by which the cellular activity of LRRK2 is regulated are poorly understood. Here, we identified p21‐activated kinase 6 (PAK6) as a novel interactor of the GTPase/ROC domain of LRRK2. p21‐activated kinases are serine‐threonine kinases that serve as targets for the small GTP binding proteins Cdc42 and Rac1 and have been implicated in different morphogenetic processes through remodeling of the actin cytoskeleton such as synapse formation and neuritogenesis. Using an in vivo neuromorphology assay, we show that PAK6 is a positive regulator of neurite outgrowth and that LRRK2 is required for this function. Analyses of post‐mortem brain tissue from idiopathic and LRRK2 G2019S carriers reveal an increase in PAK6 activation state, whereas knock‐out LRRK2 mice display reduced PAK6 activation and phosphorylation of PAK6 substrates. Taken together, these results support a critical role of LRRK2 GTPase domain in cytoskeletal dynamics in vivo through the novel interactor PAK6, and provide a valuable platform to unravel the mechanism underlying LRRK2‐mediated pathophysiology.

We propose p21‐activated kinase 6 (PAK6) as a novel interactor of leucine‐rich repeat kinase 2 (LRRK2), a kinase involved in Parkinson's disease (PD). In health, PAK6 regulates neurite complexity in the brain and LRRK2 is required for its function, (a) whereas PAK6 is aberrantly activated in LRRK2‐linked PD brain (b) suggesting that LRRK2 toxicity is mediated by PAK6.


Url:
DOI: 10.1111/jnc.13369
PubMed: 26375402
PubMed Central: 4715492

Links to Exploration step

PMC:4715492

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Leucine‐rich repeat kinase 2 interacts with p21‐activated kinase 6 to control neurite complexity in mammalian brain</title>
<author>
<name sortKey="Civiero, Laura" sort="Civiero, Laura" uniqKey="Civiero L" first="Laura" last="Civiero">Laura Civiero</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cirnaru, Maria Daniela" sort="Cirnaru, Maria Daniela" uniqKey="Cirnaru M" first="Maria Daniela" last="Cirnaru">Maria Daniela Cirnaru</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Beilina, Alexandra" sort="Beilina, Alexandra" uniqKey="Beilina A" first="Alexandra" last="Beilina">Alexandra Beilina</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0003"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rodella, Umberto" sort="Rodella, Umberto" uniqKey="Rodella U" first="Umberto" last="Rodella">Umberto Rodella</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="jnc13369-aff-0004"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Russo, Isabella" sort="Russo, Isabella" uniqKey="Russo I" first="Isabella" last="Russo">Isabella Russo</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Belluzzi, Elisa" sort="Belluzzi, Elisa" uniqKey="Belluzzi E" first="Elisa" last="Belluzzi">Elisa Belluzzi</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lobbestael, Evy" sort="Lobbestael, Evy" uniqKey="Lobbestael E" first="Evy" last="Lobbestael">Evy Lobbestael</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0004"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Reyniers, Lauran" sort="Reyniers, Lauran" uniqKey="Reyniers L" first="Lauran" last="Reyniers">Lauran Reyniers</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0004"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hondhamuni, Geshanthi" sort="Hondhamuni, Geshanthi" uniqKey="Hondhamuni G" first="Geshanthi" last="Hondhamuni">Geshanthi Hondhamuni</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0005"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lewis, Patrick A" sort="Lewis, Patrick A" uniqKey="Lewis P" first="Patrick A." last="Lewis">Patrick A. Lewis</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0006"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="jnc13369-aff-0007"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Den Haute, Chris" sort="Van Den Haute, Chris" uniqKey="Van Den Haute C" first="Chris" last="Van Den Haute">Chris Van Den Haute</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0004"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="jnc13369-aff-0008"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Baekelandt, Veerle" sort="Baekelandt, Veerle" uniqKey="Baekelandt V" first="Veerle" last="Baekelandt">Veerle Baekelandt</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0004"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bandopadhyay, Rina" sort="Bandopadhyay, Rina" uniqKey="Bandopadhyay R" first="Rina" last="Bandopadhyay">Rina Bandopadhyay</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0005"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bubacco, Luigi" sort="Bubacco, Luigi" uniqKey="Bubacco L" first="Luigi" last="Bubacco">Luigi Bubacco</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Piccoli, Giovanni" sort="Piccoli, Giovanni" uniqKey="Piccoli G" first="Giovanni" last="Piccoli">Giovanni Piccoli</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cookson, Mark R" sort="Cookson, Mark R" uniqKey="Cookson M" first="Mark R." last="Cookson">Mark R. Cookson</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0003"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Taymans, Jean Arc" sort="Taymans, Jean Arc" uniqKey="Taymans J" first="Jean-Marc" last="Taymans">Jean-Marc Taymans</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0004"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="jnc13369-curr-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Greggio, Elisa" sort="Greggio, Elisa" uniqKey="Greggio E" first="Elisa" last="Greggio">Elisa Greggio</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0001"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26375402</idno>
<idno type="pmc">4715492</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4715492</idno>
<idno type="RBID">PMC:4715492</idno>
<idno type="doi">10.1111/jnc.13369</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000141</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000141</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Leucine‐rich repeat kinase 2 interacts with p21‐activated kinase 6 to control neurite complexity in mammalian brain</title>
<author>
<name sortKey="Civiero, Laura" sort="Civiero, Laura" uniqKey="Civiero L" first="Laura" last="Civiero">Laura Civiero</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cirnaru, Maria Daniela" sort="Cirnaru, Maria Daniela" uniqKey="Cirnaru M" first="Maria Daniela" last="Cirnaru">Maria Daniela Cirnaru</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Beilina, Alexandra" sort="Beilina, Alexandra" uniqKey="Beilina A" first="Alexandra" last="Beilina">Alexandra Beilina</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0003"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rodella, Umberto" sort="Rodella, Umberto" uniqKey="Rodella U" first="Umberto" last="Rodella">Umberto Rodella</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0001"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="jnc13369-aff-0004"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Russo, Isabella" sort="Russo, Isabella" uniqKey="Russo I" first="Isabella" last="Russo">Isabella Russo</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Belluzzi, Elisa" sort="Belluzzi, Elisa" uniqKey="Belluzzi E" first="Elisa" last="Belluzzi">Elisa Belluzzi</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lobbestael, Evy" sort="Lobbestael, Evy" uniqKey="Lobbestael E" first="Evy" last="Lobbestael">Evy Lobbestael</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0004"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Reyniers, Lauran" sort="Reyniers, Lauran" uniqKey="Reyniers L" first="Lauran" last="Reyniers">Lauran Reyniers</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0004"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hondhamuni, Geshanthi" sort="Hondhamuni, Geshanthi" uniqKey="Hondhamuni G" first="Geshanthi" last="Hondhamuni">Geshanthi Hondhamuni</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0005"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lewis, Patrick A" sort="Lewis, Patrick A" uniqKey="Lewis P" first="Patrick A." last="Lewis">Patrick A. Lewis</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0006"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="jnc13369-aff-0007"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Den Haute, Chris" sort="Van Den Haute, Chris" uniqKey="Van Den Haute C" first="Chris" last="Van Den Haute">Chris Van Den Haute</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0004"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="jnc13369-aff-0008"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Baekelandt, Veerle" sort="Baekelandt, Veerle" uniqKey="Baekelandt V" first="Veerle" last="Baekelandt">Veerle Baekelandt</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0004"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bandopadhyay, Rina" sort="Bandopadhyay, Rina" uniqKey="Bandopadhyay R" first="Rina" last="Bandopadhyay">Rina Bandopadhyay</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0005"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bubacco, Luigi" sort="Bubacco, Luigi" uniqKey="Bubacco L" first="Luigi" last="Bubacco">Luigi Bubacco</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Piccoli, Giovanni" sort="Piccoli, Giovanni" uniqKey="Piccoli G" first="Giovanni" last="Piccoli">Giovanni Piccoli</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0002"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cookson, Mark R" sort="Cookson, Mark R" uniqKey="Cookson M" first="Mark R." last="Cookson">Mark R. Cookson</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0003"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Taymans, Jean Arc" sort="Taymans, Jean Arc" uniqKey="Taymans J" first="Jean-Marc" last="Taymans">Jean-Marc Taymans</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0004"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="jnc13369-curr-0001"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Greggio, Elisa" sort="Greggio, Elisa" uniqKey="Greggio E" first="Elisa" last="Greggio">Elisa Greggio</name>
<affiliation>
<nlm:aff id="jnc13369-aff-0001"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Neurochemistry</title>
<idno type="ISSN">0022-3042</idno>
<idno type="eISSN">1471-4159</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract</title>
<sec sec-type="opening-section" id="jnc13369-sec-1001">
<p>Leucine‐rich repeat kinase 2 (
<italic>
<styled-content style="fixed-case">LRRK</styled-content>
2</italic>
) is a causative gene for Parkinson's disease, but the physiological function and the mechanism(s) by which the cellular activity of
<styled-content style="fixed-case">LRRK</styled-content>
2 is regulated are poorly understood. Here, we identified p21‐activated kinase 6 (
<styled-content style="fixed-case">PAK</styled-content>
6) as a novel interactor of the GTPase/
<styled-content style="fixed-case">ROC</styled-content>
domain of
<styled-content style="fixed-case">LRRK</styled-content>
2. p21‐activated kinases are serine‐threonine kinases that serve as targets for the small
<styled-content style="fixed-case">GTP</styled-content>
binding proteins Cdc42 and Rac1 and have been implicated in different morphogenetic processes through remodeling of the actin cytoskeleton such as synapse formation and neuritogenesis. Using an
<italic>in vivo</italic>
neuromorphology assay, we show that
<styled-content style="fixed-case">PAK</styled-content>
6 is a positive regulator of neurite outgrowth and that
<styled-content style="fixed-case">LRRK</styled-content>
2 is required for this function. Analyses of post‐mortem brain tissue from idiopathic and
<styled-content style="fixed-case">LRRK</styled-content>
2 G2019S carriers reveal an increase in
<styled-content style="fixed-case">PAK</styled-content>
6 activation state, whereas knock‐out
<styled-content style="fixed-case">LRRK</styled-content>
2 mice display reduced
<styled-content style="fixed-case">PAK</styled-content>
6 activation and phosphorylation of
<styled-content style="fixed-case">PAK</styled-content>
6 substrates. Taken together, these results support a critical role of
<styled-content style="fixed-case">LRRK</styled-content>
2 GTPase domain in cytoskeletal dynamics
<italic>in vivo</italic>
through the novel interactor
<styled-content style="fixed-case">PAK</styled-content>
6, and provide a valuable platform to unravel the mechanism underlying
<styled-content style="fixed-case">LRRK</styled-content>
2‐mediated pathophysiology.</p>
</sec>
<sec sec-type="opening-section" id="jnc13369-sec-1002">
<p>
<boxed-text position="anchor" content-type="graphic" id="jnc13369-blkfxd-0002" orientation="portrait">
<graphic xlink:href="JNC-135-1242-g008.jpg" position="anchor" id="nlm-graphic-1" orientation="portrait"></graphic>
</boxed-text>
We propose p21‐activated kinase 6 (PAK6) as a novel interactor of leucine‐rich repeat kinase 2 (LRRK2), a kinase involved in Parkinson's disease (PD). In health, PAK6 regulates neurite complexity in the brain and LRRK2 is required for its function, (a) whereas PAK6 is aberrantly activated in LRRK2‐linked PD brain (b) suggesting that LRRK2 toxicity is mediated by PAK6.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Neurochem</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Neurochem</journal-id>
<journal-id journal-id-type="doi">10.1111/(ISSN)1471-4159</journal-id>
<journal-id journal-id-type="publisher-id">JNC</journal-id>
<journal-title-group>
<journal-title>Journal of Neurochemistry</journal-title>
</journal-title-group>
<issn pub-type="ppub">0022-3042</issn>
<issn pub-type="epub">1471-4159</issn>
<publisher>
<publisher-name>John Wiley and Sons Inc.</publisher-name>
<publisher-loc>Hoboken</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26375402</article-id>
<article-id pub-id-type="pmc">4715492</article-id>
<article-id pub-id-type="doi">10.1111/jnc.13369</article-id>
<article-id pub-id-type="publisher-id">JNC13369</article-id>
<article-categories>
<subj-group subj-group-type="overline">
<subject>Original Article</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>ORIGINAL ARTICLES</subject>
<subj-group subj-group-type="heading">
<subject>Molecular Basis of Disease</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Leucine‐rich repeat kinase 2 interacts with p21‐activated kinase 6 to control neurite complexity in mammalian brain</article-title>
<alt-title alt-title-type="left-running-head">L. Civiero
<italic>et al</italic>
.</alt-title>
</title-group>
<contrib-group>
<contrib id="jnc13369-cr-0001" contrib-type="author">
<name>
<surname>Civiero</surname>
<given-names>Laura</given-names>
</name>
<xref ref-type="aff" rid="jnc13369-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="jnc13369-cr-0002" contrib-type="author">
<name>
<surname>Cirnaru</surname>
<given-names>Maria Daniela</given-names>
</name>
<xref ref-type="aff" rid="jnc13369-aff-0002">
<sup>2</sup>
</xref>
</contrib>
<contrib id="jnc13369-cr-0003" contrib-type="author">
<name>
<surname>Beilina</surname>
<given-names>Alexandra</given-names>
</name>
<xref ref-type="aff" rid="jnc13369-aff-0003">
<sup>3</sup>
</xref>
</contrib>
<contrib id="jnc13369-cr-0004" contrib-type="author">
<name>
<surname>Rodella</surname>
<given-names>Umberto</given-names>
</name>
<xref ref-type="aff" rid="jnc13369-aff-0001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="jnc13369-aff-0004">
<sup>4</sup>
</xref>
</contrib>
<contrib id="jnc13369-cr-0005" contrib-type="author">
<name>
<surname>Russo</surname>
<given-names>Isabella</given-names>
</name>
<xref ref-type="aff" rid="jnc13369-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="jnc13369-cr-0006" contrib-type="author">
<name>
<surname>Belluzzi</surname>
<given-names>Elisa</given-names>
</name>
<xref ref-type="aff" rid="jnc13369-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="jnc13369-cr-0007" contrib-type="author">
<name>
<surname>Lobbestael</surname>
<given-names>Evy</given-names>
</name>
<xref ref-type="aff" rid="jnc13369-aff-0004">
<sup>4</sup>
</xref>
</contrib>
<contrib id="jnc13369-cr-0008" contrib-type="author">
<name>
<surname>Reyniers</surname>
<given-names>Lauran</given-names>
</name>
<xref ref-type="aff" rid="jnc13369-aff-0004">
<sup>4</sup>
</xref>
</contrib>
<contrib id="jnc13369-cr-0009" contrib-type="author">
<name>
<surname>Hondhamuni</surname>
<given-names>Geshanthi</given-names>
</name>
<xref ref-type="aff" rid="jnc13369-aff-0005">
<sup>5</sup>
</xref>
</contrib>
<contrib id="jnc13369-cr-0010" contrib-type="author">
<name>
<surname>Lewis</surname>
<given-names>Patrick A.</given-names>
</name>
<xref ref-type="aff" rid="jnc13369-aff-0006">
<sup>6</sup>
</xref>
<xref ref-type="aff" rid="jnc13369-aff-0007">
<sup>7</sup>
</xref>
</contrib>
<contrib id="jnc13369-cr-0011" contrib-type="author">
<name>
<surname>Van den Haute</surname>
<given-names>Chris</given-names>
</name>
<xref ref-type="aff" rid="jnc13369-aff-0004">
<sup>4</sup>
</xref>
<xref ref-type="aff" rid="jnc13369-aff-0008">
<sup>8</sup>
</xref>
</contrib>
<contrib id="jnc13369-cr-0012" contrib-type="author">
<name>
<surname>Baekelandt</surname>
<given-names>Veerle</given-names>
</name>
<xref ref-type="aff" rid="jnc13369-aff-0004">
<sup>4</sup>
</xref>
</contrib>
<contrib id="jnc13369-cr-0013" contrib-type="author">
<name>
<surname>Bandopadhyay</surname>
<given-names>Rina</given-names>
</name>
<xref ref-type="aff" rid="jnc13369-aff-0005">
<sup>5</sup>
</xref>
</contrib>
<contrib id="jnc13369-cr-0014" contrib-type="author">
<name>
<surname>Bubacco</surname>
<given-names>Luigi</given-names>
</name>
<xref ref-type="aff" rid="jnc13369-aff-0001">
<sup>1</sup>
</xref>
</contrib>
<contrib id="jnc13369-cr-0015" contrib-type="author">
<name>
<surname>Piccoli</surname>
<given-names>Giovanni</given-names>
</name>
<xref ref-type="aff" rid="jnc13369-aff-0002">
<sup>2</sup>
</xref>
</contrib>
<contrib id="jnc13369-cr-0016" contrib-type="author" corresp="yes">
<name>
<surname>Cookson</surname>
<given-names>Mark R.</given-names>
</name>
<xref ref-type="aff" rid="jnc13369-aff-0003">
<sup>3</sup>
</xref>
</contrib>
<contrib id="jnc13369-cr-0017" contrib-type="author" corresp="yes">
<name>
<surname>Taymans</surname>
<given-names>Jean‐Marc</given-names>
</name>
<xref ref-type="aff" rid="jnc13369-aff-0004">
<sup>4</sup>
</xref>
<xref ref-type="aff" rid="jnc13369-curr-0001">
<sup>9</sup>
</xref>
</contrib>
<contrib id="jnc13369-cr-0018" contrib-type="author" corresp="yes">
<name>
<surname>Greggio</surname>
<given-names>Elisa</given-names>
</name>
<xref ref-type="aff" rid="jnc13369-aff-0001">
<sup>1</sup>
</xref>
</contrib>
</contrib-group>
<aff id="jnc13369-aff-0001">
<label>
<sup>1</sup>
</label>
<named-content content-type="organisation-division">Department of Biology</named-content>
<institution>University of Padova</institution>
<named-content content-type="city">Padova</named-content>
<country country="IT">Italy</country>
</aff>
<aff id="jnc13369-aff-0002">
<label>
<sup>2</sup>
</label>
<institution>San Raffaele Science Park and Università Vita‐Salute San Raffaele</institution>
<named-content content-type="city">Milano</named-content>
<country country="IT">Italy</country>
</aff>
<aff id="jnc13369-aff-0003">
<label>
<sup>3</sup>
</label>
<named-content content-type="organisation-division">Laboratory of Neurogenetics</named-content>
<institution>National Institute on Aging/NIH</institution>
<named-content content-type="city">Bethesda</named-content>
<named-content content-type="country-part">Maryland</named-content>
<country country="US">USA</country>
</aff>
<aff id="jnc13369-aff-0004">
<label>
<sup>4</sup>
</label>
<named-content content-type="organisation-division">Laboratory for Neurobiology and Gene Therapy</named-content>
<institution>KU Leuven</institution>
<named-content content-type="city">Leuven</named-content>
<country country="BE">Belgium</country>
</aff>
<aff id="jnc13369-aff-0005">
<label>
<sup>5</sup>
</label>
<named-content content-type="organisation-division">Department of Molecular Neuroscience UCL</named-content>
<named-content content-type="organisation-division">Reta Lila Weston Institute of Neurological Studies</named-content>
<institution>Institute of Neurology</institution>
<named-content content-type="city">London</named-content>
<country country="GB">UK</country>
</aff>
<aff id="jnc13369-aff-0006">
<label>
<sup>6</sup>
</label>
<named-content content-type="organisation-division">School of Pharmacy</named-content>
<institution>University of Reading</institution>
<named-content content-type="city">Reading</named-content>
<country country="GB">UK</country>
</aff>
<aff id="jnc13369-aff-0007">
<label>
<sup>7</sup>
</label>
<named-content content-type="organisation-division">Department of Molecular Neuroscience</named-content>
<institution>UCL Institute of Neurology</institution>
<named-content content-type="city">Queen Square</named-content>
<named-content content-type="city">London</named-content>
<country country="GB">UK</country>
</aff>
<aff id="jnc13369-aff-0008">
<label>
<sup>8</sup>
</label>
<named-content content-type="organisation-division">Leuven Viral Vector Core</named-content>
<institution>KU Leuven</institution>
<named-content content-type="city">Leuven</named-content>
<country country="BE">Belgium</country>
</aff>
<aff id="jnc13369-curr-0001">
<label>
<sup>9</sup>
</label>
Present address:
<institution>Jean‐Pierre Aubert Research Center</institution>
<institution>UMR837</institution>
<named-content content-type="street">rue Polonovski ‐ 1 place de Verdun</named-content>
<named-content content-type="city">Lille</named-content>
<named-content content-type="post-code">59045</named-content>
<country country="FR">France</country>
</aff>
<author-notes>
<corresp id="correspondenceTo">
<label>*</label>
Address correspondence and reprint requests to Elisa Greggio, PhD, Department of Biology, University of Padova, Padova 35131, Italy. E‐mail:
<email>elisa.greggio@unipd.it</email>
or Jean‐Marc Taymans, PhD, Jean‐Pierre Aubert Research Center, UMR837, rue Polonovski ‐ 1 place de Verdun, Lille 59045, France. E‐mail:
<email>jean-marc.taymans@inserm.fr</email>
or Mark R. Cookson, PhD, Laboratory of Neurogenetics, National Institute on Aging/NIH, Bethesda, MD 20892, USA. E‐mail:
<email>cookson@mail.nih.gov</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>19</day>
<month>10</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="ppub">
<month>12</month>
<year>2015</year>
</pub-date>
<volume>135</volume>
<issue>6</issue>
<issue-id pub-id-type="doi">10.1111/jnc.2015.135.issue-6</issue-id>
<fpage>1242</fpage>
<lpage>1256</lpage>
<history>
<date date-type="received">
<day>29</day>
<month>3</month>
<year>2015</year>
</date>
<date date-type="rev-recd">
<day>01</day>
<month>8</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>04</day>
<month>9</month>
<year>2015</year>
</date>
</history>
<permissions>
<pmc-comment> Copyright © 2015 International Society for Neurochemistry </pmc-comment>
<copyright-statement content-type="article-copyright">© 2015 The Authors.
