La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hsc70 chaperone activity underlies Trio GEF function in axon growth and guidance induced by netrin-1

Identifieur interne : 000069 ( Pmc/Corpus ); précédent : 000068; suivant : 000070

Hsc70 chaperone activity underlies Trio GEF function in axon growth and guidance induced by netrin-1

Auteurs : Jonathan Degeer ; Andrew Kaplan ; Pierre Mattar ; Morgane Morabito ; Ursula Stochaj ; Timothy E. Kennedy ; Anne Debant ; Michel Cayouette ; Alyson E. Fournier ; Nathalie Lamarche-Vane

Source :

RBID : PMC:4555821

Abstract

Hsc70 chaperone activity is required for Rac1 activation by Trio and this function underlies netrin-1/DCC-dependent axon outgrowth and guidance.


Url:
DOI: 10.1083/jcb.201505084
PubMed: 26323693
PubMed Central: 4555821

Links to Exploration step

PMC:4555821

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Hsc70 chaperone activity underlies Trio GEF function in axon growth and guidance induced by netrin-1</title>
<author>
<name sortKey="Degeer, Jonathan" sort="Degeer, Jonathan" uniqKey="Degeer J" first="Jonathan" last="Degeer">Jonathan Degeer</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>The Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kaplan, Andrew" sort="Kaplan, Andrew" uniqKey="Kaplan A" first="Andrew" last="Kaplan">Andrew Kaplan</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mattar, Pierre" sort="Mattar, Pierre" uniqKey="Mattar P" first="Pierre" last="Mattar">Pierre Mattar</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Morabito, Morgane" sort="Morabito, Morgane" uniqKey="Morabito M" first="Morgane" last="Morabito">Morgane Morabito</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>The Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Stochaj, Ursula" sort="Stochaj, Ursula" uniqKey="Stochaj U" first="Ursula" last="Stochaj">Ursula Stochaj</name>
<affiliation>
<nlm:aff id="aff5">
<institution>Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kennedy, Timothy E" sort="Kennedy, Timothy E" uniqKey="Kennedy T" first="Timothy E." last="Kennedy">Timothy E. Kennedy</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Debant, Anne" sort="Debant, Anne" uniqKey="Debant A" first="Anne" last="Debant">Anne Debant</name>
<affiliation>
<nlm:aff id="aff6">
<institution>Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, UMR5237, University of Montpellier, Montpellier 34293, France</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cayouette, Michel" sort="Cayouette, Michel" uniqKey="Cayouette M" first="Michel" last="Cayouette">Michel Cayouette</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<institution>Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff7">
<institution>Department of Medicine, Université de Montréal, Montreal, Quubec H3T 1J4, Canada</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fournier, Alyson E" sort="Fournier, Alyson E" uniqKey="Fournier A" first="Alyson E." last="Fournier">Alyson E. Fournier</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lamarche Vane, Nathalie" sort="Lamarche Vane, Nathalie" uniqKey="Lamarche Vane N" first="Nathalie" last="Lamarche-Vane">Nathalie Lamarche-Vane</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>The Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada</institution>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26323693</idno>
<idno type="pmc">4555821</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555821</idno>
<idno type="RBID">PMC:4555821</idno>
<idno type="doi">10.1083/jcb.201505084</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000069</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000069</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Hsc70 chaperone activity underlies Trio GEF function in axon growth and guidance induced by netrin-1</title>
<author>
<name sortKey="Degeer, Jonathan" sort="Degeer, Jonathan" uniqKey="Degeer J" first="Jonathan" last="Degeer">Jonathan Degeer</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>The Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kaplan, Andrew" sort="Kaplan, Andrew" uniqKey="Kaplan A" first="Andrew" last="Kaplan">Andrew Kaplan</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mattar, Pierre" sort="Mattar, Pierre" uniqKey="Mattar P" first="Pierre" last="Mattar">Pierre Mattar</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Morabito, Morgane" sort="Morabito, Morgane" uniqKey="Morabito M" first="Morgane" last="Morabito">Morgane Morabito</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>The Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Stochaj, Ursula" sort="Stochaj, Ursula" uniqKey="Stochaj U" first="Ursula" last="Stochaj">Ursula Stochaj</name>
<affiliation>
<nlm:aff id="aff5">
<institution>Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kennedy, Timothy E" sort="Kennedy, Timothy E" uniqKey="Kennedy T" first="Timothy E." last="Kennedy">Timothy E. Kennedy</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Debant, Anne" sort="Debant, Anne" uniqKey="Debant A" first="Anne" last="Debant">Anne Debant</name>
<affiliation>
<nlm:aff id="aff6">
<institution>Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, UMR5237, University of Montpellier, Montpellier 34293, France</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cayouette, Michel" sort="Cayouette, Michel" uniqKey="Cayouette M" first="Michel" last="Cayouette">Michel Cayouette</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<institution>Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff7">
<institution>Department of Medicine, Université de Montréal, Montreal, Quubec H3T 1J4, Canada</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fournier, Alyson E" sort="Fournier, Alyson E" uniqKey="Fournier A" first="Alyson E." last="Fournier">Alyson E. Fournier</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada</institution>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lamarche Vane, Nathalie" sort="Lamarche Vane, Nathalie" uniqKey="Lamarche Vane N" first="Nathalie" last="Lamarche-Vane">Nathalie Lamarche-Vane</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada</institution>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>The Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada</institution>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of Cell Biology</title>
<idno type="ISSN">0021-9525</idno>
<idno type="eISSN">1540-8140</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Hsc70 chaperone activity is required for Rac1 activation by Trio and this function underlies netrin-1/DCC-dependent axon outgrowth and guidance.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Ackerman, S L" uniqKey="Ackerman S">S.L. Ackerman</name>
</author>
<author>
<name sortKey="Kozak, L P" uniqKey="Kozak L">L.P. Kozak</name>
</author>
<author>
<name sortKey="Przyborski, S A" uniqKey="Przyborski S">S.A. Przyborski</name>
</author>
<author>
<name sortKey="Rund, L A" uniqKey="Rund L">L.A. Rund</name>
</author>
<author>
<name sortKey="Boyer, B B" uniqKey="Boyer B">B.B. Boyer</name>
</author>
<author>
<name sortKey="Knowles, B B" uniqKey="Knowles B">B.B. Knowles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Antoine Bertrand, J" uniqKey="Antoine Bertrand J">J. Antoine-Bertrand</name>
</author>
<author>
<name sortKey="Villemure, J F" uniqKey="Villemure J">J.F. Villemure</name>
</author>
<author>
<name sortKey="Lamarche Vane, N" uniqKey="Lamarche Vane N">N. Lamarche-Vane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aquino, D A" uniqKey="Aquino D">D.A. Aquino</name>
</author>
<author>
<name sortKey="Klipfel, A A" uniqKey="Klipfel A">A.A. Klipfel</name>
</author>
<author>
<name sortKey="Brosnan, C F" uniqKey="Brosnan C">C.F. Brosnan</name>
</author>
<author>
<name sortKey="Norton, W T" uniqKey="Norton W">W.T. Norton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azzarelli, R" uniqKey="Azzarelli R">R. Azzarelli</name>
</author>
<author>
<name sortKey="Kerloch, T" uniqKey="Kerloch T">T. Kerloch</name>
</author>
<author>
<name sortKey="Pacary, E" uniqKey="Pacary E">E. Pacary</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balaburski, G M" uniqKey="Balaburski G">G.M. Balaburski</name>
</author>
<author>
<name sortKey="Leu, J I" uniqKey="Leu J">J.I. Leu</name>
</author>
<author>
<name sortKey="Beeharry, N" uniqKey="Beeharry N">N. Beeharry</name>
</author>
<author>
<name sortKey="Hayik, S" uniqKey="Hayik S">S. Hayik</name>
</author>
<author>
<name sortKey="Andrake, M D" uniqKey="Andrake M">M.D. Andrake</name>
</author>
<author>
<name sortKey="Zhang, G" uniqKey="Zhang G">G. Zhang</name>
</author>
<author>
<name sortKey="Herlyn, M" uniqKey="Herlyn M">M. Herlyn</name>
</author>
<author>
<name sortKey="Villanueva, J" uniqKey="Villanueva J">J. Villanueva</name>
</author>
<author>
<name sortKey="Dunbrack, R L J" uniqKey="Dunbrack R">R.L.J. Dunbrack</name>
</author>
<author>
<name sortKey="Yen, T" uniqKey="Yen T">T. Yen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ba Ski, P" uniqKey="Ba Ski P">P. Bański</name>
</author>
<author>
<name sortKey="Mahboubi, H" uniqKey="Mahboubi H">H. Mahboubi</name>
</author>
<author>
<name sortKey="Kodiha, M" uniqKey="Kodiha M">M. Kodiha</name>
</author>
<author>
<name sortKey="Shrivastava, S" uniqKey="Shrivastava S">S. Shrivastava</name>
</author>
<author>
<name sortKey="Kanagaratham, C" uniqKey="Kanagaratham C">C. Kanagaratham</name>
</author>
<author>
<name sortKey="Stochaj, U" uniqKey="Stochaj U">U. Stochaj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barallobre, M J" uniqKey="Barallobre M">M.J. Barallobre</name>
</author>
<author>
<name sortKey="Pascual, M" uniqKey="Pascual M">M. Pascual</name>
</author>
<author>
<name sortKey="Del Rio, J A" uniqKey="Del Rio J">J.A. Del Río</name>
</author>
<author>
<name sortKey="Soriano, E" uniqKey="Soriano E">E. Soriano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bashaw, G J" uniqKey="Bashaw G">G.J. Bashaw</name>
</author>
<author>
<name sortKey="Klein, R" uniqKey="Klein R">R. Klein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bellanger, J M" uniqKey="Bellanger J">J.-M. Bellanger</name>
</author>
<author>
<name sortKey="Lazaro, J B" uniqKey="Lazaro J">J.B. Lazaro</name>
</author>
<author>
<name sortKey="Diriong, S" uniqKey="Diriong S">S. Diriong</name>
</author>
<author>
<name sortKey="Fernandez, A" uniqKey="Fernandez A">A. Fernandez</name>
</author>
<author>
<name sortKey="Lamb, N" uniqKey="Lamb N">N. Lamb</name>
</author>
<author>
<name sortKey="Debant, A" uniqKey="Debant A">A. Debant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bid, H K" uniqKey="Bid H">H.K. Bid</name>
</author>
<author>
<name sortKey="Roberts, R D" uniqKey="Roberts R">R.D. Roberts</name>
</author>
<author>
<name sortKey="Manchanda, P K" uniqKey="Manchanda P">P.K. Manchanda</name>
</author>
<author>
<name sortKey="Houghton, P J" uniqKey="Houghton P">P.J. Houghton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blangy, A" uniqKey="Blangy A">A. Blangy</name>
</author>
<author>
<name sortKey="Vignal, E" uniqKey="Vignal E">E. Vignal</name>
</author>
<author>
<name sortKey="Schmidt, S" uniqKey="Schmidt S">S. Schmidt</name>
</author>
<author>
<name sortKey="Debant, A" uniqKey="Debant A">A. Debant</name>
</author>
<author>
<name sortKey="Gauthier Rouviere, C" uniqKey="Gauthier Rouviere C">C. Gauthier-Rouvière</name>
</author>
<author>
<name sortKey="Fort, P" uniqKey="Fort P">P. Fort</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bouchard, J F" uniqKey="Bouchard J">J.-F. Bouchard</name>
</author>
<author>
<name sortKey="Moore, S W" uniqKey="Moore S">S.W. Moore</name>
</author>
<author>
<name sortKey="Tritsch, N X" uniqKey="Tritsch N">N.X. Tritsch</name>
</author>
<author>
<name sortKey="Roux, P P" uniqKey="Roux P">P.P. Roux</name>
</author>
<author>
<name sortKey="Shekarabi, M" uniqKey="Shekarabi M">M. Shekarabi</name>
</author>
<author>
<name sortKey="Barker, P A" uniqKey="Barker P">P.A. Barker</name>
</author>
<author>
<name sortKey="Kennedy, T E" uniqKey="Kennedy T">T.E. Kennedy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bouchard, J F" uniqKey="Bouchard J">J.-F. Bouchard</name>
</author>
<author>
<name sortKey="Horn, K E" uniqKey="Horn K">K.E. Horn</name>
</author>
<author>
<name sortKey="Stroh, T" uniqKey="Stroh T">T. Stroh</name>
</author>
<author>