<italic>Journal of Neurochemistry</italic>
published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry</copyright-statement>
<license license-type="creativeCommonsBy">
<license-p>This is an open access article under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution</ext-link>
License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:type="simple" xlink:href="file:JNC-135-1242.pdf"></self-uri>
<abstract id="jnc13369-abs-0001">
<title>Abstract</title>
<sec sec-type="opening-section" id="jnc13369-sec-1001">
<p>Leucine‐rich repeat kinase 2 (
<italic>
<styled-content style="fixed-case">LRRK</styled-content>
2</italic>
) is a causative gene for Parkinson's disease, but the physiological function and the mechanism(s) by which the cellular activity of
<styled-content style="fixed-case">LRRK</styled-content>
2 is regulated are poorly understood. Here, we identified p21‐activated kinase 6 (
<styled-content style="fixed-case">PAK</styled-content>
6) as a novel interactor of the GTPase/
<styled-content style="fixed-case">ROC</styled-content>
domain of
<styled-content style="fixed-case">LRRK</styled-content>
2. p21‐activated kinases are serine‐threonine kinases that serve as targets for the small
<styled-content style="fixed-case">GTP</styled-content>
binding proteins Cdc42 and Rac1 and have been implicated in different morphogenetic processes through remodeling of the actin cytoskeleton such as synapse formation and neuritogenesis. Using an
<italic>in vivo</italic>
neuromorphology assay, we show that
<styled-content style="fixed-case">PAK</styled-content>
6 is a positive regulator of neurite outgrowth and that
<styled-content style="fixed-case">LRRK</styled-content>
2 is required for this function. Analyses of post‐mortem brain tissue from idiopathic and
<styled-content style="fixed-case">LRRK</styled-content>
2 G2019S carriers reveal an increase in
<styled-content style="fixed-case">PAK</styled-content>
6 activation state, whereas knock‐out
<styled-content style="fixed-case">LRRK</styled-content>
2 mice display reduced
<styled-content style="fixed-case">PAK</styled-content>
6 activation and phosphorylation of
<styled-content style="fixed-case">PAK</styled-content>
6 substrates. Taken together, these results support a critical role of
<styled-content style="fixed-case">LRRK</styled-content>
2 GTPase domain in cytoskeletal dynamics
<italic>in vivo</italic>
through the novel interactor
<styled-content style="fixed-case">PAK</styled-content>
6, and provide a valuable platform to unravel the mechanism underlying
<styled-content style="fixed-case">LRRK</styled-content>
2‐mediated pathophysiology.</p>
</sec>
<sec sec-type="opening-section" id="jnc13369-sec-1002">
<p>
<boxed-text position="anchor" content-type="graphic" id="jnc13369-blkfxd-0002" orientation="portrait">
<graphic xlink:href="JNC-135-1242-g008.jpg" position="anchor" id="nlm-graphic-1" orientation="portrait"></graphic>
</boxed-text>
We propose p21‐activated kinase 6 (PAK6) as a novel interactor of leucine‐rich repeat kinase 2 (LRRK2), a kinase involved in Parkinson's disease (PD). In health, PAK6 regulates neurite complexity in the brain and LRRK2 is required for its function, (a) whereas PAK6 is aberrantly activated in LRRK2‐linked PD brain (b) suggesting that LRRK2 toxicity is mediated by PAK6.</p>
</sec>
</abstract>
<kwd-group kwd-group-type="author-generated">
<kwd id="jnc13369-kwd-0001">
<styled-content style="fixed-case">LRRK</styled-content>
2</kwd>
<kwd id="jnc13369-kwd-0002">neurodegeneration</kwd>
<kwd id="jnc13369-kwd-0003">neuronal cyto‐skeleton</kwd>
<kwd id="jnc13369-kwd-0004">p21‐activated kinases</kwd>
<kwd id="jnc13369-kwd-0005">Parkinson's disease</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source>Telethon ‐ Italy</funding-source>
<award-id>GGP12237</award-id>
</award-group>
</funding-group>
<funding-group>
<award-group>
<funding-source>CARIPLO Foundation</funding-source>
<award-id>2011‐0540</award-id>
</award-group>
</funding-group>
<funding-group>
<award-group>
<funding-source>EMBO</funding-source>
<award-id>MBO ASTF 526‐2012</award-id>
</award-group>
</funding-group>
<funding-group>
<award-group>
<funding-source>FWO‐Vlaanderen</funding-source>
<award-id>G.0666.09</award-id>
<award-id>KAN2012 1.5.216.12</award-id>
</award-group>
</funding-group>
<funding-group>
<award-group>
<funding-source>IWT</funding-source>
<award-id>SBO/80020</award-id>
<award-id>SBO/100042</award-id>
</award-group>
</funding-group>
<funding-group>
<award-group>
<funding-source>King Baudouin Foundation</funding-source>
</award-group>
</funding-group>
<funding-group>
<award-group>
<funding-source>NIH</funding-source>
</award-group>
</funding-group>
<funding-group>
<award-group>
<funding-source>National Institute on Aging</funding-source>
</award-group>
</funding-group>
<funding-group>
<award-group>
<funding-source>Wellcome Trust/MRC Joint Call in Neurodegeneration</funding-source>
<award-id>WT089698</award-id>
</award-group>
</funding-group>
<counts>
<page-count count="15"></page-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>source-schema-version-number</meta-name>
<meta-value>2.0</meta-value>
</custom-meta>
<custom-meta>
<meta-name>component-id</meta-name>
<meta-value>jnc13369</meta-value>
</custom-meta>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>December 2015</meta-value>
</custom-meta>
<custom-meta>
<meta-name>details-of-publishers-convertor</meta-name>
<meta-value>Converter:WILEY_ML3GV2_TO_NLMPMC version:4.9.1 mode:remove_FC converted:23.06.2016</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<def-list list-content="abbreviations" id="jnc13369-dl-0001">
<title>Abbreviations used</title>
<def-item>
<term>COR</term>
<def>
<p>C‐terminus Of ROC</p>
</def>
</def-item>
<def-item>
<term>CRIB</term>
<def>
<p>Cdc42/Rac‐interactive binding</p>
</def>
</def-item>
<def-item>
<term>DAPK1</term>
<def>
<p>death‐associated protein kinase 1</p>
</def>
</def-item>
<def-item>
<term>eGFP</term>
<def>
<p>enhanced green fluorescent protein</p>
</def>
</def-item>
<def-item>
<term>EV</term>
<def>
<p>empty vector</p>
</def>
</def-item>
<def-item>
<term>GAK</term>
<def>
<p>cyclin G‐associated kinase</p>
</def>
</def-item>
<def-item>
<term>iPD</term>
<def>
<p>idiopathic PD</p>
</def>
</def-item>
<def-item>
<term>IR</term>
<def>
<p>immunoreactivity</p>
</def>
</def-item>
<def-item>
<term>LIMK1</term>
<def>
<p>LIM domain kinase 1</p>
</def>
</def-item>
<def-item>
<term>LRRK1</term>
<def>
<p>leucine‐rich repeat kinase 1</p>
</def>
</def-item>
<def-item>
<term>LRRK2</term>
<def>
<p>leucine‐rich repeat kinase 2</p>
</def>
</def-item>
<def-item>
<term>LV</term>
<def>
<p>lentiviral vector</p>
</def>
</def-item>
<def-item>
<term>MASL1</term>
<def>
<p>malignant fibrous histiocytoma‐amplified sequences with leucine‐rich tandem repeats 1</p>
</def>
</def-item>
<def-item>
<term>PAK6</term>
<def>
<p>p21‐activated kinase 6</p>
</def>
</def-item>
<def-item>
<term>PAKs</term>
<def>
<p>p21‐activated kinases</p>
</def>
</def-item>
<def-item>
<term>PD</term>
<def>
<p>Parkinson's disease</p>
</def>
</def-item>
<def-item>
<term>rAAV</term>
<def>
<p>recombinant adeno‐associated viral</p>
</def>
</def-item>
<def-item>
<term>ROC</term>
<def>
<p>ras of complex</p>
</def>
</def-item>
</def-list>
<p>ROCO proteins constitute a family of proteins with a Ras‐like domain, termed ras of complex (ROC), which is always followed by a C‐terminus Of ROC (COR) domain of unclear function (Bosgraaf and Van Haastert
<xref rid="jnc13369-bib-0004" ref-type="ref">2003</xref>
). Humans possess four ROCOs, namely leucine‐rich repeat kinase 1 (LRRK1), leucine‐rich repeat kinase 2 (LRRK2), death‐associated protein kinase 1 (DAPK1), and malignant fibrous histiocytoma‐amplified sequences with leucine‐rich tandem repeats 1 (MASL1) (Lewis
<xref rid="jnc13369-bib-0032" ref-type="ref">2009</xref>
; Civiero
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0010" ref-type="ref">2014</xref>
). Human ROCOs are capable of binding guanine nucleotides
<italic>via</italic>
their ROC domain and nucleotide binding seems important for complex formation and kinase activity (Lewis
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0033" ref-type="ref">2007</xref>
; Jebelli
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0028" ref-type="ref">2012</xref>
; Biosa
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0003" ref-type="ref">2013</xref>
; Dihanich
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0014" ref-type="ref">2013</xref>
), suggesting that this domain is a central hub in ROCO function. Although ROCO proteins have been formally described over 10 years ago, their cellular functions remain elusive as well as the mechanisms by which these proteins, together with other signaling molecules, regulate cellular processes.</p>
<p>Special interest has been directed at understanding the cellular functions of LRRK2, given that mutations in this gene are a common cause of Parkinson's disease (PD) (Paisan‐Ruiz
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0049" ref-type="ref">2004</xref>
,
<xref rid="jnc13369-bib-0050" ref-type="ref">2008</xref>
; Zimprich
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0075" ref-type="ref">2004</xref>
). LRRK2 has been linked with several pathways relevant for neuronal physiology, including autophagy (Plowey
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0054" ref-type="ref">2008</xref>
; Gomez‐Suaga
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0018" ref-type="ref">2012</xref>
; Manzoni
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0041" ref-type="ref">2013</xref>
), vesicle trafficking (Piccoli
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0053" ref-type="ref">2011</xref>
; MacLeod
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0038" ref-type="ref">2013</xref>
; Cirnaru
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0008" ref-type="ref">2014</xref>
), neurite outgrowth (MacLeod
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0037" ref-type="ref">2006</xref>
; Dachsel
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0011" ref-type="ref">2010</xref>
; Winner
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0072" ref-type="ref">2011</xref>
), cytoskeletal dynamics (Kett
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0030" ref-type="ref">2011</xref>
; Caesar
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0006" ref-type="ref">2013</xref>
,
<xref rid="jnc13369-bib-0007" ref-type="ref">2015</xref>
; Habig
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0025" ref-type="ref">2013</xref>
; Law
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0031" ref-type="ref">2013</xref>
), and inflammation (reviewed in Russo
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0058" ref-type="ref">2014</xref>
). Although some of these functions may appear unrelated, they all rely on the presence of a functional cytoskeleton. Vesicles traffic
<italic>via</italic>
the cytoskeleton, neurite growth is dynamically balanced between the opposing actions of microtubules and F‐actin, and activated macrophages migrate
<italic>via</italic>
filopodia and membrane blebs (Ma and Baumgartner
<xref rid="jnc13369-bib-0035" ref-type="ref">2013</xref>
).</p>
<p>LRRK2 is a large and complex molecule that contains serine‐threonine kinase and GTPase activities (Greggio
<xref rid="jnc13369-bib-0019" ref-type="ref">2012</xref>
; Taymans
<xref rid="jnc13369-bib-0066" ref-type="ref">2012</xref>
). Kinase activity has been intensively studied, as there is great interest in identifying therapies for PD and kinases are ideal targets. To date, a number of LRRK2 putative substrates have been identified (Matta
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0043" ref-type="ref">2012</xref>
; Yun
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0074" ref-type="ref">2013</xref>
; Martin
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0042" ref-type="ref">2014</xref>
) but the most consistently reported is LRRK2 itself. LRRK2 undergoes autophosphorylation
<italic>in vitro</italic>
(Greggio and Cookson
<xref rid="jnc13369-bib-0020" ref-type="ref">2009</xref>
) and
<italic>in vivo</italic>
(Sheng
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0063" ref-type="ref">2012</xref>
), possibly acting as an intramolecular regulator of ROC by phosphorylating serine‐threonine residues important for nucleotide binding (Greggio
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0023" ref-type="ref">2009</xref>
; Webber
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0071" ref-type="ref">2011</xref>
; Greggio
<xref rid="jnc13369-bib-0019" ref-type="ref">2012</xref>
; Taymans
<xref rid="jnc13369-bib-0066" ref-type="ref">2012</xref>
), thus positioning ROC as the signaling output of LRRK2 activity. However, heterologous effectors of ROC similar to Ras effector kinases for Ras GTPases have not yet been reported.</p>
<p>Here, starting from an unbiased protein array screen we identified p21‐activated kinase 6 (PAK6) as a potential binding partner for LRRK2 (Beilina
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0002" ref-type="ref">2014</xref>
). We found that the GTPase/ROC domain of LRRK2 binds the Cdc42/Rac‐interactive binding (CRIB) domain of PAK6. Functionally, LRRK2 is required for PAK6 activation monitored by autophosphorylation of threonine 560 and PAK6‐dependent neurite outgrowth in mouse brain. Related to disease, we found that PAK6 is hyperactivated in G2019S and idiopathic PD (iPD) post‐mortem brains compared to healthy controls, highlighting PAK6 as a novel pharmacological target in PD.</p>
<sec id="jnc13369-sec-0002">
<title>Materials and methods</title>
<sec id="jnc13369-sec-0003">
<title>Animals</title>
<p>C57BL/6 LRRK2 wild‐type and knock‐out mice were provided by Dr. Heather Melrose and Jackson Laboratory [B6.129X1(FVB)‐
<italic>Lrrk2</italic>
<sup>
<italic>tm1.1Cai</italic>
</sup>
/J]. Housing and handling of mice were done in compliance with national guidelines. All animal procedures were approved by the Ethical Committee of the University of Padova and the Italian Ministry of Health (license 46/2012), and by the Institutional Care and Use Committee of KU Leuven.</p>
</sec>
<sec id="jnc13369-sec-0004">
<title>Plasmids</title>
<p>Eukaryotic expression constructs of 3xFlag tagged LRRK2 (wild type, K1906M and G2019S), and LRRK2 domains (in pCHMWS‐3xFlag vectors) were generated as described previously (Lobbestael
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0034" ref-type="ref">2010</xref>
; Daniels
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0012" ref-type="ref">2011</xref>
; Civiero
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0009" ref-type="ref">2012</xref>
). The pDONR223‐PAK6 (plasmid 23833, Johannessen
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0029" ref-type="ref">2010</xref>
) was obtained from Addgene (Cambridge, MA, USA). PAK cDNA sequences in pDONR223 were cloned by LR Clonase‐mediated gateway recombination (Life Technologies, Grand Island, NY, USA) into the destination vector pCMV‐Tag3B‐2xMyc modified with a gateway cassette as previously described (Greggio
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0022" ref-type="ref">2007</xref>
). Full‐length PAK6 was amplified from pDONR223‐PAK6 with the following primers: forward 5′‐GGTGCGGCCGCGATGTTCCGCAAGAAAAAG‐3′ and reverse 5′‐GGTTCTAGATCAGCAGGTGGAGGTCTG‐3′ that introduced NotI and XbaI restriction sites at the 5′ and 3′ ends of the PCR fragment, respectively. The PCR fragment was purified, cleaved with NotI/XbaI and cloned into 3xFlag‐cytomegalovirus (CMV) vector (Sigma, St Louis, MO, USA). Mutant variants were generated using the Quick‐Change II site‐directed mutagenesis kit (Stratagene, La Jolla, CA, USA).</p>
<p>For lentiviral vector (LV) construction, cDNA sequences encoding PAK6 wild type, K436M and S531N were amplified by PCR using oligonucleotides that introduced XbaI/XbaI restriction sites (forward 5′‐GGTTCTAGAATGTTCCGCAAGAAAAAG‐3′; reverse 5′‐ GGTTCTAGATCAGCAGGTGGAGGTCTG‐3′) and subcloned into the lentiviral transfer backbone pCHMWS‐3xFlag‐MCS‐ires‐eGFP (Ibrahimi
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0027" ref-type="ref">2009</xref>
).</p>
<p>To produce stable cell lines over‐expressing PAK6 wild type, the cDNA sequence was amplified by PCR using oligonucleotides that introduce ClaI/XbaI restriction sites (forward 5′‐GGTATCGATACCATGTTCCGCAAGAAAAAG‐3′; reverse 5′‐ GGTTCTAGATCAGCAGGTGGAGGTCTG‐3′ and subcloned into the lentiviral transfer plasmid pCHMWS‐MCS‐ires‐hygro.</p>
<p>To subclone PAK6 into the adeno‐associated viral transfer plasmid pAAV‐TF‐CMV‐GFP‐MCS, cDNA sequences encoding 3xFlag‐PAK6 wild type, K436M and S531N were amplified using oligonucleotides that introduce AgeI/XbaI restriction sites (forward 5′‐AAAAAAACCGGTGCCACCATGGACTACAAAGACCATGA‐3′; reverse 5′‐AAAAAATCTAGATCAGCAGGTGGAGG‐3′). The GFP sequence was excised from pAAV‐TF‐CMV‐GFP (Taymans
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0068" ref-type="ref">2007</xref>
) and the 3xFlag‐PAK6 cDNA fragments were inserted.</p>
<p>For glutatione S‐transferase (GST) pull‐down assay, the nucleotide sequence encoding CRIB was cloned into a pGEX‐4T bacterial vector. Two sets of primers with complementary overhangs encoding the CRIB sequence and containing EcoRI/XhoI restriction sites (forward A 5′‐ AATTCACATGGAGATCTCAGCGCCACAGAACTTCCAGCACCGTGTCCACACCTCCT‐3′; reverse A 5′‐GGTCGAAGGAGGTGTGGACACGGTGCTGGAAGTTCTGTGGCGCTGAGATCTCCATGTG‐3′; forward B 5′‐ TCGACCCCAAAGAAGGCAAGTTTGTGGGCCTCCCCCCACAATGGCAGAACATCCTGGACTGAC‐3′; reverse B 5′‐ TCGAGTCAGTCCAGGATGTTCTGCCATTGTGGGGGGAGGCCCACAAACTTGCCTTCTTTGG‐3′) were annealed, phosphorylated, and subsequently cloned. All plasmids were verified by restriction analysis and DNA sequencing.</p>