<name sortKey="Kennedy, T E" uniqKey="Kennedy T">T.E. Kennedy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Briancon Marjollet, A" uniqKey="Briancon Marjollet A">A. Briançon-Marjollet</name>
</author>
<author>
<name sortKey="Ghogha, A" uniqKey="Ghogha A">A. Ghogha</name>
</author>
<author>
<name sortKey="Nawabi, H" uniqKey="Nawabi H">H. Nawabi</name>
</author>
<author>
<name sortKey="Triki, I" uniqKey="Triki I">I. Triki</name>
</author>
<author>
<name sortKey="Auziol, C" uniqKey="Auziol C">C. Auziol</name>
</author>
<author>
<name sortKey="Fromont, S" uniqKey="Fromont S">S. Fromont</name>
</author>
<author>
<name sortKey="Piche, C" uniqKey="Piche C">C. Piché</name>
</author>
<author>
<name sortKey="Enslen, H" uniqKey="Enslen H">H. Enslen</name>
</author>
<author>
<name sortKey="Chebli, K" uniqKey="Chebli K">K. Chebli</name>
</author>
<author>
<name sortKey="Cloutier, J F" uniqKey="Cloutier J">J.F. Cloutier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, H C" uniqKey="Chang H">H.C. Chang</name>
</author>
<author>
<name sortKey="Newmyer, S L" uniqKey="Newmyer S">S.L. Newmyer</name>
</author>
<author>
<name sortKey="Hull, M J" uniqKey="Hull M">M.J. Hull</name>
</author>
<author>
<name sortKey="Ebersold, M" uniqKey="Ebersold M">M. Ebersold</name>
</author>
<author>
<name sortKey="Schmid, S L" uniqKey="Schmid S">S.L. Schmid</name>
</author>
<author>
<name sortKey="Mellman, I" uniqKey="Mellman I">I. Mellman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, A" uniqKey="Chen A">A. Chen</name>
</author>
<author>
<name sortKey="Liao, W P" uniqKey="Liao W">W.P. Liao</name>
</author>
<author>
<name sortKey="Lu, Q" uniqKey="Lu Q">Q. Lu</name>
</author>
<author>
<name sortKey="Wong, W S" uniqKey="Wong W">W.S. Wong</name>
</author>
<author>
<name sortKey="Wong, P T" uniqKey="Wong P">P.T. Wong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cook, D R" uniqKey="Cook D">D.R. Cook</name>
</author>
<author>
<name sortKey="Rossman, K L" uniqKey="Rossman K">K.L. Rossman</name>
</author>
<author>
<name sortKey="Der, C J" uniqKey="Der C">C.J. Der</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cotrufo, T" uniqKey="Cotrufo T">T. Cotrufo</name>
</author>
<author>
<name sortKey="Perez Branguli, F" uniqKey="Perez Branguli F">F. Pérez-Brangulí</name>
</author>
<author>
<name sortKey="Muhaisen, A" uniqKey="Muhaisen A">A. Muhaisen</name>
</author>
<author>
<name sortKey="Ros, O" uniqKey="Ros O">O. Ros</name>
</author>
<author>
<name sortKey="Andres, R" uniqKey="Andres R">R. Andrés</name>
</author>
<author>
<name sortKey="Baeriswyl, T" uniqKey="Baeriswyl T">T. Baeriswyl</name>
</author>
<author>
<name sortKey="Fuschini, G" uniqKey="Fuschini G">G. Fuschini</name>
</author>
<author>
<name sortKey="Tarrago, T" uniqKey="Tarrago T">T. Tarrago</name>
</author>
<author>
<name sortKey="Pascual, M" uniqKey="Pascual M">M. Pascual</name>
</author>
<author>
<name sortKey="Ure A, J" uniqKey="Ure A J">J. Ureña</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Daugaard, M" uniqKey="Daugaard M">M. Daugaard</name>
</author>
<author>
<name sortKey="Rohde, M" uniqKey="Rohde M">M. Rohde</name>
</author>
<author>
<name sortKey="J Ttel, M" uniqKey="J Ttel M">M. Jäättelä</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Debant, A" uniqKey="Debant A">A. Debant</name>
</author>
<author>
<name sortKey="Serra Pages, C" uniqKey="Serra Pages C">C. Serra-Pagès</name>
</author>
<author>
<name sortKey="Seipel, K" uniqKey="Seipel K">K. Seipel</name>
</author>
<author>
<name sortKey="O Rien, S" uniqKey="O Rien S">S. O’Brien</name>
</author>
<author>
<name sortKey="Tang, M" uniqKey="Tang M">M. Tang</name>
</author>
<author>
<name sortKey="Park, S H" uniqKey="Park S">S.H. Park</name>
</author>
<author>
<name sortKey="Streuli, M" uniqKey="Streuli M">M. Streuli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Degeer, J" uniqKey="Degeer J">J. DeGeer</name>
</author>
<author>
<name sortKey="Lamarche Vane, N" uniqKey="Lamarche Vane N">N. Lamarche-Vane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Degeer, J" uniqKey="Degeer J">J. DeGeer</name>
</author>
<author>
<name sortKey="Boudeau, J" uniqKey="Boudeau J">J. Boudeau</name>
</author>
<author>
<name sortKey="Schmidt, S" uniqKey="Schmidt S">S. Schmidt</name>
</author>
<author>
<name sortKey="Bedford, F" uniqKey="Bedford F">F. Bedford</name>
</author>
<author>
<name sortKey="Lamarche Vane, N" uniqKey="Lamarche Vane N">N. Lamarche-Vane</name>
</author>
<author>
<name sortKey="Debant, A" uniqKey="Debant A">A. Debant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duquette, P M" uniqKey="Duquette P">P.M. Duquette</name>
</author>
<author>
<name sortKey="Lamarche Vane, N" uniqKey="Lamarche Vane N">N. Lamarche-Vane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Estrach, S" uniqKey="Estrach S">S. Estrach</name>
</author>
<author>
<name sortKey="Schmidt, S" uniqKey="Schmidt S">S. Schmidt</name>
</author>
<author>
<name sortKey="Diriong, S" uniqKey="Diriong S">S. Diriong</name>
</author>
<author>
<name sortKey="Penna, A" uniqKey="Penna A">A. Penna</name>
</author>
<author>
<name sortKey="Blangy, A" uniqKey="Blangy A">A. Blangy</name>
</author>
<author>
<name sortKey="Fort, P" uniqKey="Fort P">P. Fort</name>
</author>
<author>
<name sortKey="Debant, A" uniqKey="Debant A">A. Debant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fazeli, A" uniqKey="Fazeli A">A. Fazeli</name>
</author>
<author>
<name sortKey="Dickinson, S L" uniqKey="Dickinson S">S.L. Dickinson</name>
</author>
<author>
<name sortKey="Hermiston, M L" uniqKey="Hermiston M">M.L. Hermiston</name>
</author>
<author>
<name sortKey="Tighe, R V" uniqKey="Tighe R">R.V. Tighe</name>
</author>
<author>
<name sortKey="Steen, R G" uniqKey="Steen R">R.G. Steen</name>
</author>
<author>
<name sortKey="Small, C G" uniqKey="Small C">C.G. Small</name>
</author>
<author>
<name sortKey="Stoeckli, E T" uniqKey="Stoeckli E">E.T. Stoeckli</name>
</author>
<author>
<name sortKey="Keino Masu, K" uniqKey="Keino Masu K">K. Keino-Masu</name>
</author>
<author>
<name sortKey="Masu, M" uniqKey="Masu M">M. Masu</name>
</author>
<author>
<name sortKey="Rayburn, H" uniqKey="Rayburn H">H. Rayburn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fothergill, T" uniqKey="Fothergill T">T. Fothergill</name>
</author>
<author>
<name sortKey="Donahoo, A L" uniqKey="Donahoo A">A.L. Donahoo</name>
</author>
<author>
<name sortKey="Douglass, A" uniqKey="Douglass A">A. Douglass</name>
</author>
<author>
<name sortKey="Zalucki, O" uniqKey="Zalucki O">O. Zalucki</name>
</author>
<author>
<name sortKey="Yuan, J" uniqKey="Yuan J">J. Yuan</name>
</author>
<author>
<name sortKey="Shu, T" uniqKey="Shu T">T. Shu</name>
</author>
<author>
<name sortKey="Goodhill, G J" uniqKey="Goodhill G">G.J. Goodhill</name>
</author>
<author>
<name sortKey="Richards, L J" uniqKey="Richards L">L.J. Richards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, B" uniqKey="Gao B">B. Gao</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Xu, W" uniqKey="Xu W">W. Xu</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S. Li</name>
</author>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q. Li</name>
</author>
<author>
<name sortKey="Xiong, S" uniqKey="Xiong S">S. Xiong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grant, A" uniqKey="Grant A">A. Grant</name>
</author>
<author>
<name sortKey="Fathalli, F" uniqKey="Fathalli F">F. Fathalli</name>
</author>
<author>
<name sortKey="Rouleau, G" uniqKey="Rouleau G">G. Rouleau</name>
</author>
<author>
<name sortKey="Joober, R" uniqKey="Joober R">R. Joober</name>
</author>
<author>
<name sortKey="Flores, C" uniqKey="Flores C">C. Flores</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guan, K L" uniqKey="Guan K">K.L. Guan</name>
</author>
<author>
<name sortKey="Rao, Y" uniqKey="Rao Y">Y. Rao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gupta, M" uniqKey="Gupta M">M. Gupta</name>
</author>
<author>
<name sortKey="Kamynina, E" uniqKey="Kamynina E">E. Kamynina</name>
</author>
<author>
<name sortKey="Morley, S" uniqKey="Morley S">S. Morley</name>
</author>
<author>
<name sortKey="Chung, S" uniqKey="Chung S">S. Chung</name>
</author>
<author>
<name sortKey="Muakkassa, N" uniqKey="Muakkassa N">N. Muakkassa</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Brathwaite, S" uniqKey="Brathwaite S">S. Brathwaite</name>
</author>
<author>
<name sortKey="Sharma, G" uniqKey="Sharma G">G. Sharma</name>
</author>
<author>
<name sortKey="Manor, D" uniqKey="Manor D">D. Manor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hand, R" uniqKey="Hand R">R. Hand</name>
</author>
<author>
<name sortKey="Bortone, D" uniqKey="Bortone D">D. Bortone</name>
</author>
<author>
<name sortKey="Mattar, P" uniqKey="Mattar P">P. Mattar</name>
</author>
<author>
<name sortKey="Nguyen, L" uniqKey="Nguyen L">L. Nguyen</name>
</author>
<author>
<name sortKey="Heng, J I" uniqKey="Heng J">J.I. Heng</name>
</author>
<author>
<name sortKey="Guerrier, S" uniqKey="Guerrier S">S. Guerrier</name>
</author>
<author>
<name sortKey="Boutt, E" uniqKey="Boutt E">E. Boutt</name>
</author>
<author>
<name sortKey="Peters, E" uniqKey="Peters E">E. Peters</name>
</author>
<author>
<name sortKey="Barnes, A P" uniqKey="Barnes A">A.P. Barnes</name>
</author>
<author>
<name sortKey="Parras, C" uniqKey="Parras C">C. Parras</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hartl, F U" uniqKey="Hartl F">F.U. Hartl</name>
</author>
<author>
<name sortKey="Bracher, A" uniqKey="Bracher A">A. Bracher</name>
</author>
<author>
<name sortKey="Hayer Hartl, M" uniqKey="Hayer Hartl M">M. Hayer-Hartl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huber, A B" uniqKey="Huber A">A.B. Huber</name>
</author>
<author>
<name sortKey="Kolodkin, A L" uniqKey="Kolodkin A">A.L. Kolodkin</name>
</author>
<author>
<name sortKey="Ginty, D D" uniqKey="Ginty D">D.D. Ginty</name>
</author>
<author>
<name sortKey="Cloutier, J F" uniqKey="Cloutier J">J.F. Cloutier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Izzi, L" uniqKey="Izzi L">L. Izzi</name>
</author>
<author>
<name sortKey="Charron, F" uniqKey="Charron F">F. Charron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jaffe, A B" uniqKey="Jaffe A">A.B. Jaffe</name>
</author>
<author>
<name sortKey="Hall, A" uniqKey="Hall A">A. Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaiser, M" uniqKey="Kaiser M">M. Kaiser</name>
</author>
<author>
<name sortKey="Kuhnl, A" uniqKey="Kuhnl A">A. Kühnl</name>
</author>
<author>
<name sortKey="Reins, J" uniqKey="Reins J">J. Reins</name>
</author>
<author>
<name sortKey="Fischer, S" uniqKey="Fischer S">S. Fischer</name>
</author>
<author>
<name sortKey="Ortiz Tanchez, J" uniqKey="Ortiz Tanchez J">J. Ortiz-Tanchez</name>
</author>
<author>
<name sortKey="Schlee, C" uniqKey="Schlee C">C. Schlee</name>
</author>
<author>
<name sortKey="Mochmann, L H" uniqKey="Mochmann L">L.H. Mochmann</name>
</author>
<author>
<name sortKey="Heesch, S" uniqKey="Heesch S">S. Heesch</name>
</author>
<author>
<name sortKey="Benlasfer, O" uniqKey="Benlasfer O">O. Benlasfer</name>
</author>
<author>
<name sortKey="Hofmann, W K" uniqKey="Hofmann W">W.-K. Hofmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kauppinen, K P" uniqKey="Kauppinen K">K.P. Kauppinen</name>
</author>
<author>
<name sortKey="Duan, F" uniqKey="Duan F">F. Duan</name>
</author>
<author>
<name sortKey="Wels, J I" uniqKey="Wels J">J.I. Wels</name>
</author>
<author>
<name sortKey="Manor, D" uniqKey="Manor D">D. Manor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keino Masu, K" uniqKey="Keino Masu K">K. Keino-Masu</name>
</author>
<author>
<name sortKey="Masu, M" uniqKey="Masu M">M. Masu</name>
</author>
<author>
<name sortKey="Hinck, L" uniqKey="Hinck L">L. Hinck</name>
</author>
<author>
<name sortKey="Leonardo, E D" uniqKey="Leonardo E">E.D. Leonardo</name>
</author>
<author>
<name sortKey="Chan, S S Y" uniqKey="Chan S">S.S.-Y. Chan</name>
</author>
<author>
<name sortKey="Culotti, J G" uniqKey="Culotti J">J.G. Culotti</name>
</author>
<author>
<name sortKey="Tessier Lavigne, M" uniqKey="Tessier Lavigne M">M. Tessier-Lavigne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kennedy, T E" uniqKey="Kennedy T">T.E. Kennedy</name>
</author>
<author>
<name sortKey="Serafini, T" uniqKey="Serafini T">T. Serafini</name>
</author>
<author>
<name sortKey="De La Torre, J R" uniqKey="De La Torre J">J.R. de la Torre</name>