</sec>
<sec id="jnc13369-sec-0005">
<title>Cell cultures and transfection</title>
<p>HEK293T cells were purchased from Life technologies and cultured in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum. Cell lines, were maintained at 37°C and in a 5% CO
<sub>2</sub>
controlled atmosphere. HEK293T were transfected with plasmid DNA using polyethylenimine‎ (Polysciences, Warrington, PA, USA) according to the manufacturer's recommendations.</p>
</sec>
<sec id="jnc13369-sec-0006">
<title>Viral vector production and transduction</title>
<p>All experiments involving viral vectors were carried out under biosafety level 2 conditions. Housing and handling of mice were done in compliance with national guidelines; all animal procedures were approved by the Institutional Care and Use Committee of the KU Leuven.</p>
<p>LV and recombinant adeno‐associated viral vectors (rAAV2/7) encoding mCherry‐GFP, human 3xFlag‐PAK6 wild type, K436M and S531N under control of the CMV promoter were produced by the Leuven Viral Vector Core as described previously (Lobbestael
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0034" ref-type="ref">2010</xref>
; Van der Perren
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0070" ref-type="ref">2011</xref>
). For transduction of mouse striata, eight‐week‐old male C57bL/
<italic>6</italic>
mice were used for rAAV‐3xFlag‐PAK6 injections. Animals were anaesthetized and placed in a stereotactic head frame. After making a midline incision of the scalp, a burr hole was drilled in the appropriate location at one or both sites of the skull using Bregma as reference. The following coordinates were used: anteroposterior 0.5 mm; lateral 2.0 mm; dorsoventral 3.0 mm. Two microliters of rAAV vectors (titers ranging from 1.5 to 3.8 × 10
<sup>12</sup>
genome copies/mL) were injected unilaterally in mouse striatum at a rate of 0.25 μL/min with a 30‐gauge needle on a 10‐μL Hamilton syringe. After injection, the needle was left in place for additional 5 min before being slowly withdrawn from the brain. Two weeks later, animals were deeply anesthetized using an overdose of pentobarbital. For immunohistochemistry, animals were transcardially perfused with saline solution followed by ice‐cold 4% paraformaldehyde in phosphate‐buffered saline. The brain was removed from the skull and post‐fixed overnight in 4% paraformaldehyde‐phosphate‐buffered saline at 4°C. Sections (50 μm) were stained using rabbit anti‐flag antibody (Sigma) as previously described (Lobbestael
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0034" ref-type="ref">2010</xref>
). The mean percentage of the transduced striatal area is calculated by measuring the transduced striatal area/total striatal area every five sections of the mouse striatum. Alternatively, the striata were dissected, homogenized, and subjected to western blot analysis, as described in (Taymans
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0067" ref-type="ref">2006</xref>
).</p>
</sec>
<sec id="jnc13369-sec-0007">
<title>Antibodies</title>
<p>For immunoblotting analysis the following antibodies were used: rabbit LRRK2 MJFF2 (Cat# 3514‐1, RRID:AB_10643781, 1 : 100; Epitomics), rabbit LRRK2 phospho‐S935 (Cat# 5099‐1, RRID:AB_ 11132319, 1 : 100; Epitomics, Cambridge, UK), rabbit LRRK2 phospho‐T2483 (Cat#156577, 1 : 2000; Abcam, Cambridge, UK), rabbit LRRK2 phospho‐T1491 (Cat#140106, 1 : 2000; Abcam,Cambridge, UK), mouse Flag M2 (Cat# F1804, 1 : 10000; Sigma), mouse c‐Myc 9E10 (Cat# 11667149001, RRID:AB_ 390912, 1 : 5000; Roche Molecular Biochemicals, Indianapolis, IN, USA), rabbit PAK6 (Cat# HPA031124, RRID:AB_10601044, 1 : 2000, Prestige
<sup>®</sup>
; Sigma), mouse β‐tubulin (Cat# T8328, RRID:AB_1844090, 1 : 5000; Sigma), rabbit phospho‐PAK4‐5‐6 (Cat# SAB4504052, 1 : 2000; Sigma), rabbit phospho‐LIM domain kinase 1 (LIMK1) (Cat#3841, 1 : 1000; Cell Signaling Technology, Beverly, MA, USA), mouse LIMK1 (Cat#117623, 1 : 1000; Abcam).</p>
<p>For immunoprecipitation, the following antibodies were used: rabbit LRRK2 UDD3 (Cat# 5097‐1, 1 μg/mg total proteins; Epitomics), mouse c‐Myc (9E10, Cat# 11667149001, RRID:AB_390912, 0.8 μg/mg total proteins; Roche), mouse Flag M2 (Cat# F1804, 1 μg/mg total proteins; Sigma).</p>
</sec>
<sec id="jnc13369-sec-0008">
<title>Immunohistochemistry and confocal imaging</title>
<p>For the
<italic>in vivo</italic>
experiments on striatal neurons of normal and LRRK2 knock‐out mice expressing 3xFlag‐PAK6 variants (or mCherry control) and labeled for eGFP to study morphology, sections were analyzed by immunohistochemistry to detect eGFP and PAK6 or mCherry expressing neurons. Sections were incubated with rabbit anti‐eGFP and mouse anti‐flag antibody as described in Lobbestael
<italic>et al</italic>
. (Lobbestael
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0034" ref-type="ref">2010</xref>
). Labels were revealed with fluorescent secondary antibodies (anti‐rabbit‐alexa‐488 and anti‐mouse‐alexa‐555) and visualized by confocal microscopy. First eGFP‐labeled striatal neurons were confirmed to co‐express PAK6 variants or the mCherry control. Next, z‐stacks were taken of the confirmed neurons. 2D projections derived from these z‐stacks were submitted to neurite complexity analysis using the NeuronJ plugin in ImageJ (Meijering
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0044" ref-type="ref">2004</xref>
).</p>
</sec>
<sec id="jnc13369-sec-0009">
<title>Co‐immunoprecipitation and western blotting</title>
<p>Cells were harvested at 48 h post transfection and lysed in buffer containing 50 mM Tris pH 7.5, 1% Triton X‐100, 1 mM sodium orthovanadate, 5 mM sodium pyrophosphate, 50 mM sodium fluoride, 0.27 M sucrose, 1 mM EDTA). Lysates were incubated with primary antibody overnight then with Protein‐G Sepharose for 1 h or with primary antibody directly conjugated to agarose beads. Immunocomplexes were washed three times with lysis buffer supplemented with 0.25 M NaCl. Immunoprecipitates were resuspended in sample buffer.</p>
<p>Between 10 and 20 μg of protein samples were resolved on 4‐20% Tris‐glycine polyacrylamide gels (Bio‐Rad Laboratories, Hercules, CA, USA) in sodium dodecyl sulfate/Tris‐glycine running buffer or on NuPAGE
<sup>®</sup>
3–8% Tris‐acetate Gel (Life Technologies). Precision Plus molecular weight markers (Bio‐Rad) were used for size estimation. Resolved proteins were transferred to polyvinylidene difluoride (PVDF) membranes in transfer buffer containing 10% methanol. The PVDF sheets were blocked in Tris‐buffered saline plus 0.1% Triton (TBS‐T) plus 5% non‐fat dry milk for 1 h at 4°C and then incubated overnight at 4°C with anti‐Flag‐M2 antibody in TBS‐T plus 5% non‐fat dry milk. The PVDF membranes were washed in TBS‐T (3 × 10 min) at RT followed by incubation for 1 h at RT with horseradish peroxidase‐conjugated anti‐mouse IgG. Blots were then washed in TBS‐T (4 × 10 min) at RT and rinsed in TBS, and immunoreactive proteins were visualized using enhanced chemiluminescence plus (GE Healthcare, Little Chalfont, England). Densitometric analysis was carried out using Image J software (Schneider
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0060" ref-type="ref">2012</xref>
).</p>
</sec>
<sec id="jnc13369-sec-0010">
<title>Pull‐down assay</title>
<p>GST‐tagged proteins were expressed and purified from BL21 bacterial cells (as described in Greggio
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0023" ref-type="ref">2009</xref>
); 3xFlag‐tagged proteins were expressed in HEK293T cell lines as previously described (Civiero
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0009" ref-type="ref">2012</xref>
). Purified proteins bound to the resin were incubated for 2 h with cell lysates over‐expressing the prey protein. For the following procedure see
<xref rid="jnc13369-sec-0009" ref-type="sec">co‐immunoprecipitation and western blotting</xref>
section.</p>
</sec>
<sec id="jnc13369-sec-0011">
<title>
<italic>In vitro</italic>
kinase reactions</title>
<p>Kinase assays were carried out as previously described (Civiero
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0009" ref-type="ref">2012</xref>
; Jebelli
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0028" ref-type="ref">2012</xref>
). Protein concentrations used are indicated in figure legends.</p>
</sec>
<sec id="jnc13369-sec-0012">
<title>Post‐mortem human tissues analysis</title>
<p>Post‐mortem human tissue samples were obtained from Queen Square Brain Bank (London, UK). Sample demographics are listed in Table 
<xref rid="jnc13369-tbl-0001" ref-type="table-wrap">1</xref>
. The 5% sodium dodecyl sulfate fractions from the basal ganglia from three G2019S LRRK2 mutation cases, four matched iPD cases and four control cases were prepared according to the methods described in Mamais
<italic>et al</italic>
. (Mamais
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0039" ref-type="ref">2013</xref>
). 40 μg of proteins was loaded onto 12% Tris‐Glycine gels (Bio‐Rad) and transferred onto PVDF membrane. The membranes were probed with primary antibodies at 1 : 1000 dilution (phospho‐S602/560 antibody Sigma Cat no SAB4504722; PAK‐6 Sigma Cat no HPA031124). Immunohistochemistry with PAK phospho‐S602/560 antibody was performed on formalin fixed wax‐embedded slides. Briefly, sections 8‐μm‐thick were dewaxed in xylene, blocked for endogenous peroxidase with H
<sub>2</sub>
O
<sub>2</sub>
(0.3%) containing methanol followed by pressure‐cooking in citrate buffer pH 7.0 for 10 min to reveal antigenic sites. The sections were then blocked in 10% non‐fat milk for an hour at 23°C followed by incubation in primary antibody at 1 : 100 dilution o/n at 4°C. Following washes, sections were treated with anti‐rabbit biotynilated secondary antibody (1 : 200, 30 min; Dako, Carpinteria, CA, USA) followed by treatment with ABC reagent (Vector Laboratories, Burlingame, CA, USA) for 30 min and visualizing with H
<sub>2</sub>
O
<sub>2‐</sub>
activated diaminobenzidine as chromogen. Sections are counter‐stained lightly with Mayer's hematoxylin, taken through graded ethanols and xylene and mounted with coverslips with DPX (VWR, International PBI, Milano, Italy) mounting medium.</p>
<table-wrap id="jnc13369-tbl-0001" xml:lang="en" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Sample demographics of the human cases used in this study</p>
</caption>
<table frame="hsides" rules="groups">
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<col style="border-right:solid 1px #000000" span="1"></col>
<thead valign="top">
<tr style="border-bottom:solid 1px #000000">
<th align="left" valign="top" rowspan="1" colspan="1">Case</th>
<th align="left" valign="top" rowspan="1" colspan="1">Sex M/F</th>
<th align="left" valign="top" rowspan="1" colspan="1">Age (years)</th>
<th align="center" valign="top" rowspan="1" colspan="1">PM Delay (h)</th>
<th align="center" valign="top" rowspan="1" colspan="1">pH of tissue</th>
<th align="left" valign="top" rowspan="1" colspan="1">WB/IH</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">G2019S1</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">80</td>
<td align="char" char="." rowspan="1" colspan="1">44.4</td>
<td align="char" char="." rowspan="1" colspan="1">6</td>
<td align="left" rowspan="1" colspan="1">WB &IH</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">G2019S2</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">81</td>
<td align="char" char="." rowspan="1" colspan="1">15</td>
<td align="char" char="." rowspan="1" colspan="1">6.53</td>
<td align="left" rowspan="1" colspan="1">WB</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">G2019S3</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">84</td>
<td align="char" char="." rowspan="1" colspan="1">32.2</td>
<td align="char" char="." rowspan="1" colspan="1">5.79</td>
<td align="left" rowspan="1" colspan="1">WB&IH</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">G2019S4</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">72</td>
<td align="char" char="." rowspan="1" colspan="1">24.55</td>
<td align="char" char="." rowspan="1" colspan="1">6.2</td>
<td align="left" rowspan="1" colspan="1">WB&IH</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">iPD1</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">70</td>
<td align="char" char="." rowspan="1" colspan="1">61.2</td>
<td align="char" char="." rowspan="1" colspan="1">6.29</td>
<td align="left" rowspan="1" colspan="1">WB&IH</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">iPD2</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">87</td>
<td align="char" char="." rowspan="1" colspan="1">47.45</td>
<td align="char" char="." rowspan="1" colspan="1">6.62</td>
<td align="left" rowspan="1" colspan="1">WB&IH</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">iPD3</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">75</td>
<td align="char" char="." rowspan="1" colspan="1">48</td>
<td align="char" char="." rowspan="1" colspan="1">6.0</td>
<td align="left" rowspan="1" colspan="1">WB</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">iPD4</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">88</td>
<td align="char" char="." rowspan="1" colspan="1">11.3</td>
<td align="char" char="." rowspan="1" colspan="1">6.38</td>
<td align="left" rowspan="1" colspan="1">WB&IH</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Control 1</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">85</td>
<td align="char" char="." rowspan="1" colspan="1">37</td>
<td align="char" char="." rowspan="1" colspan="1">6.4</td>
<td align="left" rowspan="1" colspan="1">WB&IH</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Control 2</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">91</td>
<td align="char" char="." rowspan="1" colspan="1">98.5</td>
<td align="char" char="." rowspan="1" colspan="1">6.26</td>
<td align="left" rowspan="1" colspan="1">WB&IH</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Control 3</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">87</td>
<td align="char" char="." rowspan="1" colspan="1">36</td>
<td align="char" char="." rowspan="1" colspan="1">6.1</td>
<td align="left" rowspan="1" colspan="1">WB&IH</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Control 4</td>
<td align="left" rowspan="1" colspan="1">F</td>
<td align="left" rowspan="1" colspan="1">68</td>
<td align="char" char="." rowspan="1" colspan="1">41.5</td>
<td align="char" char="." rowspan="1" colspan="1">5.98</td>
<td align="left" rowspan="1" colspan="1">WB</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">AD</td>
<td align="left" rowspan="1" colspan="1">M</td>
<td align="left" rowspan="1" colspan="1">82</td>
<td align="char" char="." rowspan="1" colspan="1">38</td>
<td align="center" rowspan="1" colspan="1">N/A</td>
<td align="left" rowspan="1" colspan="1">IH</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="jnc13369-note-0001">
<p>iPD, idiopathic PD; N/A, not available.</p>
</fn>
</table-wrap-foot>
<permissions>
<copyright-holder>John Wiley & Sons, Ltd</copyright-holder>
</permissions>
</table-wrap>
<p>A four‐tired grading system was used to provide a semi‐quantitative assessment of P‐PAK immunoreactivity (IR) in basal ganglia. Assessment was by consensus between two observers. Score 0 = no P‐PAK IR, score + = weak P‐PAK IR, score ++ = moderate P‐PAK IR, score +++ = strong P‐PAK IR.</p>
</sec>
<sec id="jnc13369-sec-0013">
<title>Statistical analysis</title>
<p>All quantitative data are expressed as mean ± SD (standard error) or SEM (standard error of the mean) and represent at least three independent sets of experiments. Significance of differences between two groups was assessed by unpaired
<italic>t</italic>
‐test or by one‐way
<sc>anova</sc>
with Tukey's
<italic>post hoc</italic>
test and two‐way
<sc>anova</sc>
with Tukey's HSD
<italic>post hoc</italic>
test when more than two groups were compared. Significance level was set at
<italic>p</italic>
 < 0.05.</p>
</sec>
</sec>
<sec id="jnc13369-sec-0014">
<title>Results</title>
<sec id="jnc13369-sec-0015">
<title>LRRK2 interacts with PAK6</title>
<p>In a previous study, we reported high confidence interactors of LRRK2 identified by probing protoarrays with full‐length recombinant LRRK2 protein (Beilina
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0002" ref-type="ref">2014</xref>
; Reyniers
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0057" ref-type="ref">2014</xref>
). We repeated this experiment with purified full‐length LRRK2 alone or with additional GDP and non‐hydrolysable GTP (Guanosine‐5′‐[(β,γ)‐methyleno]triphosphate, GppCp) and used a Z‐score of 3 (i.e., 3 standard deviations from background) as a cutoff for candidate interactions. Together with known interactors including 14‐3‐3 proteins (Dzamko
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0015" ref-type="ref">2010</xref>
; Nichols
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0048" ref-type="ref">2010</xref>
) and cyclin G‐associated kinase (Beilina
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0002" ref-type="ref">2014</xref>
), the protoarray experiment identified p21‐activated kinase 6 (PAK6) as a potential LRRK2 interactor with higher interaction in the presence of GppCp (Z scores: apo‐LRRK2 3.93, GDP‐LRRK2 3.07, and GppCp‐LRRK2 6.56; Fig. 
<xref rid="jnc13369-fig-0001" ref-type="fig">1</xref>
a). Of the members of the PAK family (PAK2, PAK3, and two PAK4 transcript variants) spotted on the arrays, only PAK6 showed Z scores above the threshold of 3. PAK6 kinase domain alone also spotted on the array did not give significant signal (Fig. 