</author>
<author>
<name sortKey="Tessier Lavigne, M" uniqKey="Tessier Lavigne M">M. Tessier-Lavigne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, T H" uniqKey="Kim T">T.H. Kim</name>
</author>
<author>
<name sortKey="Lee, H K" uniqKey="Lee H">H.K. Lee</name>
</author>
<author>
<name sortKey="Seo, I A" uniqKey="Seo I">I.A. Seo</name>
</author>
<author>
<name sortKey="Bae, H R" uniqKey="Bae H">H.R. Bae</name>
</author>
<author>
<name sortKey="Suh, D J" uniqKey="Suh D">D.J. Suh</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J. Wu</name>
</author>
<author>
<name sortKey="Rao, Y" uniqKey="Rao Y">Y. Rao</name>
</author>
<author>
<name sortKey="Hwang, K G" uniqKey="Hwang K">K.G. Hwang</name>
</author>
<author>
<name sortKey="Park, H T" uniqKey="Park H">H.T. Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koga, H" uniqKey="Koga H">H. Koga</name>
</author>
<author>
<name sortKey="Martinez Vicente, M" uniqKey="Martinez Vicente M">M. Martinez-Vicente</name>
</author>
<author>
<name sortKey="Arias, E" uniqKey="Arias E">E. Arias</name>
</author>
<author>
<name sortKey="Kaushik, S" uniqKey="Kaushik S">S. Kaushik</name>
</author>
<author>
<name sortKey="Sulzer, D" uniqKey="Sulzer D">D. Sulzer</name>
</author>
<author>
<name sortKey="Cuervo, A M" uniqKey="Cuervo A">A.M. Cuervo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Konno, D" uniqKey="Konno D">D. Konno</name>
</author>
<author>
<name sortKey="Yoshimura, S" uniqKey="Yoshimura S">S. Yoshimura</name>
</author>
<author>
<name sortKey="Hori, K" uniqKey="Hori K">K. Hori</name>
</author>
<author>
<name sortKey="Maruoka, H" uniqKey="Maruoka H">H. Maruoka</name>
</author>
<author>
<name sortKey="Sobue, K" uniqKey="Sobue K">K. Sobue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kriegstein, A R" uniqKey="Kriegstein A">A.R. Kriegstein</name>
</author>
<author>
<name sortKey="Noctor, S C" uniqKey="Noctor S">S.C. Noctor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Langevin, L M" uniqKey="Langevin L">L.M. Langevin</name>
</author>
<author>
<name sortKey="Mattar, P" uniqKey="Mattar P">P. Mattar</name>
</author>
<author>
<name sortKey="Scardigli, R" uniqKey="Scardigli R">R. Scardigli</name>
</author>
<author>
<name sortKey="Roussigne, M" uniqKey="Roussigne M">M. Roussigné</name>
</author>
<author>
<name sortKey="Logan, C" uniqKey="Logan C">C. Logan</name>
</author>
<author>
<name sortKey="Blader, P" uniqKey="Blader P">P. Blader</name>
</author>
<author>
<name sortKey="Schuurmans, C" uniqKey="Schuurmans C">C. Schuurmans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Laurin, M" uniqKey="Laurin M">M. Laurin</name>
</author>
<author>
<name sortKey="Cote, J F" uniqKey="Cote J">J.F. Côté</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leonardo, E D" uniqKey="Leonardo E">E.D. Leonardo</name>
</author>
<author>
<name sortKey="Hinck, L" uniqKey="Hinck L">L. Hinck</name>
</author>
<author>
<name sortKey="Masu, M" uniqKey="Masu M">M. Masu</name>
</author>
<author>
<name sortKey="Keino Masu, K" uniqKey="Keino Masu K">K. Keino-Masu</name>
</author>
<author>
<name sortKey="Ackerman, S L" uniqKey="Ackerman S">S.L. Ackerman</name>
</author>
<author>
<name sortKey="Tessier Lavigne, M" uniqKey="Tessier Lavigne M">M. Tessier-Lavigne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lesnick, T G" uniqKey="Lesnick T">T.G. Lesnick</name>
</author>
<author>
<name sortKey="Sorenson, E J" uniqKey="Sorenson E">E.J. Sorenson</name>
</author>
<author>
<name sortKey="Ahlskog, J E" uniqKey="Ahlskog J">J.E. Ahlskog</name>
</author>
<author>
<name sortKey="Henley, J R" uniqKey="Henley J">J.R. Henley</name>
</author>
<author>
<name sortKey="Shehadeh, L" uniqKey="Shehadeh L">L. Shehadeh</name>
</author>
<author>
<name sortKey="Papapetropoulos, S" uniqKey="Papapetropoulos S">S. Papapetropoulos</name>
</author>
<author>
<name sortKey="Maraganore, D M" uniqKey="Maraganore D">D.M. Maraganore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Saint Cyr Proulx, E" uniqKey="Saint Cyr Proulx E">E. Saint-Cyr-Proulx</name>
</author>
<author>
<name sortKey="Aktories, K" uniqKey="Aktories K">K. Aktories</name>
</author>
<author>
<name sortKey="Lamarche Vane, N" uniqKey="Lamarche Vane N">N. Lamarche-Vane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J. Lee</name>
</author>
<author>
<name sortKey="Vikis, H G" uniqKey="Vikis H">H.G. Vikis</name>
</author>
<author>
<name sortKey="Lee, S H" uniqKey="Lee S">S.H. Lee</name>
</author>
<author>
<name sortKey="Liu, G" uniqKey="Liu G">G. Liu</name>
</author>
<author>
<name sortKey="Aurandt, J" uniqKey="Aurandt J">J. Aurandt</name>
</author>
<author>
<name sortKey="Shen, T L" uniqKey="Shen T">T.L. Shen</name>
</author>
<author>
<name sortKey="Fearon, E R" uniqKey="Fearon E">E.R. Fearon</name>
</author>
<author>
<name sortKey="Guan, J L" uniqKey="Guan J">J.L. Guan</name>
</author>
<author>
<name sortKey="Han, M" uniqKey="Han M">M. Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Gao, X" uniqKey="Gao X">X. Gao</name>
</author>
<author>
<name sortKey="Liu, G" uniqKey="Liu G">G. Liu</name>
</author>
<author>
<name sortKey="Xiong, W" uniqKey="Xiong W">W. Xiong</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J. Wu</name>
</author>
<author>
<name sortKey="Rao, Y" uniqKey="Rao Y">Y. Rao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, L" uniqKey="Lin L">L. Lin</name>
</author>
<author>
<name sortKey="Lesnick, T G" uniqKey="Lesnick T">T.G. Lesnick</name>
</author>
<author>
<name sortKey="Maraganore, D M" uniqKey="Maraganore D">D.M. Maraganore</name>
</author>
<author>
<name sortKey="Isacson, O" uniqKey="Isacson O">O. Isacson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, G" uniqKey="Liu G">G. Liu</name>
</author>
<author>
<name sortKey="Beggs, H" uniqKey="Beggs H">H. Beggs</name>
</author>
<author>
<name sortKey="Jurgensen, C" uniqKey="Jurgensen C">C. Jürgensen</name>
</author>
<author>
<name sortKey="Park, H T" uniqKey="Park H">H.T. Park</name>
</author>
<author>
<name sortKey="Tang, H" uniqKey="Tang H">H. Tang</name>
</author>
<author>
<name sortKey="Gorski, J" uniqKey="Gorski J">J. Gorski</name>
</author>
<author>
<name sortKey="Jones, K R" uniqKey="Jones K">K.R. Jones</name>
</author>
<author>
<name sortKey="Reichardt, L F" uniqKey="Reichardt L">L.F. Reichardt</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J. Wu</name>
</author>
<author>
<name sortKey="Rao, Y" uniqKey="Rao Y">Y. Rao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, G" uniqKey="Liu G">G. Liu</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="Kar, A" uniqKey="Kar A">A. Kar</name>
</author>
<author>
<name sortKey="Guan, K L" uniqKey="Guan K">K.L. Guan</name>
</author>
<author>
<name sortKey="Rao, Y" uniqKey="Rao Y">Y. Rao</name>
</author>
<author>
<name sortKey="Wu, J Y" uniqKey="Wu J">J.Y. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Loones, M T" uniqKey="Loones M">M.T. Loones</name>
</author>
<author>
<name sortKey="Chang, Y" uniqKey="Chang Y">Y. Chang</name>
</author>
<author>
<name sortKey="Morange, M" uniqKey="Morange M">M. Morange</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lowery, L A" uniqKey="Lowery L">L.A. Lowery</name>
</author>
<author>
<name sortKey="Van Vactor, D" uniqKey="Van Vactor D">D. Van Vactor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ly, A" uniqKey="Ly A">A. Ly</name>
</author>
<author>
<name sortKey="Nikolaev, A" uniqKey="Nikolaev A">A. Nikolaev</name>
</author>
<author>
<name sortKey="Suresh, G" uniqKey="Suresh G">G. Suresh</name>
</author>
<author>
<name sortKey="Zheng, Y" uniqKey="Zheng Y">Y. Zheng</name>
</author>
<author>
<name sortKey="Tessier Lavigne, M" uniqKey="Tessier Lavigne M">M. Tessier-Lavigne</name>
</author>
<author>
<name sortKey="Stein, E" uniqKey="Stein E">E. Stein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mar, F M" uniqKey="Mar F">F.M. Mar</name>
</author>
<author>
<name sortKey="Bonni, A" uniqKey="Bonni A">A. Bonni</name>
</author>
<author>
<name sortKey="Sousa, M M" uniqKey="Sousa M">M.M. Sousa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meriane, M" uniqKey="Meriane M">M. Meriane</name>
</author>
<author>
<name sortKey="Tcherkezian, J" uniqKey="Tcherkezian J">J. Tcherkezian</name>
</author>
<author>
<name sortKey="Webber, C A" uniqKey="Webber C">C.A. Webber</name>
</author>
<author>
<name sortKey="Danek, E I" uniqKey="Danek E">E.I. Danek</name>
</author>
<author>
<name sortKey="Triki, I" uniqKey="Triki I">I. Triki</name>
</author>
<author>
<name sortKey="Mcfarlane, S" uniqKey="Mcfarlane S">S. McFarlane</name>
</author>
<author>
<name sortKey="Bloch Gallego, E" uniqKey="Bloch Gallego E">E. Bloch-Gallego</name>
</author>
<author>
<name sortKey="Lamarche Vane, N" uniqKey="Lamarche Vane N">N. Lamarche-Vane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moore, S W" uniqKey="Moore S">S.W. Moore</name>
</author>
<author>
<name sortKey="Correia, J P" uniqKey="Correia J">J.P. Correia</name>
</author>
<author>
<name sortKey="Lai Wing Sun, K" uniqKey="Lai Wing Sun K">K. Lai Wing Sun</name>
</author>
<author>
<name sortKey="Pool, M" uniqKey="Pool M">M. Pool</name>
</author>
<author>
<name sortKey="Fournier, A E" uniqKey="Fournier A">A.E. Fournier</name>
</author>
<author>
<name sortKey="Kennedy, T E" uniqKey="Kennedy T">T.E. Kennedy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muranyi, M" uniqKey="Muranyi M">M. Muranyi</name>
</author>
<author>
<name sortKey="He, Q P" uniqKey="He Q">Q.P. He</name>
</author>
<author>
<name sortKey="Fong, K S" uniqKey="Fong K">K.S. Fong</name>
</author>
<author>
<name sortKey="Li, P A" uniqKey="Li P">P.A. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nadarajah, B" uniqKey="Nadarajah B">B. Nadarajah</name>
</author>
<author>
<name sortKey="Brunstrom, J E" uniqKey="Brunstrom J">J.E. Brunstrom</name>
</author>
<author>
<name sortKey="Grutzendler, J" uniqKey="Grutzendler J">J. Grutzendler</name>
</author>
<author>
<name sortKey="Wong, R O" uniqKey="Wong R">R.O. Wong</name>
</author>
<author>
<name sortKey="Pearlman, A L" uniqKey="Pearlman A">A.L. Pearlman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Rien, S P" uniqKey="O Rien S">S.P. O’Brien</name>
</author>
<author>
<name sortKey="Seipel, K" uniqKey="Seipel K">K. Seipel</name>
</author>
<author>
<name sortKey="Medley, Q G" uniqKey="Medley Q">Q.G. Medley</name>
</author>
<author>
<name sortKey="Bronson, R" uniqKey="Bronson R">R. Bronson</name>
</author>
<author>
<name sortKey="Segal, R" uniqKey="Segal R">R. Segal</name>
</author>
<author>
<name sortKey="Streuli, M" uniqKey="Streuli M">M. Streuli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olofsson, B" uniqKey="Olofsson B">B. Olofsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pemberton, S" uniqKey="Pemberton S">S. Pemberton</name>
</author>
<author>
<name sortKey="Melki, R" uniqKey="Melki R">R. Melki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Picard, M" uniqKey="Picard M">M. Picard</name>
</author>
<author>
<name sortKey="Petrie, R J" uniqKey="Petrie R">R.J. Petrie</name>
</author>
<author>
<name sortKey="Antoine Bertrand, J" uniqKey="Antoine Bertrand J">J. Antoine-Bertrand</name>
</author>
<author>
<name sortKey="Saint Cyr Proulx, E" uniqKey="Saint Cyr Proulx E">E. Saint-Cyr-Proulx</name>
</author>
<author>
<name sortKey="Villemure, J F" uniqKey="Villemure J">J.F. Villemure</name>
</author>
<author>
<name sortKey="Lamarche Vane, N" uniqKey="Lamarche Vane N">N. Lamarche-Vane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Portales Casamar, E" uniqKey="Portales Casamar E">E. Portales-Casamar</name>
</author>
<author>
<name sortKey="Briancon Marjollet, A" uniqKey="Briancon Marjollet A">A. Briançon-Marjollet</name>
</author>
<author>
<name sortKey="Fromont, S" uniqKey="Fromont S">S. Fromont</name>
</author>
<author>
<name sortKey="Triboulet, R" uniqKey="Triboulet R">R. Triboulet</name>
</author>
<author>
<name sortKey="Debant, A" uniqKey="Debant A">A. Debant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rama, N" uniqKey="Rama N">N. Rama</name>
</author>
<author>
<name sortKey="Goldschneider, D" uniqKey="Goldschneider D">D. Goldschneider</name>
</author>
<author>
<name sortKey="Corset, V" uniqKey="Corset V">V. Corset</name>
</author>
<author>
<name sortKey="Lambert, J" uniqKey="Lambert J">J. Lambert</name>
</author>
<author>
<name sortKey="Pays, L" uniqKey="Pays L">L. Pays</name>
</author>
<author>