<xref rid="jnc13369-fig-0001" ref-type="fig">1</xref>
a). These results suggest that full‐length PAK6 is required to observe interaction with LRRK2.</p>
<fig fig-type="Figure" xml:lang="en" id="jnc13369-fig-0001" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>
<styled-content style="fixed-case">PAK</styled-content>
6 interacts with LRRK2. (a) Plot of Z‐score (
<italic>y</italic>
‐axis) for selected bait proteins (
<italic>x</italic>
‐axis; 14‐3‐3 zeta and cyclin G‐associated kinase (
<styled-content style="fixed-case">GAK</styled-content>
) are positive controls) for arrays probed with
<styled-content style="fixed-case">GFP</styled-content>
(stars),
<styled-content style="fixed-case">LRRK</styled-content>
2 alone (filled black dots),
<styled-content style="fixed-case">LRRK</styled-content>
2 in the presence of
<styled-content style="fixed-case">GDP</styled-content>
(empty black dots) and
<styled-content style="fixed-case">LRRK</styled-content>
2 in the presence of Guanosine‐5′‐[(β,γ)‐methyleno]triphosphate (GppCp) (empty black triangles). The dotted horizontal line indicates Z = 3 used as a cutoff for identifying candidate hits. Note that, outside of the positive control proteins, only full‐length
<styled-content style="fixed-case">PAK</styled-content>
6 is above the threshold line. (b)
<styled-content style="fixed-case">PAK</styled-content>
6 co‐immunoprecipitates with
<styled-content style="fixed-case">LRRK</styled-content>
2
<italic>in vitro</italic>
. Cell lysates from
<styled-content style="fixed-case">HEK</styled-content>
293T cells co‐transfected with Flag‐
<styled-content style="fixed-case">LRRK</styled-content>
2 and Myc‐
<styled-content style="fixed-case">PAK</styled-content>
6 or Myc‐14‐3‐3 were subjected to co‐immunoprecipitation with anti‐Flag, followed by anti‐Myc and anti‐Flag immunoblotting. As negative control, cell lysates co‐transfected with Flag‐
<styled-content style="fixed-case">GFP</styled-content>
and Myc‐
<styled-content style="fixed-case">PAK</styled-content>
6 or Myc‐14‐3‐3 were subjected to the same protocol. (c) Cell lysates from
<styled-content style="fixed-case">HEK</styled-content>
293T cells co‐transfected with Flag‐
<styled-content style="fixed-case">LRRK</styled-content>
2 and Myc‐
<styled-content style="fixed-case">PAK</styled-content>
6 or Myc‐1433 were subjected to co‐immunoprecipitation with anti‐myc, followed by anti‐Myc and anti‐Flag immunoblotting. As negative control, cell lysates co‐transfected with Flag‐
<styled-content style="fixed-case">LRRK</styled-content>
2 and empty vector (
<styled-content style="fixed-case">EV</styled-content>
) were subjected to the same protocol. (d) Quantification of
<styled-content style="fixed-case">LRRK</styled-content>
2 binding to
<styled-content style="fixed-case">PAK</styled-content>
6 and 14‐3‐3. Data are representative of three independent experiments and bars represent the mean ± SEM relative to 14‐3‐3. (e)
<styled-content style="fixed-case">PAK</styled-content>
6 interacts with
<styled-content style="fixed-case">LRRK</styled-content>
2
<italic>in vivo</italic>
. Endogenous
<styled-content style="fixed-case">LRRK</styled-content>
2 was immunoprecipitated from wild‐type and
<styled-content style="fixed-case">LRRK</styled-content>
2 knock‐out brain lysates as control using anti‐
<styled-content style="fixed-case">LRRK</styled-content>
2 antibody. Samples were analyzed by immunoblotting using anti‐
<styled-content style="fixed-case">PAK</styled-content>
6 and anti‐
<styled-content style="fixed-case">LRRK</styled-content>
2. (f)
<styled-content style="fixed-case">PAK</styled-content>
6 and
<styled-content style="fixed-case">LRRK</styled-content>
2 co‐localize in neurons. Primary cortical neurons were transfected with Flag‐
<styled-content style="fixed-case">LRRK</styled-content>
2 and Myc‐
<styled-content style="fixed-case">PAK</styled-content>
6 and then subjected to immunocytochemistry techniques using anti‐Flag (green) and anti‐
<styled-content style="fixed-case">PAK</styled-content>
6 (red) antibodies. * and ** indicate antibody chains</p>
</caption>
<graphic id="nlm-graphic-5" xlink:href="JNC-135-1242-g001"></graphic>
</fig>
<p>PAK6 belongs to group II p21‐activated kinases (PAKs), a family of proteins involved in cell remodeling pathways
<italic>via</italic>
regulation of actin cytoskeleton dynamics (Szczepanowska
<xref rid="jnc13369-bib-0065" ref-type="ref">2009</xref>
), processes where also LRRK2 has been implicated (Meixner
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0045" ref-type="ref">2011</xref>
; Habig
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0025" ref-type="ref">2013</xref>
; Caesar
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0007" ref-type="ref">2015</xref>
). We therefore pursued the hypothesis of PAK6 as a potential interactor with, and mediator of the biological effects of, LRRK2. We first performed co‐immunoprecipitation to confirm the interaction. In HEK293T cells, 2xMyc‐PAK6 was co‐immunoprecipitated with 3xFlag‐LRRK2 (Fig. 
<xref rid="jnc13369-fig-0001" ref-type="fig">1</xref>
b) and 3xFlag‐LRRK2 could be reciprocally co‐immunoprecipitated by 2xMyc‐PAK6 (Fig. 
<xref rid="jnc13369-fig-0001" ref-type="fig">1</xref>
c). Under these conditions, we recovered ~ 3.5‐fold more LRRK2 protein bound to 2xMyc‐PAK6 than to 2xMyc‐14‐3‐3 zeta (Fig. 
<xref rid="jnc13369-fig-0001" ref-type="fig">1</xref>
d). We subsequently tested the interaction between the two endogenous kinases in mouse brain. LRRK2 immunoprecipitated from wild‐type mouse brain efficiently co‐purifies PAK6, whereas no PAK6 is detected in knock‐out lysates incubated with anti‐LRRK2 antibodies (Fig. 
<xref rid="jnc13369-fig-0001" ref-type="fig">1</xref>
e). As negative control, we did not observe interaction with Rab3A. In addition, ectopic expression of LRRK2 and PAK6 in primary cortical neurons results in co‐localization of the two kinases in the soma and dendrites with both diffuse and spotted distribution (Fig. 
<xref rid="jnc13369-fig-0001" ref-type="fig">1</xref>
f).</p>
<p>We then dissected the interaction down to domain level. PAK6 interacted with constructs containing the ROC and ROC‐COR, but not COR domain, of LRRK2 (Fig. 
<xref rid="jnc13369-fig-0002" ref-type="fig">2</xref>
a–b). As we had observed that the interaction is modulated by guanine nucleotides in protoarrays and involves the ROC domain of LRRK2, we hypothesized that PAK6 interacts with LRRK2
<italic>via</italic>
its CRIB domain, a conserved sequence near the N‐terminus (Fig. 
<xref rid="jnc13369-fig-0002" ref-type="fig">2</xref>
c) involved in the binding of small GTPase such as Cdc42 and Rac1 (Thompson
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0069" ref-type="ref">1998</xref>
) (PDB‐ID: 2ODB). To test this, we performed a pull‐down assay generally used to isolate active small GTPases such as Rac1. As a control, we first incubated GST‐tagged CRIB bound to glutathione‐sepharose beads with cell lysates from HEK293T cells expressing 3xFlag‐Rac1 in the presence of GDP or GppCp. As expected, Rac1 strongly binds PAK6 GST‐CRIB when activated with non‐hydrolysable GTP (Fig. 
<xref rid="jnc13369-fig-0002" ref-type="fig">2</xref>
d–f). We then performed the experiment using lysates from HEK293T transfected with 3xFlag‐LRRK2. GST‐CRIB pulls‐down LRRK2 protein and displays increased interaction for the kinase in the presence of non‐hydrolyzable nucleotides (Fig. 
<xref rid="jnc13369-fig-0002" ref-type="fig">2</xref>
e–f).</p>
<fig fig-type="Figure" xml:lang="en" id="jnc13369-fig-0002" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>The Cdc42/Rac‐interactive binding (
<styled-content style="fixed-case">CRIB</styled-content>
) domain of
<styled-content style="fixed-case">PAK</styled-content>
6 interacts with the ras of complex (
<styled-content style="fixed-case">ROC</styled-content>
) domain of LRRK2. (a) The
<styled-content style="fixed-case">ROC</styled-content>
domain of
<styled-content style="fixed-case">LRRK</styled-content>
2 is responsible for
<styled-content style="fixed-case">LRRK</styled-content>
2‐
<styled-content style="fixed-case">PAK</styled-content>
6 interaction. Cell lysates from stable
<styled-content style="fixed-case">HEK</styled-content>
293T cells over‐expressing
<styled-content style="fixed-case">PAK</styled-content>
6 and transfected with an empty vector (
<styled-content style="fixed-case">EV</styled-content>
), Flag‐tagged full‐length
<styled-content style="fixed-case">LRRK</styled-content>
2 or
<styled-content style="fixed-case">LRRK</styled-content>
2 fragments were subjected to co‐immunoprecipitation using anti‐Flag antibody, followed by anti‐
<styled-content style="fixed-case">PAK</styled-content>
6 and anti‐Flag immunoblotting. A schematic representation of the different
<styled-content style="fixed-case">LRRK</styled-content>
2 fragments used is shown below immunoblots. Blots are representative of three independent experiments. * and ** indicate antibody heavy and light chains, respectively. (b) Quantification of
<styled-content style="fixed-case">PAK</styled-content>
6 binding to
<styled-content style="fixed-case">LRRK</styled-content>
2 domains. Data are representative of three independent experiments and bars represent the mean ± SEM. (c) Schematic of
<styled-content style="fixed-case">PAK</styled-content>
6 domains and amino acid sequence of
<styled-content style="fixed-case">CRIB</styled-content>
domain. (d)
<styled-content style="fixed-case">GST</styled-content>
<styled-content style="fixed-case">CRIB</styled-content>
of
<styled-content style="fixed-case">PAK</styled-content>
6 detects active Rac1.
<styled-content style="fixed-case">GST</styled-content>
<styled-content style="fixed-case">CRIB</styled-content>
and
<styled-content style="fixed-case">GST</styled-content>
alone purified from bacterial sources and bound to glutathione‐sepharose resin were incubated with cell lysates from
<styled-content style="fixed-case">HEK</styled-content>
293T cells over‐expressing 3xFlag‐Rac1 in the presence of
<styled-content style="fixed-case">GDP</styled-content>
or non‐hydrolyzable
<styled-content style="fixed-case">GTP</styled-content>
. Samples were subjected to immunoblotting using anti‐Flag or stained with Coomassie. (e)
<styled-content style="fixed-case">PAK</styled-content>
6 interacts with
<styled-content style="fixed-case">LRRK</styled-content>
2
<italic>via </italic>
<styled-content style="fixed-case">CRIB</styled-content>
.
<styled-content style="fixed-case">GST</styled-content>
<styled-content style="fixed-case">CRIB</styled-content>
and
<styled-content style="fixed-case">GST</styled-content>
alone purified from bacterial sources and bound to glutathione‐sepharose resin were incubated with cell lysates from
<styled-content style="fixed-case">HEK</styled-content>
293T cells transfected with 3xFlag‐
<styled-content style="fixed-case">LRRK</styled-content>
2 in the presence of
<styled-content style="fixed-case">GDP</styled-content>
or non‐hydrolyzable
<styled-content style="fixed-case">GTP</styled-content>
. Samples were subjected to immunoblotting using anti‐Flag or stained with Coomassie. (f) Quantification of Rac1 and
<styled-content style="fixed-case">LRRK</styled-content>
2 binding to the
<styled-content style="fixed-case">CRIB</styled-content>
domain. Data are representative of three independent experiments and bars represent the mean ± SEM.</p>
</caption>
<graphic id="nlm-graphic-7" xlink:href="JNC-135-1242-g002"></graphic>
</fig>
<p>These data indicate that LRRK2 and PAK6 interact through ROC and CRIB domain, respectively, in a guanine nucleotide‐dependent fashion.</p>
</sec>
<sec id="jnc13369-sec-0016">
<title>PAK6 induces neurite outgrowth in a manner dependent on its kinase activity and LRRK2</title>
<p>We next asked whether LRRK2‐PAK6 interaction might have functional consequences in neurons. PAKs play a central role in dendrite development, contributing to branching and spine formation by modulating actin and microtubule dynamics in a kinase‐dependent manner (Eswaran
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0017" ref-type="ref">2008</xref>
). Double PAK5/6 knock‐out mice display a decreased number of neuronal processes, locomotor changes, and memory deficits (Nekrasova
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0047" ref-type="ref">2008</xref>
). Similarly, LRRK2 has an established role in regulating neurite outgrowth (MacLeod
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0037" ref-type="ref">2006</xref>
; Dachsel
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0011" ref-type="ref">2010</xref>
; Sepulveda
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0062" ref-type="ref">2013</xref>
). To investigate a putative role of LRRK2 and PAK6 in regulating neuronal morphology
<italic>in vivo</italic>
, we measured the effect of PAK6 expression on neurite length in LRRK2 wild‐type versus knock‐out mouse striatum.</p>
<p>First, the interaction between over‐expressed PAK6 and endogenous LRRK2 was assessed in our paradigm. rAAV2/7 vectors expressing 3xFlag‐PAK6 wild type or 3xFlag‐GFP were unilaterally injected in the striatum of 3‐month‐old C57bL/6 mice and 15 days post injection, transgene expression and spreading were confirmed by immunohistochemistry and western blotting analysis (Fig. 
<xref rid="jnc13369-fig-0003" ref-type="fig">3</xref>
a). PAK6 immunoprecipitated from dissected striata interacted strongly with endogenous LRRK2, whereas Flag immunoprecipitations of GFP‐expressing striatum or non‐injected striatum failed to co‐immunoprecipitate LRRK2 (Fig. 
<xref rid="jnc13369-fig-0003" ref-type="fig">3</xref>
b).</p>
<fig fig-type="Figure" xml:lang="en" id="jnc13369-fig-0003" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>
<styled-content style="fixed-case">PAK</styled-content>
6 binds endogenous LRRK2
<italic>in vivo</italic>
. (a) Striatal sections (50 μm) of paraformaldehyde‐perfused brains sterotaxically injected with recombinant adeno‐associated viral (r
<styled-content style="fixed-case">AAV</styled-content>
) encoding 3xFlag‐
<styled-content style="fixed-case">PAK</styled-content>
6 and 3xFlag‐
<styled-content style="fixed-case">GFP</styled-content>
and incubated with anti‐flag antibody followed by 3, 3′‐diaminobenzidine‐peroxidase staining. (b) Lysates from mouse striatum injected with
<styled-content style="fixed-case">rAAV</styled-content>
s encoding 3xFlag‐
<styled-content style="fixed-case">PAK</styled-content>
6 and 3xFlag‐
<styled-content style="fixed-case">GFP</styled-content>
were subjected to co‐immunoprecipitation using anti‐Flag antibody, followed by anti‐Flag and anti‐
<styled-content style="fixed-case">LRRK</styled-content>
2 (
<styled-content style="fixed-case">MJFF</styled-content>
2) immunoblotting. Scale bar 1 mm.</p>
</caption>
<graphic id="nlm-graphic-9" xlink:href="JNC-135-1242-g003"></graphic>
</fig>
<p>To explore the impact of PAK6 kinase activity in regulating neuronal branching, we then generated PAK6 kinase dead (K436M) and hyper‐active (S531N) mutants (Fig. 
<xref rid="jnc13369-fig-0004" ref-type="fig">4</xref>
a) (Schrantz
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0061" ref-type="ref">2004</xref>
). As readout of PAK6 kinase activity in our experimental model, we monitored the autophosphorylation of PAK6 at S560, a site conserved among PAK4/5/6 and analogous to T423 of PAK1, known to play a pivotal role in regulating the activity and function of PAK6 (Qu
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0055" ref-type="ref">2001</xref>
). As expected, PAK6 K436M is devoid of autophosphorylation activity, whereas PAK6 S531N is ~ 2‐fold more active than its wild‐type counterpart (Fig. 
<xref rid="jnc13369-fig-0004" ref-type="fig">4</xref>
a–b) (*
<italic>p</italic>
 < 0.05 PAK6 wild type vs. S531N, unpaired
<italic>t</italic>
‐test).</p>
<fig fig-type="Figure" xml:lang="en" id="jnc13369-fig-0004" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>
<styled-content style="fixed-case">PAK</styled-content>
6 and LRRK2 cooperate to control neurite growth
<italic>in vivo</italic>
. (a) Schematic of
<styled-content style="fixed-case">PAK</styled-content>
6 functional mutations. Auto‐phosphorylation of
<styled-content style="fixed-case">PAK</styled-content>
6 at S560 is monitored by western blotting of striata injected with
<styled-content style="fixed-case">PAK</styled-content>
6 wild type, K436M and S531N probed with anti phospho‐S560 and anti‐
<styled-content style="fixed-case">PAK</styled-content>
6 antibodies. (b) Quantification of (a) from
<italic>n</italic>
 = 4 injected brains (bars represent the mean ± SEM, unpaired
<italic>t</italic>
‐test; *
<italic></italic>
<
<italic> </italic>
0.05). (c–d) Representative images of striatal neurons co‐transduced with recombinant adeno‐associated virals encoding
<styled-content style="fixed-case">PAK</styled-content>
6 wild type, S531N, K436M or mCherry as control together with low titer
<styled-content style="fixed-case">LV</styled-content>
‐e
<styled-content style="fixed-case">GFP</styled-content>
to label individual neurons. Scale bar represents 50 μm. (e) Quantification of neurite length by two‐way
<sc>anova</sc>
with Tukey's
<styled-content style="fixed-case">HSD </styled-content>
<italic>post hoc</italic>
test for all variants (*
<italic></italic>
<
<italic> </italic>
0.05). Data were collected from six injected striata per condition. Twelve transduced neurons per condition were analyzed (bars represent the mean ± SEM).</p>
</caption>
<graphic id="nlm-graphic-11" xlink:href="JNC-135-1242-g004"></graphic>
</fig>
<p>Then, rAAV encoding mCherry control, 3xFlag‐PAK6 wild type, 3xFlag‐K436M and 3xFlag‐S531N were injected in mouse striatum at titers to obtain broad expression and co‐injected with LV‐eGFP at a low titer to label isolated neurons for the subsequent morphological analysis (Figure S1a). The efficiency of the rAAV vectors in transducing PAK6 variants at comparable levels in mouse striata was tested by 3, 3′‐diaminobenzidine staining (Figure S1b). Six striata were injected per condition and neuronal morphology was analyzed on z‐stack projections obtained by confocal microscopy. In our system, neurite complexity is not changed by the ablation of
<italic>LRRK2</italic>
gene in adult striatum (Fig. 
<xref rid="jnc13369-fig-0004" ref-type="fig">4</xref>
c–d), which contrasts to what is observed in primary cultures (Dachsel
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0011" ref-type="ref">2010</xref>
). This suggests that the enhanced neurite outgrowth phenotype observed in knock‐out primary neurons is presumably related to development more than maintenance of neurites in the adult. Instead, we observed that expression of PAK6 wild type results in a modest increase in neurite length compared to control, whereas expression of the hyper‐active PAK6 S531N caused a significant increase in wild‐type mice (Fig. 