<name sortKey="Mehlen, P" uniqKey="Mehlen P">P. Mehlen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Richards, L J" uniqKey="Richards L">L.J. Richards</name>
</author>
<author>
<name sortKey="Koester, S E" uniqKey="Koester S">S.E. Koester</name>
</author>
<author>
<name sortKey="Tuttle, R" uniqKey="Tuttle R">R. Tuttle</name>
</author>
<author>
<name sortKey="O Eary, D D M" uniqKey="O Eary D">D.D.M. O’Leary</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rohde, M" uniqKey="Rohde M">M. Rohde</name>
</author>
<author>
<name sortKey="Daugaard, M" uniqKey="Daugaard M">M. Daugaard</name>
</author>
<author>
<name sortKey="Jensen, M H" uniqKey="Jensen M">M.H. Jensen</name>
</author>
<author>
<name sortKey="Helin, K" uniqKey="Helin K">K. Helin</name>
</author>
<author>
<name sortKey="Nylandsted, J" uniqKey="Nylandsted J">J. Nylandsted</name>
</author>
<author>
<name sortKey="J Ttel, M" uniqKey="J Ttel M">M. Jäättelä</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Serafini, T" uniqKey="Serafini T">T. Serafini</name>
</author>
<author>
<name sortKey="Kennedy, T E" uniqKey="Kennedy T">T.E. Kennedy</name>
</author>
<author>
<name sortKey="Galko, M J" uniqKey="Galko M">M.J. Galko</name>
</author>
<author>
<name sortKey="Mirzayan, C" uniqKey="Mirzayan C">C. Mirzayan</name>
</author>
<author>
<name sortKey="Jessell, T M" uniqKey="Jessell T">T.M. Jessell</name>
</author>
<author>
<name sortKey="Tessier Lavigne, M" uniqKey="Tessier Lavigne M">M. Tessier-Lavigne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Serafini, T" uniqKey="Serafini T">T. Serafini</name>
</author>
<author>
<name sortKey="Colamarino, S A" uniqKey="Colamarino S">S.A. Colamarino</name>
</author>
<author>
<name sortKey="Leonardo, E D" uniqKey="Leonardo E">E.D. Leonardo</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Beddington, R" uniqKey="Beddington R">R. Beddington</name>
</author>
<author>
<name sortKey="Skarnes, W C" uniqKey="Skarnes W">W.C. Skarnes</name>
</author>
<author>
<name sortKey="Tessier Lavigne, M" uniqKey="Tessier Lavigne M">M. Tessier-Lavigne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, M" uniqKey="Sharma M">M. Sharma</name>
</author>
<author>
<name sortKey="Burre, J" uniqKey="Burre J">J. Burré</name>
</author>
<author>
<name sortKey="Sudhof, T C" uniqKey="Sudhof T">T.C. Südhof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shekarabi, M" uniqKey="Shekarabi M">M. Shekarabi</name>
</author>
<author>
<name sortKey="Kennedy, T E" uniqKey="Kennedy T">T.E. Kennedy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shieh, J C" uniqKey="Shieh J">J.C. Shieh</name>
</author>
<author>
<name sortKey="Schaar, B T" uniqKey="Schaar B">B.T. Schaar</name>
</author>
<author>
<name sortKey="Srinivasan, K" uniqKey="Srinivasan K">K. Srinivasan</name>
</author>
<author>
<name sortKey="Brodsky, F M" uniqKey="Brodsky F">F.M. Brodsky</name>
</author>
<author>
<name sortKey="Mcconnell, S K" uniqKey="Mcconnell S">S.K. McConnell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shimura, H" uniqKey="Shimura H">H. Shimura</name>
</author>
<author>
<name sortKey="Schwartz, D" uniqKey="Schwartz D">D. Schwartz</name>
</author>
<author>
<name sortKey="Gygi, S P" uniqKey="Gygi S">S.P. Gygi</name>
</author>
<author>
<name sortKey="Kosik, K S" uniqKey="Kosik K">K.S. Kosik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Srour, M" uniqKey="Srour M">M. Srour</name>
</author>
<author>
<name sortKey="Riviere, J B" uniqKey="Riviere J">J.B. Rivière</name>
</author>
<author>
<name sortKey="Pham, J M" uniqKey="Pham J">J.M. Pham</name>
</author>
<author>
<name sortKey="Dube, M P" uniqKey="Dube M">M.P. Dubé</name>
</author>
<author>
<name sortKey="Girard, S" uniqKey="Girard S">S. Girard</name>
</author>
<author>
<name sortKey="Morin, S" uniqKey="Morin S">S. Morin</name>
</author>
<author>
<name sortKey="Dion, P A" uniqKey="Dion P">P.A. Dion</name>
</author>
<author>
<name sortKey="Asselin, G" uniqKey="Asselin G">G. Asselin</name>
</author>
<author>
<name sortKey="Rochefort, D" uniqKey="Rochefort D">D. Rochefort</name>
</author>
<author>
<name sortKey="Hince, P" uniqKey="Hince P">P. Hince</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sudhof, T C" uniqKey="Sudhof T">T.C. Südhof</name>
</author>
<author>
<name sortKey="Rothman, J E" uniqKey="Rothman J">J.E. Rothman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tcherkezian, J" uniqKey="Tcherkezian J">J. Tcherkezian</name>
</author>
<author>
<name sortKey="Lamarche Vane, N" uniqKey="Lamarche Vane N">N. Lamarche-Vane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tessier Lavigne, M" uniqKey="Tessier Lavigne M">M. Tessier-Lavigne</name>
</author>
<author>
<name sortKey="Goodman, C S" uniqKey="Goodman C">C.S. Goodman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Turturici, G" uniqKey="Turturici G">G. Turturici</name>
</author>
<author>
<name sortKey="Sconzo, G" uniqKey="Sconzo G">G. Sconzo</name>
</author>
<author>
<name sortKey="Geraci, F" uniqKey="Geraci F">F. Geraci</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Winkle, C C" uniqKey="Winkle C">C.C. Winkle</name>
</author>
<author>
<name sortKey="Mcclain, L M" uniqKey="Mcclain L">L.M. McClain</name>
</author>
<author>
<name sortKey="Valtschanoff, J G" uniqKey="Valtschanoff J">J.G. Valtschanoff</name>
</author>
<author>
<name sortKey="Park, C S" uniqKey="Park C">C.S. Park</name>
</author>
<author>
<name sortKey="Maglione, C" uniqKey="Maglione C">C. Maglione</name>
</author>
<author>
<name sortKey="Gupton, S L" uniqKey="Gupton S">S.L. Gupton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yam, P T" uniqKey="Yam P">P.T. Yam</name>
</author>
<author>
<name sortKey="Langlois, S D" uniqKey="Langlois S">S.D. Langlois</name>
</author>
<author>
<name sortKey="Morin, S" uniqKey="Morin S">S. Morin</name>
</author>
<author>
<name sortKey="Charron, F" uniqKey="Charron F">F. Charron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, T" uniqKey="Yang T">T. Yang</name>
</author>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y. Sun</name>
</author>
<author>
<name sortKey="Zhang, F" uniqKey="Zhang F">F. Zhang</name>
</author>
<author>
<name sortKey="Zhu, Y" uniqKey="Zhu Y">Y. Zhu</name>
</author>
<author>
<name sortKey="Shi, L" uniqKey="Shi L">L. Shi</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
</author>
<author>
<name sortKey="Xu, Z" uniqKey="Xu Z">Z. Xu</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Cell Biol</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Cell Biol</journal-id>
<journal-id journal-id-type="publisher-id">jcb</journal-id>
<journal-id journal-id-type="hwp">jcb</journal-id>
<journal-title-group>
<journal-title>The Journal of Cell Biology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0021-9525</issn>
<issn pub-type="epub">1540-8140</issn>
<publisher>
<publisher-name>The Rockefeller University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26323693</article-id>
<article-id pub-id-type="pmc">4555821</article-id>
<article-id pub-id-type="publisher-id">201505084</article-id>
<article-id pub-id-type="doi">10.1083/jcb.201505084</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Articles</subject>
<subj-group>
<subject>Article</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Hsc70 chaperone activity underlies Trio GEF function in axon growth and guidance induced by netrin-1</article-title>
<alt-title alt-title-type="short">Chaperone-dependent regulation of Trio</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>DeGeer</surname>
<given-names>Jonathan</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kaplan</surname>
<given-names>Andrew</given-names>
</name>
<xref ref-type="aff" rid="aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mattar</surname>
<given-names>Pierre</given-names>
</name>
<xref ref-type="aff" rid="aff4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Morabito</surname>
<given-names>Morgane</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Stochaj</surname>
<given-names>Ursula</given-names>
</name>
<xref ref-type="aff" rid="aff5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kennedy</surname>
<given-names>Timothy E.</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Debant</surname>
<given-names>Anne</given-names>
</name>
<xref ref-type="aff" rid="aff6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cayouette</surname>
<given-names>Michel</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff4">4</xref>
<xref ref-type="aff" rid="aff7">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Fournier</surname>
<given-names>Alyson E.</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff3">3</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Lamarche-Vane</surname>
<given-names>Nathalie</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<institution>Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada</institution>
</aff>
<aff id="aff2">
<label>2</label>
<institution>The Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada</institution>
</aff>
<aff id="aff3">
<label>3</label>
<institution>Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada</institution>
</aff>
<aff id="aff4">
<label>4</label>
<institution>Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada</institution>
</aff>
<aff id="aff5">
<label>5</label>
<institution>Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada</institution>
</aff>
<aff id="aff6">
<label>6</label>
<institution>Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, UMR5237, University of Montpellier, Montpellier 34293, France</institution>
</aff>
<aff id="aff7">
<label>7</label>
<institution>Department of Medicine, Université de Montréal, Montreal, Quubec H3T 1J4, Canada</institution>
</aff>
<author-notes>
<corresp id="cor8">Correspondence to Nathalie Lamarche-Vane:
<email>nathalie.lamarche@mcgill.ca</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<day>31</day>
<month>8</month>
<year>2015</year>
</pub-date>
<volume>210</volume>
<issue>5</issue>
<fpage>817</fpage>
<lpage>832</lpage>
<history>
<date date-type="received">
<day>19</day>
<month>5</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>21</day>
<month>7</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© 2015 DeGeer et al.</copyright-statement>
<copyright-year>2015</copyright-year>
<license license-type="openaccess">
<license-p>This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see
<ext-link ext-link-type="uri" xlink:href="http://www.rupress.org/terms">http://www.rupress.org/terms</ext-link>
). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc-sa/3.0/">http://creativecommons.org/licenses/by-nc-sa/3.0/</ext-link>
).</license-p>
</license>
</permissions>
<self-uri xlink:role="icon" xlink:href="JCB_201505084_thumb.gif"></self-uri>
<abstract abstract-type="precis">
<p>Hsc70 chaperone activity is required for Rac1 activation by Trio and this function underlies netrin-1/DCC-dependent axon outgrowth and guidance.</p>
</abstract>
<abstract>
<p>During development, netrin-1 is both an attractive and repulsive axon guidance cue and mediates its attractive function through the receptor Deleted in Colorectal Cancer (DCC). The activation of Rho guanosine triphosphatases within the extending growth cone facilitates the dynamic reorganization of the cytoskeleton required to drive axon extension. The Rac1 guanine nucleotide exchange factor (GEF) Trio is essential for netrin-1–induced axon outgrowth and guidance. Here, we identify the molecular chaperone heat shock cognate protein 70 (Hsc70) as a novel Trio regulator. Hsc70 dynamically associated with the N-terminal region and Rac1 GEF domain of Trio. Whereas Hsc70 expression supported Trio-dependent Rac1 activation, adenosine triphosphatase–deficient Hsc70 (D10N) abrogated Trio Rac1 GEF activity and netrin-1–induced Rac1 activation. Hsc70 was required for netrin-1–mediated axon growth and attraction in vitro, whereas Hsc70 activity supported callosal projections and radial neuronal migration in the embryonic neocortex. These findings demonstrate that Hsc70 chaperone activity is required for Rac1 activation by Trio and this function underlies netrin-1/DCC-dependent axon outgrowth and guidance.</p>
</abstract>
</article-meta>
</front>
<body>
<sec sec-type="introduction" id="s01">
<title>Introduction</title>