<xref rid="jnc13369-fig-0004" ref-type="fig">4</xref>
c–e;
<italic>p</italic>
 < 0.05, two‐way
<sc>anova</sc>
with Tukey's HSD
<italic>post hoc</italic>
test). Strikingly, PAK6 S531N is no longer able to stimulate neurite outgrowth in LRRK2 knock‐out neurons (Fig. 
<xref rid="jnc13369-fig-0004" ref-type="fig">4</xref>
d–e, two‐way
<sc>anova</sc>
with Tukey's HSD
<italic>post hoc</italic>
test). As control, we do not observe any morphological changes between wild type and knock‐out striatal neurons transduced with PAK6 K436M.</p>
<p>Taken together, these results indicate that PAK6 kinase activity enhances neurite length and complexity through LRRK2.</p>
</sec>
<sec id="jnc13369-sec-0017">
<title>LRRK2 regulates PAK6 activation
<italic>in vivo</italic>
</title>
<p>As the results presented so far suggest that PAK6 requires LRRK2 to exert its function, we next investigated whether LRRK2 can activate PAK6. To this aim, we first tested the ability of LRRK2 to stimulate PAK6 autophosphorylation
<italic>in vitro</italic>
. 3xFlag‐PAK6 wild type and S531N were purified and either subjected, or not, to
<italic>in vitro</italic>
kinase assays. While the S531N exhibits ~ 3‐fold higher phosphorylation at S560 compared to wild type, as expected, both proteins were unable to further autophosphorylate at this site
<italic>in vitro</italic>
(Fig. 
<xref rid="jnc13369-fig-0005" ref-type="fig">5</xref>
a). This suggests that additional cellular components are required to stimulate autophosphorylation of S560. We then asked whether LRRK2 is sufficient to trigger this phosphorylation. 3xFlag‐LRRK2 wild type, G2019S and K1906M were purified and incubated with 3xFlag‐PAK6 in the presence or absence of Mg
<sup>2+</sup>
and ATP. Phosphorylation of T2483 and T1491 (two LRRK2 autophosphorylation sites) was monitored to confirm that the kinase reaction worked (Fig. 
<xref rid="jnc13369-fig-0005" ref-type="fig">5</xref>
b). Under this assay condition, we found that autophosphorylation of PAK6 at S560 was not stimulated by LRRK2 kinase activity (G2019S) or by LRRK2 itself (K1906M) (Fig. 
<xref rid="jnc13369-fig-0005" ref-type="fig">5</xref>
b–c,
<italic>p</italic>
 > 0.05 for all groups, one‐way
<sc>anova</sc>
with Tukey's HSD
<italic>post hoc</italic>
test). Altogether, these results indicate that isolated LRRK2 is not able to activate isolated PAK6
<italic>in vitro</italic>
and that a more complex cellular mechanism is likely required. To test this second hypothesis, we monitored the activation status of the kinase in brain lysates from LRRK2 wild type versus knock‐out mice. While we could not observe any difference in PAK6 autophosphorylation in 3‐month‐old brains (data not shown), a significant decrease in S560 phosphorylation was found in 12‐month‐old LRRK2 knock‐out compared to wild‐type mice (Fig. 
<xref rid="jnc13369-fig-0006" ref-type="fig">6</xref>
a–b, **
<italic>p</italic>
 < 0.01, unpaired
<italic>t</italic>
‐test).</p>
<fig fig-type="Figure" xml:lang="en" id="jnc13369-fig-0005" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>LRRK2 does not stimulate
<styled-content style="fixed-case">PAK</styled-content>
6 auto‐phosphorylation
<italic>in vitro</italic>
. (a)
<styled-content style="fixed-case">PAK</styled-content>
6 activation at S560 occurs in the cell. Recombinant 3xFlag‐
<styled-content style="fixed-case">PAK</styled-content>
6 wild type and S536N were purified and subjected to kinase assays
<italic>in vitro</italic>
with or without the addition of
<styled-content style="fixed-case">ATP</styled-content>
‐Mg
<sup>2+</sup>
.
<styled-content style="fixed-case">PAK</styled-content>
6 activation and kinase activity were measured by monitoring S560 and the incorporation of
<sup>33</sup>
P, respectively. (b)
<styled-content style="fixed-case">PAK</styled-content>
6 activation at S560 is not regulated by
<styled-content style="fixed-case">LRRK</styled-content>
2
<italic>in vitro</italic>
. Recombinant 3xFlag‐
<styled-content style="fixed-case">PAK</styled-content>
6 alone or together with 3xFlag‐
<styled-content style="fixed-case">LRRK</styled-content>
2 wild type, K1906M and G2019S in a 1 : 3 ratio was subjected to kinase assays
<italic>in vitro</italic>
with or without the addition of
<styled-content style="fixed-case">ATP</styled-content>
‐Mg
<sup>2+</sup>
. The incorporation of
<sup>33</sup>
P was monitored by western blotting with anti phospho‐S560
<styled-content style="fixed-case">PAK</styled-content>
6 and anti phospho‐T2483/T1491
<styled-content style="fixed-case">LRRK</styled-content>
2 antibodies. (c) Quantification of phospho‐S560 by one‐way
<sc>anova</sc>
with Tukey's
<styled-content style="fixed-case">HSD </styled-content>
<italic>post hoc</italic>
test. Data were collected from three independent experiments (bars represent the mean ± SEM).</p>
</caption>
<graphic id="nlm-graphic-13" xlink:href="JNC-135-1242-g005"></graphic>
</fig>
<fig fig-type="Figure" xml:lang="en" id="jnc13369-fig-0006" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p>
<styled-content style="fixed-case">PAK</styled-content>
6 and
<styled-content style="fixed-case">LIMK</styled-content>
1 activation are impaired in LRRK2 knock‐out mouse brains. (a)
<styled-content style="fixed-case">PAK</styled-content>
6 phosphorylation is decreased in
<styled-content style="fixed-case">LRRK</styled-content>
2 knock‐out brains. Lysates from
<styled-content style="fixed-case">LRRK</styled-content>
2 three wild‐type and three knock‐out mouse brains were subjected to immunoblot using anti
<styled-content style="fixed-case">PAK</styled-content>
6 and anti phospho‐S560. (b) Quantification of phospho‐S560 by unpaired
<italic>t</italic>
‐test (**
<italic>p</italic>
 < 0.01). Data were collected from three 12‐month old‐mouse brains (bars represent the mean ± SEM). (c)
<styled-content style="fixed-case">PAK</styled-content>
6 phosphorylates
<styled-content style="fixed-case">LIMK</styled-content>
1 at T508. Recombinant 3xFlag
<styled-content style="fixed-case">LIMK</styled-content>
1 and
<styled-content style="fixed-case">PAK</styled-content>
6 were subjected to kinase assays in a 5 : 1 ratio. The amount of phosphorylated
<styled-content style="fixed-case">LIMK</styled-content>
1 was quantified by western blotting with anti phospho‐T508
<styled-content style="fixed-case">LIMK</styled-content>
1 antibody. (d) Quantification of phospho‐T508 relative to total
<styled-content style="fixed-case">LIMK</styled-content>
1. Data were collected from three independent kinase assays (bars represent the mean ± SEM). (e)
<styled-content style="fixed-case">LIMK</styled-content>
1 phos‐phorylation is decreased in
<styled-content style="fixed-case">LRRK</styled-content>
2 knock‐out brains. Lysates from
<styled-content style="fixed-case">LRRK</styled-content>
2 three wild‐type and three knock‐out mouse brains were subjected to immunoblot using anti‐
<styled-content style="fixed-case">LIMK</styled-content>
1 and anti anti phospho‐T508 antibodies. (f) Quantification of phospho‐T508 by unpaired
<italic>t</italic>
‐test (*
<italic>p</italic>
 < 0.05). Data were collected from three 12‐month old‐mouse brains (bars represent the mean ± SEM).</p>
</caption>
<graphic id="nlm-graphic-15" xlink:href="JNC-135-1242-g006"></graphic>
</fig>
<p>To further investigate if the observed LRRK2‐dependent PAK6 activation has an impact on the downstream components of the signaling pathway, we then compared the phosphorylation status of a PAK6 substrate, LIMK1, in brains from LRRK2 wild‐type versus knock‐out mice. LIMK1 is an established downstream effector of the PAK family (Radu
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0056" ref-type="ref">2014</xref>
), which plays a key role in the regulation of actin polymerization through downstream phosphorylation of the actin‐severing protein cofilin (Yang
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0073" ref-type="ref">1998</xref>
). First, we tested the ability of PAK6 to phosphorylate LIMK1 at T508 
<italic>in vitro</italic>
. Recombinant 3xFlag‐PAK6 wild type and 3XFlag‐LIMK1 were purified and subjected to
<italic>in vitro</italic>
kinase assay. As shown in Fig. 
<xref rid="jnc13369-fig-0006" ref-type="fig">6</xref>
c–d, PAK6 can efficiently phosphorylate LIMK1 at T508. We subsequently measured the phosphorylation levels of LIMK1 at T508 in brain lysates from LRRK2 wild‐type and knock‐out mice and observed a significant reduction of phospho‐T508 in knock‐out brains, similar to what was observed for PAK6 S560 (Fig. 
<xref rid="jnc13369-fig-0006" ref-type="fig">6</xref>
e–f, *
<italic>p</italic>
 < 0.05, unpaired
<italic>t</italic>
‐test).</p>
<p>Overall, these results suggest that LRRK2 is part of a cellular complex required to activate the PAK6 pathway
<italic>in vivo</italic>
.</p>
</sec>
<sec id="jnc13369-sec-0018">
<title>PAK6 is aberrantly activated in post‐mortem tissues from PD brains</title>
<p>To investigate if PAK6 is aberrantly activated in pathological conditions, we next measured PAK6 S560 phosphorylation in G2019S and iPD brains. Western blot analysis shows that phospho‐PAK6 is increased in basal ganglia from iPD (
<italic>n</italic>
 = 4 cases) as well as mutant G2019S LRRK2 (
<italic>n</italic>
 = 3 cases) PD patients of ~ 2‐fold compared to age‐matched healthy controls (
<italic>n</italic>
 = 4 cases) (Fig. 
<xref rid="jnc13369-fig-0007" ref-type="fig">7</xref>
a–b). These results were further supported by immunohistochemistry of basal ganglia sections from iPD and G2019S LRRK2 patients versus controls (Fig. 
<xref rid="jnc13369-fig-0007" ref-type="fig">7</xref>
c–d).</p>
<fig fig-type="Figure" xml:lang="en" id="jnc13369-fig-0007" orientation="portrait" position="float">
<label>Figure 7</label>
<caption>
<p>Phospho‐
<styled-content style="fixed-case">PAK</styled-content>
6 levels are increased in mutant G2019S LRRK2 and idiopathic
<styled-content style="fixed-case">PD</styled-content>
(i
<styled-content style="fixed-case">PD</styled-content>
) brains. (a) Immunoblot of endogenous phospho‐S560
<styled-content style="fixed-case">PAK</styled-content>
6 levels in basal ganglia lysates from human G2019S
<styled-content style="fixed-case">LRRK</styled-content>
2 Parkinson's disease (
<styled-content style="fixed-case">PD</styled-content>
) patients, human i
<styled-content style="fixed-case">PD</styled-content>
patients, and neurologic controls. (b) Quantification of phospho‐S560
<styled-content style="fixed-case">PAK</styled-content>
6 by one‐way
<sc>anova</sc>
with Tukey's post hoc test (*
<italic>p</italic>
 < 0.05, i
<styled-content style="fixed-case">PD</styled-content>
vs. control). (c) Representative images of phospho‐S560
<styled-content style="fixed-case">PAK</styled-content>
6 staining in basal ganglia from i
<styled-content style="fixed-case">PD</styled-content>
, G2019S
<styled-content style="fixed-case">LRRK</styled-content>
2
<styled-content style="fixed-case">PD</styled-content>
patients and a control case. Scale bar 10 μM. (d) Semi‐quantitative analysis of phospho‐S560
<styled-content style="fixed-case">PAK</styled-content>
6 immunoreactivity (
<styled-content style="fixed-case">IR</styled-content>
) in G2019S, i
<styled-content style="fixed-case">PD</styled-content>
and control cases. Phospho‐S560
<styled-content style="fixed-case">IR</styled-content>
was assessed according to a four‐tired scoring system: score 0 = no P‐
<styled-content style="fixed-case">PAK</styled-content>
6
<styled-content style="fixed-case">IR</styled-content>
, score + = weak P‐
<styled-content style="fixed-case">PAK</styled-content>
6
<styled-content style="fixed-case">IR</styled-content>
, score ++ = moderate P‐
<styled-content style="fixed-case">PAK</styled-content>
6
<styled-content style="fixed-case">IR</styled-content>
, score +++ = strong P‐PAK6 IR.</p>
</caption>
<graphic id="nlm-graphic-17" xlink:href="JNC-135-1242-g007"></graphic>
</fig>
<p>Taken together, these data support a functional interplay between LRRK2 and PAK6 in the pathophysiology of human PD and suggest that LRRK2 may exert its toxicity through an aberrant regulation of PAK6 in PD.</p>
</sec>
</sec>
<sec id="jnc13369-sec-0019">
<title>Discussion</title>
<p>Mutations in
<italic>LRRK2</italic>
are a common cause of PD; however, the physiological function of LRRK2 and the molecular mechanisms behind LRRK2‐linked PD are still poorly understood. One approach to gain insights into the function/dysfunction of a protein of interest is to elucidate its interactome. Here, we reveal the functional nature of the interaction between LRRK2 and PAK6, a novel LRRK2 partner identified using a protein array screening methodology. We demonstrated that LRRK2 and PAK6, interacting through their GTPase/ROC and CRIB domains, form a functional complex in mammalian brain, which impacts neurite outgrowth.</p>
<p>PAKs comprise a family of serine‐threonine kinases playing a central role in signal transduction. In contrast to class I PAKs (PAK1‐3) which are activated by Rho GTPase binding, class II PAKs (PAK4‐6) are re‐localized (not activated) by GTPases within specific signaling sites and locally activated by binding with SH3 domains to release pseudo‐substrate inhibition (Ha
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0024" ref-type="ref">2012</xref>
). One of the best‐characterized functions of these kinases is their role in actin cytoskeleton reorganization, such as formation of lamellipodia, filopodia, and membrane‐ruffles
<italic>via</italic>
the LIM kinase‐cofilin pathway (Edwards
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0016" ref-type="ref">1999</xref>
). PAK5 and PAK6 are highly expressed in the brain and, interestingly, PAK5/PAK6 double knock‐out mice display neurite shortening and learning and memory defects (Nekrasova
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0047" ref-type="ref">2008</xref>
).</p>
<p>In the nervous system, finely controlled neuronal connectivity is fundamental for maintenance of brain architecture and cognitive functions. Dynamic changes in actin cytoskeleton provide the mechanical force for neurite outgrowth, synapse formation and neuronal migration. Accordingly, defective cytoskeletal dynamics causes multiple neurodegenerative diseases (Heredia
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0026" ref-type="ref">2006</xref>
; Ma
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0036" ref-type="ref">2012</xref>
; Saal
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0059" ref-type="ref">2015</xref>
). LRRK2 has been robustly linked to actin dynamics: it impacts Erzin, Radixin, Moesin phosphorylation in neurons (Parisiadou
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0051" ref-type="ref">2009</xref>
) and binds F‐actin modulating its assembly
<italic>in vitro</italic>
(Meixner
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0045" ref-type="ref">2011</xref>
). Furthermore, phosphorylation of LRRK2 at S910/935 is required for binding to 14‐3‐3 proteins, and LRRK2 dephosphorylation results in protein re‐localization within defined intracellular sites including cytoskeletal‐associated structures (Dzamko
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0015" ref-type="ref">2010</xref>
; Nichols
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0048" ref-type="ref">2010</xref>
). To explore the hypothesis of an interplay between LRRK2 and PAK6 in a signaling network related to actin cytoskeleton dynamics
<bold>,</bold>
we searched for a functional phenotype
<italic>in vivo</italic>
. We found that over‐expression of PAK6 in brain striata increases neurite length in a kinase dependent manner. However, when LRRK2 is knocked‐out, PAK6 activity is no longer effective, supporting the notion that LRRK2 is required for PAK6‐dependent regulation of neurite morphogenesis.</p>
<p>Rho GTPase‐dependent neurite elongation and branching are essential mechanisms for the formation of functional networks connecting neurons through synapses, and its deregulation may contribute to neurodegeneration (Heredia
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0026" ref-type="ref">2006</xref>
; DeGeer and Lamarche‐Vane
<xref rid="jnc13369-bib-0013" ref-type="ref">2013</xref>
; Saal
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0059" ref-type="ref">2015</xref>
). Interestingly, LRRK2 has been previously suggested to influence neurogenesis (Buchwald
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0005" ref-type="ref">2001</xref>
; Winner
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0072" ref-type="ref">2011</xref>
) as well as pre‐synaptic (Matta
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0043" ref-type="ref">2012</xref>
; Cirnaru
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0008" ref-type="ref">2014</xref>
) and post‐synaptic functions (Migheli
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0046" ref-type="ref">2013</xref>
; Beccano‐Kelly
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0001" ref-type="ref">2014</xref>
) and our results identify PAK6 as possible mediator of LRRK2 activity within these processes.</p>
<p>We collected additional evidence both from mouse and human brain tissues supporting a mechanism where LRRK2 is important in the activation mechanism of PAK6. LRRK2 kinase activity is not sufficient to directly activate PAK6
<italic>in vitro</italic>
suggesting that complex cellular machinery is required. Accordingly, we found that ablation of LRRK2 causes a significant reduction of activated PAK6 in the brain and a parallel decrease in the phosphorylation levels of the PAK6 substrate LIMK1. Recently, LRRK2 was suggested to function as a scaffold, compartmentalizing protein kinase A
<italic>via</italic>
its ROC domain (Parisiadou
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0052" ref-type="ref">2014</xref>
). Together, our findings support a similar scenario where the ROC domain of LRRK2, in analogy to the Rho GTPases, re‐localizes PAK6 during signaling (Ha
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0024" ref-type="ref">2012</xref>
).</p>
<p>Both LRRK2 and PAK6 are expressed in human brain (Taymans
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0067" ref-type="ref">2006</xref>
; Nekrasova
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0047" ref-type="ref">2008</xref>
, Mandemakers
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0040" ref-type="ref">2012</xref>
) and deregulation of the LRRK2‐PAK6 signaling because of LRRK2 mutations may affect neuronal communication with consequent pathological outcomes. To this regard, we found that PAK6 exhibits increased autophosphorylation in G2019S and iPD brains, indicating the presence of hyperactive PAK6 in sporadic and LRRK2‐linked PD. We speculate that overactive PAK6 owing to mutant LRRK2 may result in deregulated actin cytoskeleton dynamics
<italic>via</italic>
LIMK1 with impact on neurite growth and synaptic activity. Our data may imply that overactive PAK6 owing to LRRK2 mutation is associated with increased neurite outgrowth. However, it has been reported that the G2019S induces neurite retraction (Parisiadou
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0051" ref-type="ref">2009</xref>
). While it remains unclear whether the shorter neurite phenotype linked to G2019S depends on its intrinsic higher toxicity (Greggio
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0021" ref-type="ref">2006</xref>
; Smith
<italic>et al</italic>
.
<xref rid="jnc13369-bib-0064" ref-type="ref">2006</xref>
) or to a specific alteration of the signaling stimulating neurite outgrowth, further investigation is clearly necessary to shed light into the complex relationship among pathological LRRK2, PAK6 activation and neuronal degeneration.</p>
<p>In conclusion, starting from a protein array screening, our study reveals a novel functional interaction between LRRK2 and PAK6 in controlling neurite morphology and the molecular characterization of this interaction disclosed PAK6 as novel, explorable target for LRRK2‐linked PD.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supporting information</title>
<supplementary-material content-type="local-data">
<caption>
<p>
<bold>Figure S1</bold>
. (a) Representative images of striatum slices co‐transduced with high titer rAAVs encoding. PAK6 and low titer LV‐eGFP to allow neurite tracing. (b) Representative images of striatum slices from LRRK2 wild‐type and knock‐out mice. transduced with rAAVs encoding PAK6 and DAB stained using anti FlagM2 antibodies.</p>
</caption>
<media xlink:href="JNC-135-1242-s001.pdf">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack id="jnc13369-sec-0020">
<title>Acknowledgments and conflict of interest disclosure</title>
<p>We are grateful to the Michael J Fox Foundation for supporting this study. We also thank the financial support of Telethon ‐ Italy (Grant no. GGP12237) and the CARIPLO Foundation (grant 2011‐0540). LC was supported by a short‐term EMBO fellowship (MBO ASTF 526‐2012/Award). We thank the FWO‐Vlaanderen (FWO projects G.0666.09, KAN2012 1.5.216.12 and fellowship to JMT), the IWT SBO/80020 and SBO/100042 projects and the Fund Druwé‐Eerdekens managed by the King Baudouin Foundation for their support. This research was supported in part by the Intramural Research Program of the NIH, National Institute on Aging. This project is supported by an MRC grant to PAL (MR/L010933/1). PAL is a Parkinson's UK research fellow (grant F1002). This work was supported in part by the Wellcome Trust/MRC Joint Call in Neurodegeneration award (WT089698) to the UK Parkinson's Disease Consortium (UKPDC) whose members are from the UCL Institute of Neurology, the University of Sheffield and the MRC Protein Phosphorylation Unit at the University of Dundee. We thank Professor Johan Hofkens and Charlotte David (Molecular Imaging and Photonics, KU Leuven) for the use of the confocal laser scanning microscope. We also acknowledge the technical assistance of Fangye Gao and Caroline Van Heijningen and the Leuven Viral Vector Core (
<ext-link ext-link-type="uri" xlink:href="http://www.kuleuven.be/molmed/lvvc/vectorproduction.html">http://www.kuleuven.be/molmed/lvvc/vectorproduction.html</ext-link>
) for the production of LV and AAV vectors. We gratefully thank Dr. Heather Melrose for providing LRRK2 knock‐out mice. The authors have no conflict of interest to declare.</p>
<p>All experiments were conducted in compliance with the ARRIVE guidelines.</p>
</ack>
<ref-list content-type="cited-references" id="jnc13369-bibl-0001">
<title>References</title>
<ref id="jnc13369-bib-0001">
<mixed-citation publication-type="journal" id="jnc13369-cit-0001">
<string-name>
<surname>Beccano‐Kelly</surname>
<given-names>D. A.</given-names>
</string-name>
,
<string-name>
<surname>Volta</surname>
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Munsie</surname>
<given-names>L. N.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2014</year>
)
<article-title>LRRK2 overexpression alters glutamatergic presynaptic plasticity, striatal dopamine tone, postsynaptic signal transduction, motor activity and memory</article-title>
.
<source>Hum. Mol. Genet.</source>
<volume>24</volume>
,
<fpage>1336</fpage>
<lpage>1349</lpage>
.
<pub-id pub-id-type="pmid">25343991</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0002">
<mixed-citation publication-type="journal" id="jnc13369-cit-0002">
<string-name>
<surname>Beilina</surname>
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Rudenko</surname>
<given-names>I. N.</given-names>
</string-name>
,
<string-name>
<surname>Kaganovich</surname>
<given-names>A.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2014</year>
)
<article-title>Unbiased screen for interactors of leucine‐rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease</article-title>
.
<source>Proc. Natl Acad. Sci. USA</source>
<volume>111</volume>
,
<fpage>2626</fpage>
<lpage>2631</lpage>
.
<pub-id pub-id-type="pmid">24510904</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0003">
<mixed-citation publication-type="journal" id="jnc13369-cit-0003">
<string-name>
<surname>Biosa</surname>
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Trancikova</surname>
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Civiero</surname>
<given-names>L.</given-names>
</string-name>
,
<string-name>
<surname>Glauser</surname>
<given-names>L.</given-names>
</string-name>
,
<string-name>
<surname>Bubacco</surname>
<given-names>L.</given-names>
</string-name>
,
<string-name>
<surname>Greggio</surname>
<given-names>E.</given-names>
</string-name>
and
<string-name>
<surname>Moore</surname>
<given-names>D. J.</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>GTPase activity regulates kinase activity and cellular phenotypes of Parkinson's disease‐associated LRRK2</article-title>
.
<source>Hum. Mol. Genet.</source>
<volume>22</volume>
,
<fpage>1140</fpage>
<lpage>1156</lpage>
.
<pub-id pub-id-type="pmid">23241358</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0004">
<mixed-citation publication-type="journal" id="jnc13369-cit-0004">
<string-name>
<surname>Bosgraaf</surname>
<given-names>L.</given-names>
</string-name>
and
<string-name>
<surname>Van Haastert</surname>
<given-names>P. J.</given-names>
</string-name>
(
<year>2003</year>
)
<article-title>Roc, a Ras/GTPase domain in complex proteins</article-title>
.
<source>Biochim. Biophys. Acta</source>
<volume>1643</volume>
,
<fpage>5</fpage>
<lpage>10</lpage>
.
<pub-id pub-id-type="pmid">14654223</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0005">
<mixed-citation publication-type="journal" id="jnc13369-cit-0005">
<string-name>
<surname>Buchwald</surname>
<given-names>G.</given-names>
</string-name>
,
<string-name>
<surname>Hostinova</surname>
<given-names>E.</given-names>
</string-name>
,
<string-name>
<surname>Rudolph</surname>
<given-names>M. G.</given-names>
</string-name>
,
<string-name>
<surname>Kraemer</surname>
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Sickmann</surname>
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Meyer</surname>
<given-names>H. E.</given-names>
</string-name>
,
<string-name>
<surname>Scheffzek</surname>
<given-names>K.</given-names>
</string-name>
and
<string-name>
<surname>Wittinghofer</surname>
<given-names>A.</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>Conformational switch and role of phosphorylation in PAK activation</article-title>
.
<source>Mol. Cell. Biol.</source>
<volume>21</volume>
,
<fpage>5179</fpage>
<lpage>5189</lpage>
.
<pub-id pub-id-type="pmid">11438672</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0006">
<mixed-citation publication-type="journal" id="jnc13369-cit-0006">
<string-name>
<surname>Caesar</surname>
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Zach</surname>
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Carlson</surname>
<given-names>C. B.</given-names>
</string-name>
,
<string-name>
<surname>Brockmann</surname>
<given-names>K.</given-names>
</string-name>
,
<string-name>
<surname>Gasser</surname>
<given-names>T.</given-names>
</string-name>
and
<string-name>
<surname>Gillardon</surname>
<given-names>F.</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>Leucine‐rich repeat kinase 2 functionally interacts with microtubules and kinase‐dependently modulates cell migration</article-title>
.
<source>Neurobiol. Dis.</source>
<volume>54</volume>
,
<fpage>280</fpage>
<lpage>288</lpage>
.
<pub-id pub-id-type="pmid">23318930</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0007">
<mixed-citation publication-type="journal" id="jnc13369-cit-0007">
<string-name>
<surname>Caesar</surname>
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Felk</surname>
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Aasly</surname>
<given-names>J. O.</given-names>
</string-name>
and
<string-name>
<surname>Gillardon</surname>
<given-names>F.</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>Changes in actin dynamics and F‐actin structure both in synaptoneurosomes of LRRK2(R1441G) mutant mice and in primary human fibroblasts of LRRK2(G2019S) mutation carriers</article-title>
.
<source>Neuroscience</source>
<volume>284</volume>
,
<fpage>311</fpage>
<lpage>324</lpage>
.
<pub-id pub-id-type="pmid">25301747</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0008">
<mixed-citation publication-type="journal" id="jnc13369-cit-0008">
<string-name>
<surname>Cirnaru</surname>
<given-names>M. D.</given-names>
</string-name>
,
<string-name>
<surname>Marte</surname>
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Belluzzi</surname>
<given-names>E.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2014</year>
)
<article-title>LRRK2 kinase activity regulates synaptic vesicle trafficking and neurotransmitter release through modulation of LRRK2 macro‐molecular complex</article-title>
.
<source>Front. Mol. Neurosci.</source>
<volume>7</volume>
,
<fpage>49</fpage>
.
<pub-id pub-id-type="pmid">24904275</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0009">
<mixed-citation publication-type="journal" id="jnc13369-cit-0009">
<string-name>
<surname>Civiero</surname>
<given-names>L.</given-names>
</string-name>
,
<string-name>
<surname>Vancraenenbroeck</surname>
<given-names>R.</given-names>
</string-name>
,
<string-name>
<surname>Belluzzi</surname>
<given-names>E.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2012</year>
)
<article-title>Biochemical characterization of highly purified leucine‐rich repeat kinases 1 and 2 demonstrates formation of homodimers</article-title>
.
<source>PLoS ONE</source>
<volume>7</volume>
,
<fpage>e43472</fpage>
.
<pub-id pub-id-type="pmid">22952686</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0010">
<mixed-citation publication-type="journal" id="jnc13369-cit-0010">
<string-name>
<surname>Civiero</surname>
<given-names>L.</given-names>
</string-name>
,
<string-name>
<surname>Dihanich</surname>
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Lewis</surname>
<given-names>P. A.</given-names>
</string-name>
and
<string-name>
<surname>Greggio</surname>
<given-names>E.</given-names>
</string-name>
(
<year>2014</year>
)
<article-title>Genetic, structural, and molecular insights into the function of ras of complex proteins domains</article-title>
.
<source>Chem. Biol.</source>
<volume>21</volume>
,
<fpage>809</fpage>
<lpage>818</lpage>
.
<pub-id pub-id-type="pmid">24981771</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0011">
<mixed-citation publication-type="journal" id="jnc13369-cit-0011">
<string-name>
<surname>Dachsel</surname>
<given-names>J. C.</given-names>
</string-name>
,
<string-name>
<surname>Behrouz</surname>
<given-names>B.</given-names>
</string-name>
,
<string-name>
<surname>Yue</surname>
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Beevers</surname>
<given-names>J. E.</given-names>
</string-name>
,
<string-name>
<surname>Melrose</surname>
<given-names>H. L.</given-names>
</string-name>
and
<string-name>
<surname>Farrer</surname>
<given-names>M. J.</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>A comparative study of Lrrk2 function in primary neuronal cultures</article-title>
.
<source>Parkinsonism Relat. Disord.</source>
<volume>16</volume>
,
<fpage>650</fpage>
<lpage>655</lpage>
.
<pub-id pub-id-type="pmid">20850369</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0012">
<mixed-citation publication-type="journal" id="jnc13369-cit-0012">
<string-name>
<surname>Daniels</surname>
<given-names>V.</given-names>
</string-name>
,
<string-name>
<surname>Vancraenenbroeck</surname>
<given-names>R.</given-names>
</string-name>
,
<string-name>
<surname>Law</surname>
<given-names>B. M.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2011</year>
)
<article-title>Insight into the mode of action of the LRRK2 Y1699C pathogenic mutant</article-title>
.
<source>J. Neurochem.</source>
<volume>116</volume>
,
<fpage>304</fpage>
<lpage>315</lpage>
.
<pub-id pub-id-type="pmid">21073465</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0013">
<mixed-citation publication-type="journal" id="jnc13369-cit-0013">
<string-name>
<surname>DeGeer</surname>
<given-names>J.</given-names>
</string-name>
and
<string-name>
<surname>Lamarche‐Vane</surname>
<given-names>N.</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>Rho GTPases in neurodegeneration diseases</article-title>
.
<source>Exp. Cell Res.</source>
<volume>319</volume>
,
<fpage>2384</fpage>
<lpage>2394</lpage>
.
<pub-id pub-id-type="pmid">23830879</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0014">
<mixed-citation publication-type="journal" id="jnc13369-cit-0014">
<string-name>
<surname>Dihanich</surname>
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Civiero</surname>
<given-names>L.</given-names>
</string-name>
,
<string-name>
<surname>Manzoni</surname>
<given-names>C.</given-names>
</string-name>
,
<string-name>
<surname>Mamais</surname>
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Bandopadhyay</surname>
<given-names>R.</given-names>
</string-name>
,
<string-name>
<surname>Greggio</surname>
<given-names>E.</given-names>
</string-name>
and
<string-name>
<surname>Lewis</surname>
<given-names>P. A.</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>GTP binding controls complex formation by the human ROCO protein MASL1</article-title>
.
<source>FEBS J.</source>
<volume>281</volume>
,
<fpage>261</fpage>
<lpage>274</lpage>
.
<pub-id pub-id-type="pmid">24286120</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0015">
<mixed-citation publication-type="journal" id="jnc13369-cit-0015">
<string-name>
<surname>Dzamko</surname>
<given-names>N.</given-names>
</string-name>
,
<string-name>
<surname>Deak</surname>
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Hentati</surname>
<given-names>F.</given-names>
</string-name>
,
<string-name>
<surname>Reith</surname>
<given-names>A. D.</given-names>
</string-name>
,
<string-name>
<surname>Prescott</surname>
<given-names>A. R.</given-names>
</string-name>
,
<string-name>
<surname>Alessi</surname>
<given-names>D. R.</given-names>
</string-name>
and
<string-name>
<surname>Nichols</surname>
<given-names>R. J.</given-names>
</string-name>
(
<year>2010</year>
)
<article-title>Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14‐3‐3 binding and altered cytoplasmic localization</article-title>
.
<source>Biochem. J.</source>
<volume>430</volume>
,
<fpage>405</fpage>
<lpage>413</lpage>
.
<pub-id pub-id-type="pmid">20659021</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0016">
<mixed-citation publication-type="journal" id="jnc13369-cit-0016">
<string-name>
<surname>Edwards</surname>
<given-names>D. C.</given-names>
</string-name>
,
<string-name>
<surname>Sanders</surname>
<given-names>L. C.</given-names>
</string-name>
,
<string-name>
<surname>Bokoch</surname>
<given-names>G. M.</given-names>
</string-name>
and
<string-name>
<surname>Gill</surname>
<given-names>G. N.</given-names>
</string-name>
(
<year>1999</year>
)
<article-title>Activation of LIM‐kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics</article-title>
.
<source>Nat. Cell Biol.</source>
<volume>1</volume>
(
<issue>1</issue>
), ppi:e00002.</mixed-citation>
</ref>
<ref id="jnc13369-bib-0017">
<mixed-citation publication-type="journal" id="jnc13369-cit-0017">
<string-name>
<surname>Eswaran</surname>
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Soundararajan</surname>
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Kumar</surname>
<given-names>R.</given-names>
</string-name>
and
<string-name>
<surname>Knapp</surname>
<given-names>S.</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>UnPAKing the class differences among p21‐activated kinases</article-title>
.
<source>Trends Biochem. Sci.</source>
<volume>33</volume>
,
<fpage>394</fpage>
<lpage>403</lpage>
.
<pub-id pub-id-type="pmid">18639460</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0018">
<mixed-citation publication-type="journal" id="jnc13369-cit-0018">
<string-name>
<surname>Gomez‐Suaga</surname>
<given-names>P.</given-names>
</string-name>
,
<string-name>
<surname>Luzon‐Toro</surname>
<given-names>B.</given-names>
</string-name>
,
<string-name>
<surname>Churamani</surname>
<given-names>D.</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</string-name>
,
<string-name>
<surname>Bloor‐Young</surname>
<given-names>D.</given-names>
</string-name>
,
<string-name>
<surname>Patel</surname>
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Woodman</surname>
<given-names>P. G.</given-names>
</string-name>
,
<string-name>
<surname>Churchill</surname>
<given-names>G. C.</given-names>
</string-name>
and
<string-name>
<surname>Hilfiker</surname>
<given-names>S.</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>Leucine‐rich repeat kinase 2 regulates autophagy through a calcium‐dependent pathway involving NAADP</article-title>
.
<source>Hum. Mol. Genet.</source>
<volume>21</volume>
,
<fpage>511</fpage>
<lpage>525</lpage>
.
<pub-id pub-id-type="pmid">22012985</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0019">
<mixed-citation publication-type="journal" id="jnc13369-cit-0019">
<string-name>
<surname>Greggio</surname>
<given-names>E.</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>Role of LRRK2 kinase activity in the pathogenesis of Parkinson's disease</article-title>
.
<source>Biochem. Soc. Trans.</source>
<volume>40</volume>
,
<fpage>1058</fpage>
<lpage>1062</lpage>
.
<pub-id pub-id-type="pmid">22988865</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0020">
<mixed-citation publication-type="journal" id="jnc13369-cit-0020">
<string-name>
<surname>Greggio</surname>
<given-names>E.</given-names>
</string-name>
and
<string-name>
<surname>Cookson</surname>
<given-names>M. R.</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>Leucine‐rich repeat kinase 2 mutations and Parkinson's disease: three questions</article-title>
.
<source>ASN Neuro.</source>
,
<volume>1</volume>
, e00002.</mixed-citation>
</ref>
<ref id="jnc13369-bib-0021">
<mixed-citation publication-type="journal" id="jnc13369-cit-0021">
<string-name>
<surname>Greggio</surname>
<given-names>E.</given-names>
</string-name>
,
<string-name>
<surname>Jain</surname>
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Kingsbury</surname>
<given-names>A.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2006</year>
)
<article-title>Kinase activity is required for the toxic effects of mutant LRRK2/dardarin</article-title>
.
<source>Neurobiol. Dis.</source>
<volume>23</volume>
,
<fpage>329</fpage>
<lpage>341</lpage>
.
<pub-id pub-id-type="pmid">16750377</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0022">
<mixed-citation publication-type="journal" id="jnc13369-cit-0022">
<string-name>
<surname>Greggio</surname>
<given-names>E.</given-names>
</string-name>
,
<string-name>
<surname>Lewis</surname>
<given-names>P. A.</given-names>
</string-name>
,
<string-name>
<surname>van der Brug</surname>
<given-names>M. P.</given-names>
</string-name>
,
<string-name>
<surname>Ahmad</surname>
<given-names>R.</given-names>
</string-name>
,
<string-name>
<surname>Kaganovich</surname>
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Ding</surname>
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Beilina</surname>
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Baker</surname>
<given-names>A. K.</given-names>
</string-name>
and
<string-name>
<surname>Cookson</surname>
<given-names>M. R.</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Mutations in LRRK2/dardarin associated with Parkinson disease are more toxic than equivalent mutations in the homologous kinase LRRK1</article-title>
.
<source>J. Neurochem.</source>
<volume>102</volume>
,
<fpage>93</fpage>
<lpage>102</lpage>
.