<p>The proper wiring of the central nervous system (CNS) is imperative for normal physiological function and survival. During development, the extension and pathfinding of neurons of the CNS is governed in part by environmental guidance cues (
<xref rid="bib79" ref-type="bibr">Tessier-Lavigne and Goodman, 1996</xref>
;
<xref rid="bib29" ref-type="bibr">Guan and Rao, 2003</xref>
;
<xref rid="bib33" ref-type="bibr">Huber et al., 2003</xref>
). Molecular signals initiated by these cues are transduced intracellularly by means of conserved receptors expressed at the distal axon growth cone, ultimately resulting in modulation of the actin cytoskeleton (
<xref rid="bib55" ref-type="bibr">Lowery and Van Vactor, 2009</xref>
). Netrins constitute a family of axon guidance cues that are required for proper neural specification (
<xref rid="bib39" ref-type="bibr">Kennedy et al., 1994</xref>
;
<xref rid="bib71" ref-type="bibr">Serafini et al., 1996</xref>
;
<xref rid="bib8" ref-type="bibr">Bashaw and Klein, 2010</xref>
). To date, netrin-1 was found to signal through at least four distinct families of transmembrane receptors: the Deleted in Colorectal Cancer (DCC) family (DCC and neogenin), Down syndrome cell adhesion molecule, the UNC-5 family, and amyloid precursor protein (
<xref rid="bib38" ref-type="bibr">Keino-Masu et al., 1996</xref>
;
<xref rid="bib1" ref-type="bibr">Ackerman et al., 1997</xref>
;
<xref rid="bib46" ref-type="bibr">Leonardo et al., 1997</xref>
;
<xref rid="bib56" ref-type="bibr">Ly et al., 2008</xref>
;
<xref rid="bib53" ref-type="bibr">Liu et al., 2009</xref>
;
<xref rid="bib67" ref-type="bibr">Rama et al., 2012</xref>
). During development of the spinal cord and cerebral cortex of vertebrates, netrin-1 exerts its attractive functions through the receptor DCC (
<xref rid="bib39" ref-type="bibr">Kennedy et al., 1994</xref>
;
<xref rid="bib38" ref-type="bibr">Keino-Masu et al., 1996</xref>
;
<xref rid="bib68" ref-type="bibr">Richards et al., 1997</xref>
). In humans, mutations of the
<italic>DCC</italic>
gene have been associated with congenital mirror movements (
<xref rid="bib76" ref-type="bibr">Srour et al., 2010</xref>
), and small nucleotide polymorphisms within the genes encoding
<italic>DCC</italic>
and
<italic>netrin-1</italic>
have been associated with schizophrenia (
<xref rid="bib28" ref-type="bibr">Grant et al., 2012</xref>
), Parkinson’s disease, and amyotrophic lateral sclerosis (
<xref rid="bib47" ref-type="bibr">Lesnick et al., 2008</xref>
;
<xref rid="bib51" ref-type="bibr">Lin et al., 2009</xref>
). Upon netrin-1 stimulation, DCC becomes highly phosphorylated on serine, threonine, and tyrosine residues (
<xref rid="bib58" ref-type="bibr">Meriane et al., 2004</xref>
). In particular, phosphorylation of rat DCC at Tyr
<sup>1418</sup>
by Src family kinases is required for netrin-1–mediated axon outgrowth and guidance in vertebrates (
<xref rid="bib49" ref-type="bibr">Li et al., 2004</xref>
;
<xref rid="bib52" ref-type="bibr">Liu et al., 2004</xref>
;
<xref rid="bib58" ref-type="bibr">Meriane et al., 2004</xref>
).</p>
<p>Rho family GTPases are molecular switches that have been well characterized as modulators of cytoskeletal dynamics and cellular motility by cycling between an inactive GDP-bound and active GTP-bound state (
<xref rid="bib35" ref-type="bibr">Jaffe and Hall, 2005</xref>
). In the context of axon growth and pathfinding, the recruitment and localized activation of the Rho GTPases Rac1, Cdc42, and RhoA are imperative for translating guidance cues into cytoskeletal rearrangements within the extending growth cone (
<xref rid="bib48" ref-type="bibr">Li et al., 2002</xref>
;
<xref rid="bib7" ref-type="bibr">Barallobre et al., 2005</xref>
;
<xref rid="bib55" ref-type="bibr">Lowery and Van Vactor, 2009</xref>
;
<xref rid="bib2" ref-type="bibr">Antoine-Bertrand et al., 2011</xref>
;
<xref rid="bib21" ref-type="bibr">DeGeer and Lamarche-Vane, 2013</xref>
). Downstream of netrin-1/DCC, Rac1 becomes activated in neurons and drives axonal extension, whereas RhoA activity is inhibited (
<xref rid="bib48" ref-type="bibr">Li et al., 2002</xref>
;
<xref rid="bib73" ref-type="bibr">Shekarabi and Kennedy, 2002</xref>
;
<xref rid="bib14" ref-type="bibr">Briançon-Marjollet et al., 2008</xref>
;
<xref rid="bib59" ref-type="bibr">Moore et al., 2008</xref>
). Oversight of Rho GTPase nucleotide cycling is performed by regulatory proteins: guanine nucleotide exchange factors (GEFs) enhance the GTP-bound state (
<xref rid="bib17" ref-type="bibr">Cook et al., 2014</xref>
;
<xref rid="bib45" ref-type="bibr">Laurin and Côté, 2014</xref>
), whereas GTP hydrolysis is catalyzed by GTPase-activating proteins (
<xref rid="bib78" ref-type="bibr">Tcherkezian and Lamarche-Vane, 2007</xref>
). Additionally, guanine nucleotide dissociation inhibitors bind to Rho GTPases and restrict them in an inactive state in the cytoplasm, preventing them from associating with their downstream effectors (
<xref rid="bib63" ref-type="bibr">Olofsson, 1999</xref>
). In recent years, the GEFs DOCK180 and Trio have been shown to mediate Rac1 activation downstream of netrin and DCC in mammalian systems (
<xref rid="bib14" ref-type="bibr">Briançon-Marjollet et al., 2008</xref>
;
<xref rid="bib50" ref-type="bibr">Li et al., 2008</xref>
). Trio contains two Dbl homology/Pleckstrin homology GEF domains (GEFDs) and a serine/threonine kinase domain for which a substrate has yet to be identified (
<xref rid="bib20" ref-type="bibr">Debant et al., 1996</xref>
). Trio has activity toward both RhoG and Rac1 via its first GEFD (GEFD1), whereas the second GEFD activates RhoA in vitro (
<xref rid="bib20" ref-type="bibr">Debant et al., 1996</xref>
;
<xref rid="bib9" ref-type="bibr">Bellanger et al., 1998</xref>
;
<xref rid="bib11" ref-type="bibr">Blangy et al., 2000</xref>
). Trio is highly enriched in the mammalian brain where five Trio isoforms containing the GEFD1 are generated by alternative splicing (
<xref rid="bib66" ref-type="bibr">Portales-Casamar et al., 2006</xref>
). Trio-null mice die between embryonic day 15.5 (E15.5) and birth and display a general impairment of netrin-1– and DCC-dependent neuronal projections in the spinal cord and brain (
<xref rid="bib62" ref-type="bibr">O’Brien et al., 2000</xref>
;
<xref rid="bib14" ref-type="bibr">Briançon-Marjollet et al., 2008</xref>
). Specifically, in the brain Trio-null embryos lack anterior commissures, and notably DCC-positive projections in the corpus callosum and internal capsule are misguided (
<xref rid="bib14" ref-type="bibr">Briançon-Marjollet et al., 2008</xref>
). We have recently shown that netrin-1 promotes the Src kinase-dependent phosphorylation of Trio
<sup>Y2622</sup>
and a concomitant coassociation with DCC in cortical growth cones occurring when Rac1 activation peaks (
<xref rid="bib22" ref-type="bibr">DeGeer et al., 2013</xref>
). We also observed that Trio promotes the enrichment of surface DCC at cortical neuronal growth cones in a Trio
<sup>Y2622</sup>
-dependent manner (
<xref rid="bib22" ref-type="bibr">DeGeer et al., 2013</xref>
). These findings demonstrated the importance of Trio
<sup>Y2622</sup>
phosphorylation in the regulation of netrin-1– and DCC-mediated cortical axon outgrowth. Despite these observations, the mechanisms governing Trio localization and activation downstream of netrin-1/DCC are unknown. In this work we provide evidence that the chaperone activity of Hsc70 permits Rac1 activation by Trio in the developing cerebral cortex. In addition, we show that Hsc70 function is required for proper Trio and DCC localization in cortical growth cones treated with netrin-1. We correlate the chaperone-mediated activation of Rac1 by Trio with the regulation of DCC plasma membrane insertion within the growth cones of cortical neurons and demonstrate Hsc70’s requirement for axon outgrowth and guidance induced by netrin-1. In this way we link cytoskeletal proteins with the regulation of an axon guidance receptor and describe a novel function for the chaperone Hsc70 during development.</p>
</sec>
<sec sec-type="results" id="s02">
<title>Results</title>
<sec id="s03">
<title>The molecular chaperone Hsc70 associates with Trio in the developing cerebral cortex</title>
<p>To characterize the molecular mechanisms governing Trio regulation during netrin-1/DCC signaling, we used a proteomic approach and identified Hsc70 as a novel Trio-associated protein in extracts of netrin-1–treated rat E17.5 cerebral cortices. To validate the mass spectrometry result, Trio was immunoprecipitated (IP) from cortical tissue extracts and coassociated proteins were analyzed by Western blot. We found that Hsc70 interacted with Trio, whereas the highly homologous chaperone Hsp70 failed to do so (
<xref ref-type="fig" rid="fig1">Fig. 1 A</xref>
). To determine whether the association between Trio and Hsc70 was netrin dependent, rat cortices were treated with netrin-1 for 5 to 30 min before harvesting. Trio and Hsc70 coassociation in cell extracts peaked 5 min after netrin-1 stimulation and decreased after 15 and 30 min (
<xref ref-type="fig" rid="fig1">Fig. 1, B and C</xref>
). FAK was activated (pFAK) after 5 min of netrin-1 treatment and activation was sustained for at least 30 min, as reported previously (
<xref ref-type="fig" rid="fig1">Fig. 1 B</xref>
;
<xref rid="bib22" ref-type="bibr">DeGeer et al., 2013</xref>
).</p>
<fig id="fig1" fig-type="figure" orientation="portrait" position="float">
<label>Figure 1.</label>
<caption>
<p>
<bold>The molecular chaperone Hsc70 associates with Trio in the developing cerebral cortex.</bold>
(A) Trio was IP from lysates of isolated E17.5 rat cortices with anti-Trio antibodies or rabbit IgG as a control. IP proteins and total cell lysates (TCL) were resolved by SDS-PAGE and immunoblotted with the indicated antibodies. Trio isoforms: FL, full length; D, Trio-D; A, Trio-A. (B) Isolated E17.5 rat cortices were stimulated with netrin-1 for the indicated times. Trio isoforms were IP and Hsc70 coIP with Trio was assessed by immunoblotting. Netrin-1 stimulation of DCC-induced signaling pathways was assessed by evaluating FAK phosphorylation (Y861) in total cell lysates (TCL). (C) Densitometric analysis of Hsc70 coIP with Trio from B. Error bars indicate the SEM (
<italic>n</italic>
= 5; NS, P > 0.05; **, P < 0.001; ***, P < 0.0001; one-way ANOVA, Bonferroni’s multiple comparisons test). (D and G) Dissociated E17.5 rat cortical neurons were stimulated with netrin-1 for 5 and 15 min before fixation. Endogenous Trio and Hsc70 localization were assessed by indirect immunofluorescence and confocal microscopy. Bars, 15 µm. (E and F) The mean Pearson’s correlation coefficient between green (Hsc70) and red (Trio) channels within the growth cone (D and E) or axon shaft (F and G) was calculated with Metamorph software. Error bars indicate the SEM (>48 neurons were assessed per condition, from three independent experiments; NS, P > 0.05; **, P < 0.001; ***, P < 0.0001; one-way ANOVA, Bonferroni’s multiple comparisons test).</p>
</caption>
<graphic xlink:href="JCB_201505084_Fig1"></graphic>
</fig>
<p>We next investigated the degree of endogenous coassociation of Trio and Hsc70 in dissociated cortical neurons by indirect immunofluorescence. Neurons were treated with netrin-1, and then fixed and stained with antibodies against Trio and Hsc70 (
<xref ref-type="fig" rid="fig1">Fig. 1 D</xref>
). Confocal microscopy was performed and the mean Pearson’s correlation coefficient between Trio and Hsc70 was generated at both cortical growth cones and axon shafts to assess the degree of coassociation. By this means, we observed a basal colocalization between Trio and Hsc70 in the cortical growth cones (
<italic>r</italic>
= 0.50 ± 0.02;
<xref ref-type="fig" rid="fig1">Fig. 1, D and E</xref>
). Netrin-1 treatment significantly increased the colocalization of Trio and Hsc70 within growth cones after 5 min (
<italic>r</italic>
= 0.62 ± 0.02, P < 0.0007), whereas the colocalization returned to basal levels after 15 min of netrin-1 treatment (
<italic>r</italic>
= 0.47 ± 0.02, P < 0.0001;
<xref ref-type="fig" rid="fig1">Fig. 1, D and E</xref>
). The basal colocalization of Hsc70 and Trio in axon shafts was similar to the growth cones (
<italic>r</italic>
= 0.51 ± 0.02); however, netrin-1 application for either 5 or 15 min resulted in no significant modulation of the association (
<italic>r</italic>