<pub-id pub-id-type="pmid">17394548</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0023">
<mixed-citation publication-type="journal" id="jnc13369-cit-0023">
<string-name>
<surname>Greggio</surname>
<given-names>E.</given-names>
</string-name>
,
<string-name>
<surname>Taymans</surname>
<given-names>J. M.</given-names>
</string-name>
,
<string-name>
<surname>Zhen</surname>
<given-names>E. Y.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2009</year>
)
<article-title>The Parkinson's disease kinase LRRK2 autophosphorylates its GTPase domain at multiple sites</article-title>
.
<source>Biochem. Biophys. Res. Commun.</source>
<volume>389</volume>
,
<fpage>449</fpage>
<lpage>454</lpage>
.
<pub-id pub-id-type="pmid">19733152</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0024">
<mixed-citation publication-type="journal" id="jnc13369-cit-0024">
<string-name>
<surname>Ha</surname>
<given-names>B. H.</given-names>
</string-name>
,
<string-name>
<surname>Davis</surname>
<given-names>M. J.</given-names>
</string-name>
,
<string-name>
<surname>Chen</surname>
<given-names>C.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2012</year>
)
<article-title>Type II p21‐activated kinases (PAKs) are regulated by an autoinhibitory pseudosubstrate</article-title>
.
<source>Proc. Natl Acad. Sci. USA</source>
<volume>109</volume>
,
<fpage>16107</fpage>
<lpage>16112</lpage>
.
<pub-id pub-id-type="pmid">22988085</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0025">
<mixed-citation publication-type="journal" id="jnc13369-cit-0025">
<string-name>
<surname>Habig</surname>
<given-names>K.</given-names>
</string-name>
,
<string-name>
<surname>Gellhaar</surname>
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Heim</surname>
<given-names>B.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2013</year>
)
<article-title>LRRK2 guides the actin cytoskeleton at growth cones together with ARHGEF7 and Tropomyosin 4</article-title>
.
<source>Biochim. Biophys. Acta</source>
<volume>1832</volume>
,
<fpage>2352</fpage>
<lpage>2367</lpage>
.
<pub-id pub-id-type="pmid">24075941</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0026">
<mixed-citation publication-type="journal" id="jnc13369-cit-0026">
<string-name>
<surname>Heredia</surname>
<given-names>L.</given-names>
</string-name>
,
<string-name>
<surname>Helguera</surname>
<given-names>P.</given-names>
</string-name>
,
<string-name>
<surname>de Olmos</surname>
<given-names>S.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2006</year>
)
<article-title>Phosphorylation of actin‐depolymerizing factor/cofilin by LIM‐kinase mediates amyloid beta‐induced degeneration: a potential mechanism of neuronal dystrophy in Alzheimer's disease</article-title>
.
<source>J. Neurosci.</source>
<volume>26</volume>
,
<fpage>6533</fpage>
<lpage>6542</lpage>
.
<pub-id pub-id-type="pmid">16775141</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0027">
<mixed-citation publication-type="journal" id="jnc13369-cit-0027">
<string-name>
<surname>Ibrahimi</surname>
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Vande Velde</surname>
<given-names>G.</given-names>
</string-name>
,
<string-name>
<surname>Reumers</surname>
<given-names>V.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2009</year>
)
<article-title>Highly efficient multicistronic lentiviral vectors with peptide 2A sequences</article-title>
.
<source>Hum. Gene Ther.</source>
<volume>20</volume>
,
<fpage>845</fpage>
<lpage>860</lpage>
.
<pub-id pub-id-type="pmid">19419274</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0028">
<mixed-citation publication-type="journal" id="jnc13369-cit-0028">
<string-name>
<surname>Jebelli</surname>
<given-names>J. D.</given-names>
</string-name>
,
<string-name>
<surname>Dihanich</surname>
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Civiero</surname>
<given-names>L.</given-names>
</string-name>
,
<string-name>
<surname>Manzoni</surname>
<given-names>C.</given-names>
</string-name>
,
<string-name>
<surname>Greggio</surname>
<given-names>E.</given-names>
</string-name>
and
<string-name>
<surname>Lewis</surname>
<given-names>P. A.</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>GTP binding and intramolecular regulation by the ROC domain of Death Associated Protein Kinase 1</article-title>
.
<source>Sci. Rep.</source>
<volume>2</volume>
,
<fpage>695</fpage>
.
<pub-id pub-id-type="pmid">23019516</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0029">
<mixed-citation publication-type="journal" id="jnc13369-cit-0029">
<string-name>
<surname>Johannessen</surname>
<given-names>C. M.</given-names>
</string-name>
,
<string-name>
<surname>Boehm</surname>
<given-names>J. S.</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>S. Y.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2010</year>
)
<article-title>COT drives resistance to RAF inhibition through MAP kinase pathway reactivation</article-title>
.
<source>Nature</source>
<volume>468</volume>
,
<fpage>968</fpage>
<lpage>972</lpage>
.
<pub-id pub-id-type="pmid">21107320</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0030">
<mixed-citation publication-type="journal" id="jnc13369-cit-0030">
<string-name>
<surname>Kett</surname>
<given-names>L. R.</given-names>
</string-name>
,
<string-name>
<surname>Boassa</surname>
<given-names>D.</given-names>
</string-name>
,
<string-name>
<surname>Ho</surname>
<given-names>C. C.</given-names>
</string-name>
,
<string-name>
<surname>Rideout</surname>
<given-names>H. J.</given-names>
</string-name>
,
<string-name>
<surname>Hu</surname>
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Terada</surname>
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Ellisman</surname>
<given-names>M.</given-names>
</string-name>
and
<string-name>
<surname>Dauer</surname>
<given-names>W. T.</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>LRRK2 Parkinson disease mutations enhance its microtubule association</article-title>
.
<source>Hum. Mol. Genet.</source>
,
<volume>21</volume>
,
<fpage>890</fpage>
<lpage>899</lpage>
.
<pub-id pub-id-type="pmid">22080837</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0031">
<mixed-citation publication-type="journal" id="jnc13369-cit-0031">
<string-name>
<surname>Law</surname>
<given-names>B. M.</given-names>
</string-name>
,
<string-name>
<surname>Spain</surname>
<given-names>V. A.</given-names>
</string-name>
,
<string-name>
<surname>Leinster</surname>
<given-names>V. H.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2013</year>
)
<article-title>A direct interaction between Leucine‐rich Repeat Kinase 2 and specific beta‐tubulin isoforms regulates tubulin acetylation</article-title>
.
<source>J. Biol. Chem.</source>
,
<volume>289</volume>
,
<fpage>895</fpage>
<lpage>908</lpage>
.
<pub-id pub-id-type="pmid">24275654</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0032">
<mixed-citation publication-type="journal" id="jnc13369-cit-0032">
<string-name>
<surname>Lewis</surname>
<given-names>P. A.</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>The function of ROCO proteins in health and disease</article-title>
.
<source>Biol. Cell</source>
<volume>101</volume>
,
<fpage>183</fpage>
<lpage>191</lpage>
.
<pub-id pub-id-type="pmid">19152505</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0033">
<mixed-citation publication-type="journal" id="jnc13369-cit-0033">
<string-name>
<surname>Lewis</surname>
<given-names>P. A.</given-names>
</string-name>
,
<string-name>
<surname>Greggio</surname>
<given-names>E.</given-names>
</string-name>
,
<string-name>
<surname>Beilina</surname>
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Jain</surname>
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Baker</surname>
<given-names>A.</given-names>
</string-name>
and
<string-name>
<surname>Cookson</surname>
<given-names>M. R.</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>The R1441C mutation of LRRK2 disrupts GTP hydrolysis</article-title>
.
<source>Biochem. Biophys. Res. Commun.</source>
<volume>357</volume>
,
<fpage>668</fpage>
<lpage>671</lpage>
.
<pub-id pub-id-type="pmid">17442267</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0034">
<mixed-citation publication-type="journal" id="jnc13369-cit-0034">
<string-name>
<surname>Lobbestael</surname>
<given-names>E.</given-names>
</string-name>
,
<string-name>
<surname>Reumers</surname>
<given-names>V.</given-names>
</string-name>
,
<string-name>
<surname>Ibrahimi</surname>
<given-names>A.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2010</year>
)
<article-title>Immunohistochemical detection of transgene expression in the brain using small epitope tags</article-title>
.
<source>BMC Biotechnol.</source>
<volume>10</volume>
,
<fpage>16</fpage>
.
<pub-id pub-id-type="pmid">20167102</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0035">
<mixed-citation publication-type="journal" id="jnc13369-cit-0035">
<string-name>
<surname>Ma</surname>
<given-names>M.</given-names>
</string-name>
and
<string-name>
<surname>Baumgartner</surname>
<given-names>M.</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>Filopodia and membrane blebs drive efficient matrix invasion of macrophages transformed by the intracellular parasite Theileria annulata</article-title>
.
<source>PLoS ONE</source>
<volume>8</volume>
,
<fpage>e75577</fpage>
.
<pub-id pub-id-type="pmid">24086576</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0036">
<mixed-citation publication-type="journal" id="jnc13369-cit-0036">
<string-name>
<surname>Ma</surname>
<given-names>Q. L.</given-names>
</string-name>
,
<string-name>
<surname>Yang</surname>
<given-names>F.</given-names>
</string-name>
,
<string-name>
<surname>Frautschy</surname>
<given-names>S. A.</given-names>
</string-name>
and
<string-name>
<surname>Cole</surname>
<given-names>G. M.</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>PAK in Alzheimer disease, Huntington disease and X‐linked mental retardation</article-title>
.
<source>Cell. Logist.</source>
<volume>2</volume>
,
<fpage>117</fpage>
<lpage>125</lpage>
.
<pub-id pub-id-type="pmid">23162743</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0037">
<mixed-citation publication-type="journal" id="jnc13369-cit-0037">
<string-name>
<surname>MacLeod</surname>
<given-names>D.</given-names>
</string-name>
,
<string-name>
<surname>Dowman</surname>
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Hammond</surname>
<given-names>R.</given-names>
</string-name>
,
<string-name>
<surname>Leete</surname>
<given-names>T.</given-names>
</string-name>
,
<string-name>
<surname>Inoue</surname>
<given-names>K.</given-names>
</string-name>
and
<string-name>
<surname>Abeliovich</surname>
<given-names>A.</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>The familial Parkinsonism gene LRRK2 regulates neurite process morphology</article-title>
.
<source>Neuron</source>
<volume>52</volume>
,
<fpage>587</fpage>
<lpage>593</lpage>
.
<pub-id pub-id-type="pmid">17114044</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0038">
<mixed-citation publication-type="journal" id="jnc13369-cit-0038">
<string-name>
<surname>MacLeod</surname>
<given-names>D. A.</given-names>
</string-name>
,
<string-name>
<surname>Rhinn</surname>
<given-names>H.</given-names>
</string-name>
,
<string-name>
<surname>Kuwahara</surname>
<given-names>T.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2013</year>
)
<article-title>RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk</article-title>
.
<source>Neuron</source>
<volume>77</volume>
,
<fpage>425</fpage>
<lpage>439</lpage>
.
<pub-id pub-id-type="pmid">23395371</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0039">
<mixed-citation publication-type="journal" id="jnc13369-cit-0039">
<string-name>
<surname>Mamais</surname>
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Raja</surname>
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Manzoni</surname>
<given-names>C.</given-names>
</string-name>
,
<string-name>
<surname>Dihanich</surname>
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Lees</surname>
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Moore</surname>
<given-names>D.</given-names>
</string-name>
,
<string-name>
<surname>Lewis</surname>
<given-names>P. A.</given-names>
</string-name>
and
<string-name>
<surname>Bandopadhyay</surname>
<given-names>R.</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>Divergent alpha‐synuclein solubility and aggregation properties in G2019S LRRK2 Parkinson's disease brains with Lewy Body pathology compared to idiopathic cases</article-title>
.
<source>Neurobiol. Dis.</source>
<volume>58</volume>
,
<fpage>183</fpage>
<lpage>190</lpage>
.
<pub-id pub-id-type="pmid">23747310</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0040">
<mixed-citation publication-type="journal" id="jnc13369-cit-0040">
<string-name>
<surname>Mandemakers</surname>
<given-names>W.</given-names>
</string-name>
,
<string-name>
<surname>Snellinx</surname>
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>O'Neill</surname>
<given-names>M. J.</given-names>
</string-name>
and
<string-name>
<surname>de Strooper</surname>
<given-names>B.</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>LRRK2 expression is enriched in the striosomal compartment of mouse striatum</article-title>
.
<source>Neurobiol. Dis.</source>
<volume>48</volume>
,
<fpage>582</fpage>
<lpage>593</lpage>
.
<pub-id pub-id-type="pmid">22850484</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0041">
<mixed-citation publication-type="journal" id="jnc13369-cit-0041">
<string-name>
<surname>Manzoni</surname>
<given-names>C.</given-names>
</string-name>
,
<string-name>
<surname>Mamais</surname>
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Dihanich</surname>
<given-names>S.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2013</year>
)
<article-title>Inhibition of LRRK2 kinase activity stimulates macroautophagy</article-title>
.
<source>Biochim. Biophys. Acta</source>
<volume>1833</volume>
,
<fpage>2900</fpage>
<lpage>2910</lpage>
.
<pub-id pub-id-type="pmid">23916833</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0042">
<mixed-citation publication-type="journal" id="jnc13369-cit-0042">
<string-name>
<surname>Martin</surname>
<given-names>I.</given-names>
</string-name>
,
<string-name>
<surname>Kim</surname>
<given-names>J. W.</given-names>
</string-name>
,
<string-name>
<surname>Lee</surname>
<given-names>B. D.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2014</year>
)
<article-title>Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease</article-title>
.
<source>Cell</source>
<volume>157</volume>
,
<fpage>472</fpage>
<lpage>485</lpage>
.
<pub-id pub-id-type="pmid">24725412</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0043">
<mixed-citation publication-type="journal" id="jnc13369-cit-0043">
<string-name>
<surname>Matta</surname>
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Van Kolen</surname>
<given-names>K.</given-names>
</string-name>
,
<string-name>
<surname>da Cunha</surname>
<given-names>R.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2012</year>
)
<article-title>LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis</article-title>
.
<source>Neuron</source>
<volume>75</volume>
,
<fpage>1008</fpage>
<lpage>1021</lpage>
.
<pub-id pub-id-type="pmid">22998870</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0044">
<mixed-citation publication-type="journal" id="jnc13369-cit-0044">
<string-name>
<surname>Meijering</surname>
<given-names>E.</given-names>
</string-name>
,
<string-name>
<surname>Jacob</surname>
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Sarria</surname>
<given-names>J. C.</given-names>
</string-name>
,
<string-name>
<surname>Steiner</surname>
<given-names>P.</given-names>
</string-name>
,
<string-name>
<surname>Hirling</surname>
<given-names>H.</given-names>
</string-name>
and
<string-name>
<surname>Unser</surname>
<given-names>M.</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images</article-title>
.
<source>Cytometry A</source>
<volume>58</volume>
,
<fpage>167</fpage>
<lpage>176</lpage>
.
<pub-id pub-id-type="pmid">15057970</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0045">
<mixed-citation publication-type="journal" id="jnc13369-cit-0045">
<string-name>
<surname>Meixner</surname>
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Boldt</surname>
<given-names>K.</given-names>
</string-name>
,
<string-name>
<surname>Van Troys</surname>
<given-names>M.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2011</year>
)
<article-title>A QUICK screen for Lrrk2 interaction partners–leucine‐rich repeat kinase 2 is involved in actin cytoskeleton dynamics</article-title>
.
<source>Mol. Cell Proteomics</source>
<volume>10</volume>
(),
<fpage>001172</fpage>
.
<pub-id pub-id-type="pmid">20876399</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0046">
<mixed-citation publication-type="journal" id="jnc13369-cit-0046">
<string-name>
<surname>Migheli</surname>
<given-names>R.</given-names>
</string-name>
,
<string-name>
<surname>Del Giudice</surname>
<given-names>M. G.</given-names>
</string-name>
,
<string-name>
<surname>Spissu</surname>
<given-names>Y.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2013</year>
)
<article-title>LRRK2 affects vesicle trafficking, neurotransmitter extracellular level and membrane receptor localization</article-title>
.
<source>PLoS ONE</source>
<volume>8</volume>
,
<fpage>e77198</fpage>
.
<pub-id pub-id-type="pmid">24167564</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0047">
<mixed-citation publication-type="journal" id="jnc13369-cit-0047">
<string-name>
<surname>Nekrasova</surname>
<given-names>T.</given-names>
</string-name>
,
<string-name>
<surname>Jobes</surname>
<given-names>M. L.</given-names>
</string-name>
,
<string-name>
<surname>Ting</surname>
<given-names>J. H.</given-names>
</string-name>
,
<string-name>
<surname>Wagner</surname>
<given-names>G. C.</given-names>
</string-name>
and
<string-name>
<surname>Minden</surname>
<given-names>A.</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>Targeted disruption of the Pak5 and Pak6 genes in mice leads to deficits in learning and locomotion</article-title>
.
<source>Dev. Biol.</source>
<volume>322</volume>
,
<fpage>95</fpage>
<lpage>108</lpage>
.
<pub-id pub-id-type="pmid">18675265</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0048">
<mixed-citation publication-type="journal" id="jnc13369-cit-0048">
<string-name>
<surname>Nichols</surname>
<given-names>R. J.</given-names>
</string-name>
,
<string-name>
<surname>Dzamko</surname>
<given-names>N.</given-names>
</string-name>
,
<string-name>
<surname>Morrice</surname>
<given-names>N. A.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2010</year>
)
<article-title>14‐3‐3 binding to LRRK2 is disrupted by multiple Parkinson's disease‐associated mutations and regulates cytoplasmic localization</article-title>
.
<source>Biochem. J.</source>
<volume>430</volume>
,
<fpage>393</fpage>
<lpage>404</lpage>
.
<pub-id pub-id-type="pmid">20642453</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0049">
<mixed-citation publication-type="journal" id="jnc13369-cit-0049">
<string-name>
<surname>Paisan‐Ruiz</surname>
<given-names>C.</given-names>
</string-name>
,
<string-name>
<surname>Jain</surname>
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Evans</surname>
<given-names>E. W.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2004</year>
)
<article-title>Cloning of the gene containing mutations that cause PARK8‐linked Parkinson's disease</article-title>
.
<source>Neuron</source>
<volume>44</volume>
,
<fpage>595</fpage>
<lpage>600</lpage>
.
<pub-id pub-id-type="pmid">15541308</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0050">
<mixed-citation publication-type="journal" id="jnc13369-cit-0050">
<string-name>
<surname>Paisan‐Ruiz</surname>
<given-names>C.</given-names>
</string-name>
,
<string-name>
<surname>Nath</surname>
<given-names>P.</given-names>
</string-name>
,
<string-name>
<surname>Washecka</surname>
<given-names>N.</given-names>
</string-name>
,
<string-name>
<surname>Gibbs</surname>
<given-names>J. R.</given-names>
</string-name>
and
<string-name>
<surname>Singleton</surname>
<given-names>A. B.</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>Comprehensive analysis of LRRK2 in publicly available Parkinson's disease cases and neurologically normal controls</article-title>
.
<source>Hum. Mutat.</source>
<volume>29</volume>
,
<fpage>485</fpage>
<lpage>490</lpage>
.
<pub-id pub-id-type="pmid">18213618</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0051">
<mixed-citation publication-type="journal" id="jnc13369-cit-0051">
<string-name>
<surname>Parisiadou</surname>
<given-names>L.</given-names>
</string-name>
,
<string-name>
<surname>Xie</surname>
<given-names>C.</given-names>
</string-name>
,
<string-name>
<surname>Cho</surname>
<given-names>H. J.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2009</year>
)
<article-title>Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis</article-title>
.