= 0.48 ± 0.03 and
<italic>r</italic>
= 0.42 ± 0.02, P > 0.05;
<xref ref-type="fig" rid="fig1">Fig. 1, F and G</xref>
). In summary, we identified Hsc70 as a novel Trio-associated protein in embryonic cortical tissues and demonstrate that the netrin-1–induced coassociation occurs preferentially in cortical growth cones versus axons.</p>
</sec>
<sec id="s04">
<title>Hsc70 facilitates Trio-dependent Rac1 activation and cortical axon outgrowth in a chaperone-dependent manner</title>
<p>To delineate the regions of Trio permitting the association with Hsc70, GFP-Trio deletion mutants were expressed in HEK293 cells and the interaction with Hsc70 was assessed by coimmunoprecipitation (
<xref ref-type="fig" rid="fig2">Fig. 2, A and B</xref>
). In this assay, full-length GFP-Trio basally associated with endogenous Hsc70, and the C-terminal truncation of Trio, lacking the RhoA GEF and kinase domains resulting in the Trio 1–1813 fragment, did not reduce the association with Hsc70 relative to immunoprecipitation efficiency (
<xref ref-type="fig" rid="fig2">Fig. 2, A–C</xref>
). On the contrary, the shorter fragments of Trio comprising the Sec14 domain (Trio 1–232) or GEFD1-SH3 (Trio 1203–1813) highly associated with Hsc70 (
<xref ref-type="fig" rid="fig2">Fig. 2, B and C</xref>
). Intriguingly, the intermediate fragment containing the Sec14 domain but lacking the GEFD1-SH3 domain (Trio 1–1203) did not associate with Hsc70 in an elevated manner (
<xref ref-type="fig" rid="fig2">Fig. 2, B and C</xref>
). These results suggest that Hsc70 association with Trio may be mediated in part by the N terminus and GEFD1-SH3 of Trio, though both regions may differentially cooperate to accommodate association in the context of full-length or neural Trio isoforms that have intact N-terminal domains (
<xref rid="bib66" ref-type="bibr">Portales-Casamar et al., 2006</xref>
).</p>
<fig id="fig2" fig-type="figure" orientation="portrait" position="float">
<label>Figure 2.</label>
<caption>
<p>
<bold>Hsc70 facilitates Trio-dependent Rac1 activation and cortical axon outgrowth in a chaperone-dependent manner.</bold>
(A) Schematic of Trio domain structure. (B) Trio constructs were transfected into HEK293 cells as indicated. GFP-Trio proteins were IP from cell lysates and Hsc70 coIP with Trio was detected by immunoblotting. TCL, total cell lysates. (C) Densitometric analysis of Hsc70 coIP with GFP-Trio from B. Error bars indicate the SEM (
<italic>n</italic>
= 3; NS, P > 0.05; **, P < 0.001; ***, P < 0.0001; one-way ANOVA, Bonferroni’s multiple comparisons test). (D) HEK293 cells were transfected with the indicated constructs and with increasing amounts of GFP-Hsc70 plasmid. GTP-loaded Rac1 was pulled down from protein lysates by GST-CRIB. GTP-bound Rac1, total Rac1, and the indicated proteins were detected by immunoblotting. (E) Densitometric ratio of GTP-bound Rac1/total Rac1 normalized to the vector control. Error bars indicate the SEM (
<italic>n</italic>
= 4; NS, P > 0.05; *, P < 0.05; ***, P < 0.0001; one-way ANOVA, Bonferroni’s multiple comparisons test). (F) Dissociated E17.5 rat cortical neurons were electroporated with the indicated constructs and a GFP reporter. Bar, 50 µm. (G) The mean axon lengths of GFP
<sup>+</sup>
neurons were calculated manually with Metamorph software (>54 axons per condition from three independent experiments). Error bars indicate the SEM (NS, P > 0.05; **, P < 0.001; ***, P < 0.0001; one-way ANOVA, Bonferroni’s multiple comparisons test). (H) Representative protein expression of electroporated constructs in E17.5 cortical neurons from F and G. WT, wild-type Hsc70; D10N, Hsc70
<sup>D10N</sup>
.</p>
</caption>
<graphic xlink:href="JCB_201505084_Fig2"></graphic>
</fig>
<p>Because the GEFD1 of Trio highly associated with endogenous Hsc70, we next sought to determine whether Hsc70 modulates the Rac1 GEF activity of Trio. We performed pull-down assays with the Cdc42/Rac interactive binding (CRIB) domain of PAK fused to GST to assess the level of active GTP-Rac1 in HEK293 cell extracts (
<xref rid="bib14" ref-type="bibr">Briançon-Marjollet et al., 2008</xref>
;
<xref rid="bib65" ref-type="bibr">Picard et al., 2009</xref>
). As expected, Trio overexpression resulted in a significant increase in Rac1-GTP levels (P = 0.0003), whereas the expression of Hsc70 had no significant effect on Rac-GTP levels alone (P = 0.28;
<xref ref-type="fig" rid="fig2">Fig. 2, D and E</xref>
). Increasing levels of GFP-Hsc70 coexpression with GFP-Trio resulted in enhanced Trio-dependent Rac-GTP induction with low levels of Hsc70 (P < 0.03), whereas higher levels of Hsc70 expression did not significantly augment Trio-induced Rac1 activation (P = 0.44;
<xref ref-type="fig" rid="fig2">Fig. 2, D and E</xref>
). To examine whether Hsc70 chaperone activity is required to modulate the activation of Rac1 by Trio, the dominant-negative and chaperone-dead (ATPase-deficient) Hsc70
<sup>D10N</sup>
was introduced and Rac1-GTP pull-downs were performed. Although GFP-Hsc70
<sup>D10N</sup>
expression alone had no effect on basal Rac-GTP levels, the coexpression of GFP-Hsc70
<sup>D10N</sup>
with Trio abolished Trio-dependent Rac1 activation (
<xref ref-type="fig" rid="fig2">Fig. 2, D and E</xref>
). These results demonstrate that Trio Rac1 GEF activity is regulated by Hsc70 in a chaperone activity-dependent manner.</p>
<p>We have previously reported that exogenous Trio expression in dissociated cortical neurons increases axon length in a Rac1 GEF-dependent manner, thereby serving as a readout of Trio function (
<xref rid="bib22" ref-type="bibr">DeGeer et al., 2013</xref>
). We applied this model to assess whether Hsc70 functionally regulates Trio-dependent axon outgrowth. Dissociated cortical neurons were electroporated with constructs encoding GFP and either GFP-Hsc70 or GFP-Hsc70
<sup>D10N</sup>
alone or with GFP-Trio. After 2 d in culture the neurons were fixed and imaged and the mean axon length of GFP-positive (GFP
<sup>+</sup>
) cells was determined (
<xref ref-type="fig" rid="fig2">Fig. 2, F and G</xref>
). Although expression of GFP-Hsc70 or Trio alone resulted in a significant increase in axon length relative to control cells (P < 0.0001), coexpression of Hsc70 and Trio did not further enhance the mean axon length relative to Trio-expressing neurons (P = 0.97;
<xref ref-type="fig" rid="fig2">Fig. 2, F and G</xref>
). Axon lengths of GFP-Hsc70
<sup>D10N</sup>
–expressing neurons were not significantly different from GFP-expressing neurons, whereas coexpression of GFP-Hsc70
<sup>D10N</sup>
with Trio abrogated Trio-dependent enhanced axon extension (P < 0.0001;
<xref ref-type="fig" rid="fig2">Fig. 2, F and G</xref>
). To rule out possible down-regulation or degradation of proteins, the expression of GFP-tagged proteins was verified by immunoblotting (
<xref ref-type="fig" rid="fig2">Fig. 2 H</xref>
). Altogether, these data demonstrate that Rac-GTP induction by Trio is modulated by Hsc70 chaperone activity, which is required for Trio-stimulated axon extension in cortical neurons.</p>
</sec>
<sec id="s05">
<title>Hsc70 is required for the netrin-1–induced enrichment of Trio at the growth cone periphery</title>
<p>Because Hsc70 is a molecular chaperone, we assessed whether it may function to regulate Trio localization within cortical growth cones. To first establish Trio localization, cortical neurons were treated with netrin-1 for 5 min, and then fixed and stained (
<xref ref-type="fig" rid="fig3">Fig. 3 A</xref>
). Trio and F-actin growth cone localizations were assessed and the intensity of each signal was measured along a 10-µm segment of the distal growth cone (
<xref ref-type="fig" rid="fig3">Fig. 3 A</xref>
, right). Upon netrin-1 treatment, the intensity of Trio shifted to the growth cone periphery compared with untreated growth cones, similar to F-actin (
<xref ref-type="fig" rid="fig3">Fig. 3, A and B</xref>
).</p>
<fig id="fig3" fig-type="figure" orientation="portrait" position="float">
<label>Figure 3.</label>
<caption>
<p>
<bold>Hsc70 is required for the netrin-1–induced enrichment of Trio at the growth cone periphery.</bold>
(A) Dissociated E17.5 rat cortical neurons were left untreated or stimulated with netrin-1 for 5 min before fixation. Endogenous Trio and F-actin localization were assessed by epifluorescence microscopy. Bar, 10 µm. (right) The intensity of Trio and F-actin fluorescence along a 10-µm linescan oriented in the central-to-peripheral axis of the growth cone was calculated using Metamorph software. Trio (green) and F-actin (red) pixel intensities from the adjacent images were plotted against distance. (B) The mean pixel intensity of Trio (green) and F-actin (red) along a 10-µm linescan were plotted against distance as in A. The data shown are the mean of >130 growth cones, from four independent experiments. Error bars indicate the SEM. (C) Dissociated E17.5 rat cortical neurons were electroporated with a GFP-reporter and Hsc70 siRNA. At DIV1, cultures were fixed and levels of endogenous Hsc70 were assessed by indirect immunofluorescence. Bar, 15 µm. (D) The mean pixel intensity of Hsc70 was calculated. Error bars indicate the SEM (
<italic>n </italic>
= 3; GFP-negative neurons = 19; GFP-positive neurons = 20; ***, P < 0.001; unpaired student’s
<italic>t</italic>
test). (E) As in C, dissociated E17.5 rat cortical neurons were electroporated with a GFP-reporter and control siRNA or Hsc70 siRNA and left untreated or treated with netrin-1 for 5 min before fixation. Trio localization was assessed by indirect immunofluorescence. Bars: (main) 25 µm; (inset) 5 µm. (F, left) Schematic of Trio localization showing dispersed localization versus peripheral enrichment. (right) The proportion of electroporated neurons with growth cones harboring a distinct peripheral Trio localization was calculated for each treatment in E (>70 neurons assessed per condition, from four independent experiments). Error bars indicate the SEM (***, P < 0.001; unpaired student’s
<italic>t</italic>
test). (G) As in B, the mean pixel intensity of Trio was calculated along 10-µm linescans oriented in the central-to-peripheral axis of each growth cone from E (
<italic>n</italic>
> 65 growth cones per condition).</p>
</caption>
<graphic xlink:href="JCB_201505084_Fig3"></graphic>
</fig>
<p>We next down-regulated endogenous Hsc70 in neurons by electroporation of synthetic siRNA targeting the 5′-UTR of rat Hsc70 along with GFP cDNA as a transfection marker. Neurons were fixed and immunostained for endogenous Hsc70, and the level of Hsc70 present in GFP
<sup>+</sup>
neurons versus GFP-negative neurons was assessed by indirect immunofluorescence (
<xref ref-type="fig" rid="fig3">Fig. 3, C and D</xref>
). In this manner, we observed a 60% reduction in the total level of Hsc70 in GFP
<sup>+</sup>
neurons relative to nontransfected neurons (
<xref ref-type="fig" rid="fig3">Fig. 3 D</xref>
). Subsequently, Trio localization was assessed within the growth cones of dissociated neurons electroporated with either control or Hsc70 siRNA and stimulated with netrin-1 for 5 min. In the absence of netrin-1, Trio localization was dispersed throughout the growth cones of control neurons with reduced incidence of compartmentalization in the growth cone periphery (15.17 ± 4.30%;
<xref ref-type="fig" rid="fig3">Fig. 3, E–G</xref>
). Similarly, in Hsc70-depleted neurons Trio was largely dispersed throughout the growth cones and a lower proportion displayed a peripheral Trio localization (Periphery: 6.16 ± 0.32%;
<xref ref-type="fig" rid="fig3">Fig. 3, E–G</xref>
). Netrin-1 application for 5 min resulted in an increase in the proportion of growth cones with peripheral Trio localization (59.25 ± 5.46%, P < 0.001;
<xref ref-type="fig" rid="fig3">Fig. 3, E–G</xref>
). In contrast, Hsc70-depleted neurons displayed no significant change in Trio localization (8.33 ± 2.08%, P = 0.23;
<xref ref-type="fig" rid="fig3">Fig. 3, E–G</xref>
). Together with the previous finding that Hsc70 is required for Trio-dependent axon outgrowth, this data supports a hypothesis whereby Hsc70 regulates Trio function in the extending growth cone by regulating Trio localization.</p>
</sec>
<sec id="s06">
<title>Hsc70 associates with a DCC multiprotein signaling complex</title>
<p>Because Trio and DCC coassociate in cortical neurons treated with netrin-1 (
<xref rid="bib22" ref-type="bibr">DeGeer et al., 2013</xref>
), we next examined the interaction between Hsc70 and DCC in cortical tissues. Protein extracts from cerebral cortices treated with netrin-1 for 5, 15, and 30 min were collected; DCC was IP; and the level of Hsc70 coassociating was determined by immunoblotting (
<xref ref-type="fig" rid="fig4">Fig. 4 A</xref>
). Similar to our findings for Trio and Hsc70 interaction, the association of Hsc70 with DCC increased after 5 min of netrin-1 stimulation. However, unlike Trio, DCC remained associated with Hsc70 until after 15 min of treatment (
<xref ref-type="fig" rid="fig4">Fig. 4, A and B</xref>
). The coassociation of Trio and FAK with DCC also increased after 5 min of netrin-1 stimulation and remained elevated until 15 min after treatment (
<xref ref-type="fig" rid="fig4">Fig. 4 A</xref>
). These results show that Hsc70 is part of a DCC–Trio–FAK signaling complex induced by netrin-1 in cortical tissues.</p>
<fig id="fig4" fig-type="figure" orientation="portrait" position="float">
<label>Figure 4.</label>
<caption>
<p>
<bold>Hsc70 associates with a DCC multiprotein signaling complex and supports DCC cell surface localization downstream of netrin-1.</bold>
(A) Isolated E17.5 rat cortices were stimulated with netrin-1 for the indicated times. DCC was IP and the level of Trio, FAK, and Hsc70 coIP with DCC was assessed by immunoblotting. TCL, total cell lysates. (B) Densitometric analysis of Hsc70 coIP with DCC. Error bars indicate SEM (
<italic>n</italic>
= 4; NS, P > 0.05; *, P < 0.05; one-way ANOVA, Dunnett’s multiple comparisons test). (C) Cortical neurons were dissociated and treated with netrin-1 at DIV2, followed by surface DCC isolation. Subsequent IP of lysates depleted of surface DCC were performed and the level of Hsc70 coIP with DCC was assessed by immunoblotting. (bottom) Densitometric analysis of Hsc70 coIP with either surface or intracellular DCC. Error bars indicate SEM (
<italic>n</italic>
= 4; NS, P > 0.05; *, P < 0.05; unpaired student’s
<italic>t</italic>
test). (D) Isolated E17.5 rat cortical neurons were electroporated with the indicated Hsc70 constructs. At DIV1 the neurons were treated with netrin-1 for 15 min before fixation. Surface DCC was assessed by staining with an extracellular DCC antibody under nonpermeabilizing conditions and subsequent fluorescence microscopy. Arrowhead denotes enchrichment and # denotes no enrichment. Bar, 50 µm. (E) The mean pixel intensity ratios of surface DCC at the growth cones relative to axons were calculated using Metamorph software (>54 neurons assessed per condition, from four independent experiments). Error bars indicate the SEM (**, P < 0.01; unpaired student’s
<italic>t</italic>
test). (F) HEK293 cells were transfected with pRK5-DCC with empty vector (EV), GFP-Hsc70, or GFP-Hsc70
<sup>D10N</sup>
and stimulated with netrin-1 for 5 min before lysis. Protein extracts were resolved by SDS-PAGE and the levels of active ERK1/2 and FAK were assessed by immunoblotting. (G and H) Densitometric analysis of pERK1/2 and pFAK (Y861) over total proteins from F. Error bars indicate SEM (
<italic>n</italic>
= 4; *, P < 0.05; unpaired student’s
<italic>t</italic>
test).</p>
</caption>
<graphic xlink:href="JCB_201505084_Fig4"></graphic>
</fig>
<p>Because chaperones function in part by regulating protein trafficking and half-life (
<xref rid="bib32" ref-type="bibr">Hartl et al., 2011</xref>
), we next investigated whether Hsc70 association with DCC occurs at the plasma membrane or intracellularly. Dissociated cortical neurons were cultured for 48 h before netrin-1 treatment and subsequently processed according to a surface labeling protocol using an antibody against the extracellular domain of DCC (
<xref ref-type="fig" rid="fig4">Fig. 4 C</xref>
;
<xref rid="bib40" ref-type="bibr">Kim et al., 2005</xref>
). After surface DCC isolation from cell extracts, the remaining fraction of intracellular DCC was isolated by immunoprecipitation. In this manner, Hsc70 was found to coassociate more with surface DCC relative to the intracellular-enriched DCC pool. Moreover, netrin-1 treatment enhanced the coassociation of Hsc70 with surface DCC, whereas treatment did not significantly affect Hsc70 binding with intracellular DCC relative to DCC immunoprecipitation efficiency (
<xref ref-type="fig" rid="fig4">Fig. 4 C</xref>
). Collectively, these data demonstrate that Hsc70 is associated with DCC signaling complexes in the developing cortex and that Hsc70 association is stronger with surface DCC after netrin-1 treatment.</p>
</sec>
<sec id="s07">
<title>Hsc70 chaperone activity supports surface DCC enrichment in cortical growth cones</title>
<p>We next investigated whether Hsc70 influences DCC surface localization in growth cones downstream of netrin-1. To assess this, dissociated cortical neurons expressing GFP-Hsc70 or the dominant-negative, ATPase-dead GFP-Hsc70
<sup>D10N</sup>
were treated with netrin-1 for 15 min before fixation. The levels of surface DCC were assessed by indirect immunofluorescence under nonpermeabilizing conditions using antibodies against the extracellular domain of DCC (
<xref ref-type="fig" rid="fig4">Fig. 4, D and E</xref>
). In this manner, we observed that the enrichment of surface DCC at the growth cones of GFP-Hsc70– or GFP-Hsc70
<sup>D10N</sup>
–expressing neurons was indistinguishable from control neurons (
<xref ref-type="fig" rid="fig4">Fig. 4, D and E</xref>
). Although netrin-1 treatment resulted in a maintained enrichment of surface DCC intensity at the growth cones of both control and GFP-Hsc70–expressing neurons, the enrichment of surface DCC at the growth cones of GFP-Hsc70
<sup>D10N</sup>
–expressing neurons was significantly reduced (P = 0.01;
<xref ref-type="fig" rid="fig4">Fig. 4, D and E</xref>
). Notably, the netrin-1–induced activation of FAK and ERK pathways were not altered in HEK293 cells coexpressing Hsc70
<sup>D10N</sup>
, suggesting that regulation of surface DCC localization may be independent of FAK and ERK signaling (
<xref ref-type="fig" rid="fig4">Fig. 4, F</xref>
­–H). Altogether, these results show that the stabilized enrichment of DCC at the growth cone plasma membrane downstream of netrin-1 requires Hsc70 chaperone activity.</p>
</sec>
<sec id="s08">
<title>Hsc70 is required for netrin-1–mediated cortical axon outgrowth and Rac1 activation</title>
<p>We next explored the role of Hsc70 in netrin-1–induced axon outgrowth of dissociated cortical neurons. Cortical neurons were electroporated with control or Hsc70 siRNA together with GFP cDNA and stimulated with either netrin-1 or glutamate for 24 h before fixation (
<xref ref-type="fig" rid="fig5">Fig. 5, A and B</xref>
). Although depletion of endogenous Hsc70 did not affect basal cortical axon lengths, netrin-1 treatment was insufficient to stimulate axon extension in these neurons (
<xref ref-type="fig" rid="fig5">Fig. 5, A and B</xref>
). In contrast, Hsc70-depleted neurons remained responsive to glutamate (P < 0.03), confirming that Hsc70 depletion does not impair all mechanisms of induced axon outgrowth (
<xref ref-type="fig" rid="fig5">Fig. 5, A and B</xref>
). To verify the function of Hsc70 in netrin-1–mediated axon outgrowth, siRNA-resistant GFP-Hsc70 or GFP-Hsc70
<sup>D10N</sup>
were expressed in Hsc70-depleted cortical neurons and stimulated with netrin-1 (
<xref ref-type="fig" rid="fig5">Fig. 5, A and C</xref>
). Reexpression of Hsc70 was sufficient to restore netrin-1–induced cortical axon extension (P < 0.05), whereas expression of the chaperone-dead Hsc70
<sup>D10N</sup>
did not rescue netrin-1 sensitivity relative to untreated neurons (P = 0.45;
<xref ref-type="fig" rid="fig5">Fig. 5, A and C</xref>
).</p>
<fig id="fig5" fig-type="figure" orientation="portrait" position="float">
<label>Figure 5.</label>
<caption>
<p>
<bold>Hsc70 is required for netrin-1–mediated cortical axon outgrowth and Rac1 activation.</bold>
(A) Dissociated E17.5 rat cortical neurons were electroporated with control siRNA or Hsc70 siRNA with a GFP reporter construct or the indicated GFP constructs. At DIV1, neurons were stimulated with netrin-1 or glutamate for 24 h. Bar, 50 µm. (B and C) The mean axon lengths of GFP
<sup>+</sup>
neurons from A were calculated manually using Metamorph software (>50 neurons assessed per condition, from at least three independent experiments). Error bars indicate the SEM (****, P < 0.0001; one-way ANOVA, Fisher’s least significant difference post-test). (D) E17.5 rat cortical neurons were depleted of endogenous Trio and Hsc70 by siRNA and reexpressed both with siRNA-resistant Hsc70 and Trio. (E and F) The mean axon lengths of GFP
<sup>+</sup>
neurons were calculated as in B (>70 neurons assessed per condition, from at least three independent experiments). Error bars indicate the SEM (*, P < 0.05; unpaired
<italic>t</italic>
test). (G) HEK293 cells were transfected with pRK5-DCC with empty vector (EV), GFP-Hsc70, or GFP-Hsc70
<sup>D10N</sup>
and stimulated with netrin-1 for 5 min. GTP-loaded Rac1 was pulled down from protein lysates by GST-CRIB. GTP-bound Rac1 (top), total Rac1, and the indicated proteins were detected by immunoblotting. TCL, total cell lysates. (H) Densitometric ratio of GTP-bound Rac1 to total Rac1 normalized to DCC. Error bars indicate the SEM (
<italic>n</italic>
= 6; *, P < 0.05; one-way ANOVA, Bonferroni’s multiple comparisons test).</p>
</caption>
<graphic xlink:href="JCB_201505084_Fig5"></graphic>
</fig>
<p>To determine whether Hsc70 functions upstream or downstream of Trio during netrin-1–induced axon outgrowth, cortical neurons were depleted of endogenous Hsc70 or Trio (
<xref rid="bib22" ref-type="bibr">DeGeer et al., 2013</xref>
) and expression was rescued with siRNA-resistant GFP-Trio or GFP-Hsc70 cDNAs (
<xref ref-type="fig" rid="fig5">Fig. 5 D</xref>
). In this context, GFP-Hsc70 overexpression was not sufficient to restore netrin-1–induced axon extension in Trio-depleted neurons (P = 0.75;
<xref ref-type="fig" rid="fig5">Fig. 5, D and E</xref>
). Conversely, when neurons were depleted of endogenous Hsc70, the overexpression of GFP-Trio restored the sensitivity of these neurons to netrin-1 and they extended longer axons (P = 0.047;
<xref ref-type="fig" rid="fig5">Fig. 5, D and F</xref>
). These results demonstrate that Hsc70 is specifically required for netrin-1–mediated cortical axon outgrowth by functioning upstream of Trio. This is in agreement with our findings that Hsc70 potentiates Trio-dependent Rac1 activation (
<xref ref-type="fig" rid="fig2">Fig. 2 C</xref>
), which is a requisite for netrin-1–induced axon extension (
<xref rid="bib48" ref-type="bibr">Li et al., 2002</xref>
;
<xref rid="bib14" ref-type="bibr">Briançon-Marjollet et al., 2008</xref>
).</p>
<p>To examine whether Hsc70 contributes to netrin-1–induced Rac1 activation, we coexpressed either Hsc70 or Hsc70
<sup>D10N</sup>
with DCC in HEK293 cells. Upon stimulation with netrin-1 for 5 min, we assessed the levels of Rac1-GTP by pull-down assays. In these studies, netrin-1 treatment of Hsc70-expressing cells led to an activation of Rac1 similar to control cells expressing DCC alone, whereas expression of Hsc70
<sup>D10N</sup>
specifically inhibited netrin-1–stimulated Rac1 activation relative to the netrin-1–treated control (P > 0.05;
<xref ref-type="fig" rid="fig5">Fig. 5, G and H</xref>
). Therefore, Hsc70 chaperone activity is necessary for netrin-1 to stimulate Rac1 activity. We propose that Hsc70 chaperone activity acting upstream of Trio during netrin-1–induced cortical axon extension is essential through its regulation of Trio Rac1 GEF activity.</p>
</sec>
<sec id="s09">
<title>Hsc70 is required for netrin-1–dependent attraction of embryonic cortical neurons</title>
<p>We have previously reported that Trio-null embryos have defective neural projections within the CNS, notably the netrin-1–dependent ventral projections of spinal commissural axons and DCC-positive projections of the corpus callosum and internal capsule (
<xref rid="bib14" ref-type="bibr">Briançon-Marjollet et al., 2008</xref>
). In each case, a deficit in axon guidance was observed as the projected fibers were dispersed over a larger area compared with wild-type embryos (
<xref rid="bib14" ref-type="bibr">Briançon-Marjollet et al., 2008</xref>