<source>J. Neurosci.</source>
<volume>29</volume>
,
<fpage>13971</fpage>
<lpage>13980</lpage>
.
<pub-id pub-id-type="pmid">19890007</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0052">
<mixed-citation publication-type="journal" id="jnc13369-cit-0052">
<string-name>
<surname>Parisiadou</surname>
<given-names>L.</given-names>
</string-name>
,
<string-name>
<surname>Yu</surname>
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Sgobio</surname>
<given-names>C.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2014</year>
)
<article-title>LRRK2 regulates synaptogenesis and dopamine receptor activation through modulation of PKA activity</article-title>
.
<source>Nat. Neurosci.</source>
<volume>17</volume>
,
<fpage>367</fpage>
<lpage>376</lpage>
.
<pub-id pub-id-type="pmid">24464040</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0053">
<mixed-citation publication-type="journal" id="jnc13369-cit-0053">
<string-name>
<surname>Piccoli</surname>
<given-names>G.</given-names>
</string-name>
,
<string-name>
<surname>Condliffe</surname>
<given-names>S. B.</given-names>
</string-name>
,
<string-name>
<surname>Bauer</surname>
<given-names>M.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2011</year>
)
<article-title>LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool</article-title>
.
<source>J. Neurosci.</source>
<volume>31</volume>
,
<fpage>2225</fpage>
<lpage>2237</lpage>
.
<pub-id pub-id-type="pmid">21307259</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0054">
<mixed-citation publication-type="journal" id="jnc13369-cit-0054">
<string-name>
<surname>Plowey</surname>
<given-names>E. D.</given-names>
</string-name>
,
<string-name>
<surname>Cherra</surname>
<given-names>S. J.</given-names>
,
<suffix>3rd</suffix>
</string-name>
,
<string-name>
<surname>Liu</surname>
<given-names>Y. J.</given-names>
</string-name>
and
<string-name>
<surname>Chu</surname>
<given-names>C. T.</given-names>
</string-name>
(
<year>2008</year>
)
<article-title>Role of autophagy in G2019S‐LRRK2‐associated neurite shortening in differentiated SH‐SY5Y cells</article-title>
.
<source>J. Neurochem.</source>
<volume>105</volume>
,
<fpage>1048</fpage>
<lpage>1056</lpage>
.
<pub-id pub-id-type="pmid">18182054</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0055">
<mixed-citation publication-type="journal" id="jnc13369-cit-0055">
<string-name>
<surname>Qu</surname>
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Cammarano</surname>
<given-names>M. S.</given-names>
</string-name>
,
<string-name>
<surname>Shi</surname>
<given-names>Q.</given-names>
</string-name>
,
<string-name>
<surname>Ha</surname>
<given-names>K. C.</given-names>
</string-name>
,
<string-name>
<surname>de Lanerolle</surname>
<given-names>P.</given-names>
</string-name>
and
<string-name>
<surname>Minden</surname>
<given-names>A.</given-names>
</string-name>
(
<year>2001</year>
)
<article-title>Activated PAK4 regulates cell adhesion and anchorage‐independent growth</article-title>
.
<source>Mol. Cell. Biol.</source>
<volume>21</volume>
,
<fpage>3523</fpage>
<lpage>3533</lpage>
.
<pub-id pub-id-type="pmid">11313478</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0056">
<mixed-citation publication-type="journal" id="jnc13369-cit-0056">
<string-name>
<surname>Radu</surname>
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Semenova</surname>
<given-names>G.</given-names>
</string-name>
,
<string-name>
<surname>Kosoff</surname>
<given-names>R.</given-names>
</string-name>
and
<string-name>
<surname>Chernoff</surname>
<given-names>J.</given-names>
</string-name>
(
<year>2014</year>
)
<article-title>PAK signalling during the development and progression of cancer</article-title>
.
<source>Nat. Rev. Cancer</source>
<volume>14</volume>
,
<fpage>13</fpage>
<lpage>25</lpage>
.
<pub-id pub-id-type="pmid">24505617</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0057">
<mixed-citation publication-type="journal" id="jnc13369-cit-0057">
<string-name>
<surname>Reyniers</surname>
<given-names>L.</given-names>
</string-name>
,
<string-name>
<surname>Del Giudice</surname>
<given-names>M. G.</given-names>
</string-name>
,
<string-name>
<surname>Civiero</surname>
<given-names>L.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2014</year>
)
<article-title>Differential protein‐protein interactions of LRRK1 and LRRK2 indicate roles in distinct cellular signaling pathways</article-title>
.
<source>J. Neurochem.</source>
<volume>131</volume>
,
<fpage>239</fpage>
<lpage>250</lpage>
.
<pub-id pub-id-type="pmid">24947832</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0058">
<mixed-citation publication-type="journal" id="jnc13369-cit-0058">
<string-name>
<surname>Russo</surname>
<given-names>I.</given-names>
</string-name>
,
<string-name>
<surname>Bubacco</surname>
<given-names>L.</given-names>
</string-name>
and
<string-name>
<surname>Greggio</surname>
<given-names>E.</given-names>
</string-name>
(
<year>2014</year>
)
<article-title>LRRK2 and neuroinflammation: partners in crime in Parkinson's disease?</article-title>
<source>J. Neuroinflammation</source>
<volume>11</volume>
,
<fpage>52</fpage>
.
<pub-id pub-id-type="pmid">24655756</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0059">
<mixed-citation publication-type="journal" id="jnc13369-cit-0059">
<string-name>
<surname>Saal</surname>
<given-names>K. A.</given-names>
</string-name>
,
<string-name>
<surname>Koch</surname>
<given-names>J. C.</given-names>
</string-name>
,
<string-name>
<surname>Tatenhorst</surname>
<given-names>L.</given-names>
</string-name>
,
<string-name>
<surname>Szego</surname>
<given-names>E. M.</given-names>
</string-name>
,
<string-name>
<surname>Ribas</surname>
<given-names>V. T.</given-names>
</string-name>
,
<string-name>
<surname>Michel</surname>
<given-names>U.</given-names>
</string-name>
,
<string-name>
<surname>Bahr</surname>
<given-names>M.</given-names>
</string-name>
,
<string-name>
<surname>Tonges</surname>
<given-names>L.</given-names>
</string-name>
and
<string-name>
<surname>Lingor</surname>
<given-names>P.</given-names>
</string-name>
(
<year>2015</year>
)
<article-title>AAV.shRNA‐mediated downregulation of ROCK2 attenuates degeneration of dopaminergic neurons in toxin‐induced models of Parkinson's disease in vitro and in vivo</article-title>
.
<source>Neurobiol. Dis.</source>
<volume>73</volume>
,
<fpage>150</fpage>
<lpage>162</lpage>
.
<pub-id pub-id-type="pmid">25283984</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0060">
<mixed-citation publication-type="journal" id="jnc13369-cit-0060">
<string-name>
<surname>Schneider</surname>
<given-names>C. A.</given-names>
</string-name>
,
<string-name>
<surname>Rasband</surname>
<given-names>W. S.</given-names>
</string-name>
and
<string-name>
<surname>Eliceiri</surname>
<given-names>K. W.</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>NIH Image to ImageJ: 25 years of image analysis</article-title>
.
<source>Nat. Methods</source>
<volume>9</volume>
,
<fpage>671</fpage>
<lpage>675</lpage>
.
<pub-id pub-id-type="pmid">22930834</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0061">
<mixed-citation publication-type="journal" id="jnc13369-cit-0061">
<string-name>
<surname>Schrantz</surname>
<given-names>N.</given-names>
</string-name>
,
<string-name>
<surname>da Silva Correia</surname>
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Fowler</surname>
<given-names>B.</given-names>
</string-name>
,
<string-name>
<surname>Ge</surname>
<given-names>Q.</given-names>
</string-name>
,
<string-name>
<surname>Sun</surname>
<given-names>Z.</given-names>
</string-name>
and
<string-name>
<surname>Bokoch</surname>
<given-names>G. M.</given-names>
</string-name>
(
<year>2004</year>
)
<article-title>Mechanism of p21‐activated kinase 6‐mediated inhibition of androgen receptor signaling</article-title>
.
<source>J. Biol. Chem.</source>
<volume>279</volume>
,
<fpage>1922</fpage>
<lpage>1931</lpage>
.
<pub-id pub-id-type="pmid">14573606</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0062">
<mixed-citation publication-type="journal" id="jnc13369-cit-0062">
<string-name>
<surname>Sepulveda</surname>
<given-names>B.</given-names>
</string-name>
,
<string-name>
<surname>Mesias</surname>
<given-names>R.</given-names>
</string-name>
,
<string-name>
<surname>Li</surname>
<given-names>X.</given-names>
</string-name>
,
<string-name>
<surname>Yue</surname>
<given-names>Z.</given-names>
</string-name>
and
<string-name>
<surname>Benson</surname>
<given-names>D. L.</given-names>
</string-name>
(
<year>2013</year>
)
<article-title>Short‐ and long‐term effects of LRRK2 on axon and dendrite growth</article-title>
.
<source>PLoS ONE</source>
<volume>8</volume>
,
<fpage>e61986</fpage>
.
<pub-id pub-id-type="pmid">23646112</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0063">
<mixed-citation publication-type="journal" id="jnc13369-cit-0063">
<string-name>
<surname>Sheng</surname>
<given-names>Z.</given-names>
</string-name>
,
<string-name>
<surname>Zhang</surname>
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Bustos</surname>
<given-names>D.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2012</year>
)
<article-title>Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations</article-title>
.
<source>Sci. Transl. Med.</source>
,
<volume>4</volume>
,
<fpage>164ra161</fpage>
.</mixed-citation>
</ref>
<ref id="jnc13369-bib-0064">
<mixed-citation publication-type="journal" id="jnc13369-cit-0064">
<string-name>
<surname>Smith</surname>
<given-names>W. W.</given-names>
</string-name>
,
<string-name>
<surname>Pei</surname>
<given-names>Z.</given-names>
</string-name>
,
<string-name>
<surname>Jiang</surname>
<given-names>H.</given-names>
</string-name>
,
<string-name>
<surname>Dawson</surname>
<given-names>V. L.</given-names>
</string-name>
,
<string-name>
<surname>Dawson</surname>
<given-names>T. M.</given-names>
</string-name>
and
<string-name>
<surname>Ross</surname>
<given-names>C. A.</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>Kinase activity of mutant LRRK2 mediates neuronal toxicity</article-title>
.
<source>Nat. Neurosci.</source>
<volume>9</volume>
,
<fpage>1231</fpage>
<lpage>1233</lpage>
.
<pub-id pub-id-type="pmid">16980962</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0065">
<mixed-citation publication-type="journal" id="jnc13369-cit-0065">
<string-name>
<surname>Szczepanowska</surname>
<given-names>J.</given-names>
</string-name>
(
<year>2009</year>
)
<article-title>Involvement of Rac/Cdc42/PAK pathway in cytoskeletal rearrangements</article-title>
.
<source>Acta Biochim. Pol.</source>
<volume>56</volume>
,
<fpage>225</fpage>
<lpage>234</lpage>
.
<pub-id pub-id-type="pmid">19513348</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0066">
<mixed-citation publication-type="journal" id="jnc13369-cit-0066">
<string-name>
<surname>Taymans</surname>
<given-names>J. M.</given-names>
</string-name>
(
<year>2012</year>
)
<article-title>The GTPase function of LRRK2</article-title>
.
<source>Biochem. Soc. Trans.</source>
<volume>40</volume>
,
<fpage>1063</fpage>
<lpage>1069</lpage>
.
<pub-id pub-id-type="pmid">22988866</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0067">
<mixed-citation publication-type="journal" id="jnc13369-cit-0067">
<string-name>
<surname>Taymans</surname>
<given-names>J. M.</given-names>
</string-name>
,
<string-name>
<surname>Van den Haute</surname>
<given-names>C.</given-names>
</string-name>
and
<string-name>
<surname>Baekelandt</surname>
<given-names>V.</given-names>
</string-name>
(
<year>2006</year>
)
<article-title>Distribution of PINK1 and LRRK2 in rat and mouse brain</article-title>
.
<source>J. Neurochem.</source>
<volume>98</volume>
,
<fpage>951</fpage>
<lpage>961</lpage>
.
<pub-id pub-id-type="pmid">16771836</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0068">
<mixed-citation publication-type="journal" id="jnc13369-cit-0068">
<string-name>
<surname>Taymans</surname>
<given-names>J. M.</given-names>
</string-name>
,
<string-name>
<surname>Vandenberghe</surname>
<given-names>L. H.</given-names>
</string-name>
,
<string-name>
<surname>Haute</surname>
<given-names>C. V.</given-names>
</string-name>
,
<string-name>
<surname>Thiry</surname>
<given-names>I.</given-names>
</string-name>
,
<string-name>
<surname>Deroose</surname>
<given-names>C. M.</given-names>
</string-name>
,
<string-name>
<surname>Mortelmans</surname>
<given-names>L.</given-names>
</string-name>
,
<string-name>
<surname>Wilson</surname>
<given-names>J. M.</given-names>
</string-name>
,
<string-name>
<surname>Debyser</surname>
<given-names>Z.</given-names>
</string-name>
and
<string-name>
<surname>Baekelandt</surname>
<given-names>V.</given-names>
</string-name>
(
<year>2007</year>
)
<article-title>Comparative analysis of adeno‐associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain</article-title>
.
<source>Hum. Gene Ther.</source>
<volume>18</volume>
,
<fpage>195</fpage>
<lpage>206</lpage>
.
<pub-id pub-id-type="pmid">17343566</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0069">
<mixed-citation publication-type="journal" id="jnc13369-cit-0069">
<string-name>
<surname>Thompson</surname>
<given-names>G.</given-names>
</string-name>
,
<string-name>
<surname>Owen</surname>
<given-names>D.</given-names>
</string-name>
,
<string-name>
<surname>Chalk</surname>
<given-names>P. A.</given-names>
</string-name>
and
<string-name>
<surname>Lowe</surname>
<given-names>P. N.</given-names>
</string-name>
(
<year>1998</year>
)
<article-title>Delineation of the Cdc42/Rac‐binding domain of p21‐activated kinase</article-title>
.
<source>Biochemistry</source>
<volume>37</volume>
,
<fpage>7885</fpage>
<lpage>7891</lpage>
.
<pub-id pub-id-type="pmid">9601050</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0070">
<mixed-citation publication-type="journal" id="jnc13369-cit-0070">
<string-name>
<surname>Van der Perren</surname>
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Toelen</surname>
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Carlon</surname>
<given-names>M.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2011</year>
)
<article-title>Efficient and stable transduction of dopaminergic neurons in rat substantia nigra by rAAV 2/1, 2/2, 2/5, 2/6.2, 2/7, 2/8 and 2/9</article-title>
.
<source>Gene Ther.</source>
<volume>18</volume>
,
<fpage>517</fpage>
<lpage>527</lpage>
.
<pub-id pub-id-type="pmid">21326331</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0071">
<mixed-citation publication-type="journal" id="jnc13369-cit-0071">
<string-name>
<surname>Webber</surname>
<given-names>P. J.</given-names>
</string-name>
,
<string-name>
<surname>Smith</surname>
<given-names>A. D.</given-names>
</string-name>
,
<string-name>
<surname>Sen</surname>
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Renfrow</surname>
<given-names>M. B.</given-names>
</string-name>
,
<string-name>
<surname>Mobley</surname>
<given-names>J. A.</given-names>
</string-name>
and
<string-name>
<surname>West</surname>
<given-names>A. B.</given-names>
</string-name>
(
<year>2011</year>
)
<article-title>Autophosphorylation in the leucine‐rich repeat kinase 2 (LRRK2) GTPase domain modifies kinase and GTP‐binding activities</article-title>
.
<source>J. Mol. Biol.</source>
<volume>412</volume>
,
<fpage>94</fpage>
<lpage>110</lpage>
.
<pub-id pub-id-type="pmid">21806997</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0072">
<mixed-citation publication-type="journal" id="jnc13369-cit-0072">
<string-name>
<surname>Winner</surname>
<given-names>B.</given-names>
</string-name>
,
<string-name>
<surname>Melrose</surname>
<given-names>H. L.</given-names>
</string-name>
,
<string-name>
<surname>Zhao</surname>
<given-names>C.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2011</year>
)
<article-title>Adult neurogenesis and neurite outgrowth are impaired in LRRK2 G2019S mice</article-title>
.
<source>Neurobiol. Dis.</source>
<volume>41</volume>
,
<fpage>706</fpage>
<lpage>716</lpage>
.
<pub-id pub-id-type="pmid">21168496</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0073">
<mixed-citation publication-type="journal" id="jnc13369-cit-0073">
<string-name>
<surname>Yang</surname>
<given-names>N.</given-names>
</string-name>
,
<string-name>
<surname>Higuchi</surname>
<given-names>O.</given-names>
</string-name>
,
<string-name>
<surname>Ohashi</surname>
<given-names>K.</given-names>
</string-name>
,
<string-name>
<surname>Nagata</surname>
<given-names>K.</given-names>
</string-name>
,
<string-name>
<surname>Wada</surname>
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Kangawa</surname>
<given-names>K.</given-names>
</string-name>
,
<string-name>
<surname>Nishida</surname>
<given-names>E.</given-names>
</string-name>
and
<string-name>
<surname>Mizuno</surname>
<given-names>K.</given-names>
</string-name>
(
<year>1998</year>
)
<article-title>Cofilin phosphorylation by LIM‐kinase 1 and its role in Rac‐mediated actin reorganization</article-title>
.
<source>Nature</source>
<volume>393</volume>
,
<fpage>809</fpage>
<lpage>812</lpage>
.
<pub-id pub-id-type="pmid">9655398</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0074">
<mixed-citation publication-type="journal" id="jnc13369-cit-0074">
<string-name>
<surname>Yun</surname>
<given-names>H. J.</given-names>
</string-name>
,
<string-name>
<surname>Park</surname>
<given-names>J.</given-names>
</string-name>
,
<string-name>
<surname>Ho</surname>
<given-names>D. H.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2013</year>
)
<article-title>LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP‐25</article-title>
.
<source>Exp. Mol. Med.</source>
<volume>45</volume>
,
<fpage>e36</fpage>
.
<pub-id pub-id-type="pmid">23949442</pub-id>
</mixed-citation>
</ref>
<ref id="jnc13369-bib-0075">
<mixed-citation publication-type="journal" id="jnc13369-cit-0075">
<string-name>
<surname>Zimprich</surname>
<given-names>A.</given-names>
</string-name>
,
<string-name>
<surname>Biskup</surname>
<given-names>S.</given-names>
</string-name>
,
<string-name>
<surname>Leitner</surname>
<given-names>P.</given-names>
</string-name>
<italic>et al</italic>
(
<year>2004</year>
)
<article-title>Mutations in LRRK2 cause autosomal‐dominant parkinsonism with pleomorphic pathology</article-title>
.
<source>Neuron</source>
<volume>44</volume>
,
<fpage>601</fpage>
<lpage>607</lpage>
.
<pub-id pub-id-type="pmid">15541309</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000141 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000141 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4715492
   |texte=   Leucine‐rich repeat kinase 2 interacts with p21‐activated kinase 6 to control neurite complexity in mammalian brain
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26375402" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonFranceV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024