). Because Trio contributes to axon guidance in vivo (
<xref rid="bib14" ref-type="bibr">Briançon-Marjollet et al., 2008</xref>
), we next evaluated the contribution of Hsc70 to netrin-1–induced chemoattraction of cortical neurons. To assess this proposed function, we used an in vitro axon guidance assay based on the Dunn chamber (
<xref rid="bib82" ref-type="bibr">Yam et al., 2009</xref>
). E17.5 rat cortical neurons electroporated with control or Hsc70 siRNA with GFP cDNA were exposed to either a vehicle (PBS) or netrin-1 gradient in the Dunn chamber for at least 90 min at 2 d in vitro (DIV2;
<xref ref-type="fig" rid="fig6">Fig. 6, A and B</xref>
). Notably, a minimum of 10-µm displacement threshold was enforced for the calculated trajectory of the growth cone to be considered a “turn.” As an internal control, naive cortical neurons (nonelectroporated) were also assessed. Although the mean turning angles of each PBS-treated condition did not vary significantly (P > 0.2), netrin-1 induced a robust attractive turning response for either the naive or control siRNA-electroporated neurons, resulting in turning angles of 11.9° ± 4.74° (P < 0.005) and 10.67°± 4.29° (P < 0.02), respectively (
<xref ref-type="fig" rid="fig6">Fig. 6, B and C</xref>
). Hsc70-depleted cortical neurons, however, were not attracted to the netrin-1 gradient in the chamber relative to the PBS controls, as the turning angle was reduced to −6.25° ± 3.03° (P > 0.07;
<xref ref-type="fig" rid="fig6">Fig. 6, B and C</xref>
). Importantly, exposure of neurons to the netrin-1 gradient did not significantly affect the displacement of the turning growth cones during the imaging period. However, the displacement of the Hsc70-depleted neurons was markedly reduced compared with the control siRNA or naive control neurons (
<xref ref-type="fig" rid="fig6">Fig. 6 D</xref>
). In fact, the mean displacement of all growth cones (including those excluded from turn calculations) of Hsc70-depleted neurons was fourfold reduced compared with control growth cones (
<xref ref-type="fig" rid="fig6">Fig. 6, E and F</xref>
). Furthermore, the proportion of growth cones that underwent temporal retraction or collapsed all together was much higher in Hsc70-depleted cortical growth cones (
<xref ref-type="fig" rid="fig6">Fig. 6, G and H</xref>
). These results demonstrate that Hsc70 is required for netrin-1–dependent attraction of cortical neurons in vitro and that Hsc70 supports axon extension dynamics.</p>
<fig id="fig6" fig-type="figure" orientation="portrait" position="float">
<label>Figure 6.</label>
<caption>
<p>
<bold>Hsc70 is required for netrin-1–dependent attraction of embryonic cortical neurons.</bold>
Control (siCTL) or Hsc70 siRNA (siHsc70) was electroporated with a GFP reporter plasmid in E17.5 cortical neurons. At DIV2, neurons were exposed to vehicle PBS or a 200-ng/ml netrin-1 VI-V (net) gradient in Dunn chamber turning assays. (A) Video time-lapse imaging of control neurons exposed to a gradient for 90 min. Bar, 20 µm. (B) Rose histograms represent the distribution of turning angles of the cortical neurons. Green or pink indicate positive or negative turning angles, respectively. (C) Mean turning angles for each condition (>50 axons per condition, from at least three independent experiments). Error bars indicate the SEM (NS, P > 0.05; *, P < 0.05; **, P < 0.01; one-way ANOVA, Newman-Keuls multiple comparisons test). (D) The mean displacement of turning cortical growth cones over the 90-min imaging period. Error bars indicate the SEM (
<italic>n</italic>
> 50 axons per condition; NS, P > 0.05; ***, P < 0.001; one-way ANOVA, Newman-Keuls multiple comparisons test). (E) The mean displacement of all cortical growth cones over the 90-min imaging period (>70 axons per condition, from at least three independent experiments). Error bars indicate the SEM (***, P < 0.001; unpaired student’s
<italic>t</italic>
test). (F) The distribution of growth cone displacements from E. (G) The proportion of growth cones from E with at least one retraction event. (H) The proportion of neurons from E with collapsed growth cones.</p>
</caption>
<graphic xlink:href="JCB_201505084_Fig6"></graphic>
</fig>
</sec>
<sec id="s10">
<title>Hsc70 chaperone activity is required for radial migration and callosal projections in the embryonic neocortex</title>
<p>Because the netrin-1/DCC signaling axis is important for corpus callosum formation (
<xref rid="bib34" ref-type="bibr">Izzi and Charron, 2011</xref>
;
<xref rid="bib26" ref-type="bibr">Fothergill et al., 2014</xref>
), we next examined the role of Hsc70 on netrin-1–dependent axonal projections in vivo
<italic>.</italic>
Embryonic telencephalons were transfected with pCIG2 vectors expressing GFP alone or GFP along with Hsc70 or Hsc70
<sup>D10N</sup>
by in utero electroporation at E14.5, when cortical progenitors exclusively generate upper layer commissural projection neurons (
<xref rid="bib44" ref-type="bibr">Langevin et al., 2007</xref>
). After electroporation, embryos were left to develop for 3 d in utero before collection and processing. Coronal sections of E17.5 embryos were generated and GFP
<sup>+</sup>
commissural projections were assessed (
<xref ref-type="fig" rid="fig7">Fig. 7 A</xref>
). Whereas GFP
<sup>+</sup>
neurons expressing either the pCIG2 vector or Hsc70 all projected toward the corpus callosum as expected (
<italic>n</italic>
= 6 and 5 embryos, respectively;
<xref ref-type="fig" rid="fig7">Fig. 7 A</xref>
), callosal projections emanating from Hsc70
<sup>D10N</sup>
-expressing neurons were impaired and failed to reach the corpus callosum (
<italic>n</italic>
= 11 embryos;
<xref ref-type="fig" rid="fig7">Fig. 7 A</xref>
, asterisk). This result is in agreement with studies showing that netrin-1 and DCC are required in vivo for corpus callosum formation (
<xref rid="bib71" ref-type="bibr">Serafini et al., 1996</xref>
;
<xref rid="bib25" ref-type="bibr">Fazeli et al., 1997</xref>
;
<xref rid="bib26" ref-type="bibr">Fothergill et al., 2014</xref>
). Furthermore, the radial migration of Hsc70
<sup>D10N</sup>
-expressing neurons toward the cortical plate was reduced (42.8 ± 11.2%) relative to pCIG2- or Hsc70-expressing neurons (68.17 ± 7.31% and 65.83 ± 14.84%, respectively;
<xref ref-type="fig" rid="fig7">Fig. 7, A and B</xref>
). Because neurons radially migrating through the intermediate zone are polarized by extending an apical or basal process (
<xref rid="bib43" ref-type="bibr">Kriegstein and Noctor, 2004</xref>
), we next assessed the morphology of neurons expressing Hsc70
<sup>D10N</sup>
at higher magnification (
<xref ref-type="fig" rid="fig7">Fig. 7, C and D</xref>
). Within the intermediate zone, significantly more GFP
<sup>+</sup>
neurons expressing Hsc70
<sup>D10N</sup>
remained nonpolarized (32.6 ± 14.0% unpolarized Hsc70
<sup>D10N</sup>
neurons versus 5.23 ± 3.64% unpolarized control neurons;
<xref ref-type="fig" rid="fig7">Fig. 7, C–E</xref>
). Collectively, these results indicate that Hsc70 chaperone activity supports callosal projections and radial migration of neurons in vivo.</p>
<fig id="fig7" fig-type="figure" orientation="portrait" position="float">
<label>Figure 7.</label>
<caption>
<p>
<bold>Hsc70 chaperone activity supports radial neuronal migration and callosal projections in the embryonic neocortex.</bold>
(A) In utero electroporation of E14.5 mouse embryos with pCIG2 control vector or pCIG2 constructs encoding Hsc70 or Hsc70
<sup>D10N</sup>
. Representative brightfield images of E17.5 coronal brain sections, stained with anti-GFP (green) and the nuclear marker DAPI (blue). Asterisk denotes impaired callosal projections. CP, cortical plate; IZ, intermediate zone; VZ/SVZ, ventricular zone/subventricular zone. Bar, 200 µm. (B) Quantification of the distribution of GFP
<sup>+</sup>
neurons in the cortex (pCIG2: 372 neurons from six embryos; Hsc70: 390 neurons from five embryos; Hsc70
<sup>D10N</sup>
: 850 neurons from 11 embryos). Error bars indicate the SEM (*, P < 0.05; ***, P < 0.001; unpaired student’s
<italic>t</italic>
test). (C) Morphological comparison of Hsc70
<sup>D10N</sup>
-expressing neurons in the intermediate zone relative to vector control neurons. Bar, 50 µm. (D) High magnification 3D rendering of representative GFP
<sup>+</sup>
neurons in the intermediate zone from C revealing impaired neuronal polarization with Hsc70
<sup>D10N</sup>
expression. Left, front view; right: side view. Arrows indicate direction of radial migration. Arrowheads indicate leading processes of migrating GFP
<sup>+</sup>
neurons. (E) Quantification of the proportion of GFP
<sup>+</sup>
neurons in the intermediate zone with polarized morphology (pCIG2: 288 neurons from seven embryos; Hsc70
<sup>D10N</sup>
: 416 neurons from seven embryos). Error bars indicate the SEM (***, P < 0.001; unpaired student’s
<italic>t</italic>
test).</p>
</caption>
<graphic xlink:href="JCB_201505084_Fig7"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="discussion" id="s11">
<title>Discussion</title>
<p>Our data presented here outline a novel function for the molecular chaperone Hsc70 in regulating the Rac1 GEF Trio during netrin-1–mediated cortical axon growth and guidance (summarized in
<xref ref-type="fig" rid="fig8">Fig. 8</xref>
). We demonstrate that Hsc70 and Trio associate dynamically downstream of netrin-1 in cortical neurons and that the function of this association is dependent on Hsc70 chaperone activity. We support this finding with biochemical evidence highlighting that Hsc70 chaperone activity is required for Rac1 activation by Trio. Moreover, we correlate this function with the proper relocalization of Trio and cell surface DCC within cortical growth cones downstream of netrin-1. Hsc70 is a constitutive chaperone that is enriched in the developing CNS and constitutes 2–3% of total protein of the rat spinal cord (
<xref rid="bib3" ref-type="bibr">Aquino et al., 1993</xref>
;
<xref rid="bib54" ref-type="bibr">Loones et al., 2000</xref>
). Despite being 86% homologous to Hsp70, Hsc70 is preferentially expressed in neurons whereas Hsp70 is enriched in glial cells in the unstressed mouse embryo (
<xref rid="bib54" ref-type="bibr">Loones et al., 2000</xref>
). Hsc70 is an ATP-dependent chaperone that carries out various housekeeping chaperone functions; it assists in protein folding, translocation, chaperone-mediated autophagy, and prevention of protein aggregation (
<xref rid="bib19" ref-type="bibr">Daugaard et al., 2007</xref>
).</p>
<fig id="fig8" fig-type="figure" orientation="portrait" position="float">
<label>Figure 8.</label>
<caption>
<p>
<bold>Model of Trio regulation by Hsc70 during netrin-1/DCC signaling.</bold>
Netrin-1/DCC engagement results in recruitment of Trio and Hsc70 to DCC signaling complexes (a). Hsc70 chaperone activity is required for netrin-1–induced activation of Rac1 (b), surface DCC enrichment at the growth cone plasma membrane (c), and axon outgrowth and guidance downstream of netrin-1 (d). Therefore, we propose that Hsc70-mediated regulation of Trio is essential for the stability of the DCC/Trio signaling complex at the cell surface of growth cones to mediate netrin-1–induced cortical axon outgrowth and guidance.</p>
</caption>
<graphic xlink:href="JCB_201505084_Fig8"></graphic>
</fig>
<p>Our study is the first to describe Hsc70-mediated regulation of a Rac1 GEF in neurons to date. In earlier studies, Hsc70 was reported to associate with other Rho GEFs including the protooncogenes Dbl and Plekhg4 (
<xref rid="bib37" ref-type="bibr">Kauppinen et al., 2005</xref>
;
<xref rid="bib30" ref-type="bibr">Gupta et al., 2013</xref>
). Similar to our findings for Trio,
<xref rid="bib37" ref-type="bibr">Kauppinen et al. (2005)</xref>
demonstrated that the association of proto-Dbl with Hsc70 was mediated by the N terminus and Pleckstrin homology domain of the GEFD of proto-Dbl (
<xref rid="bib37" ref-type="bibr">Kauppinen et al., 2005</xref>
). In direct contrast to our results, however, Hsc70 was identified as a negative regulator of proto-Dbl–induced RhoA GEF activity (
<xref rid="bib37" ref-type="bibr">Kauppinen et al., 2005</xref>
). Although future studies are required to determine the precise mechanism of Hsc70-mediated regulation of Rho GEFs, our work highlights the exciting possibility that Hsc70 may serve as a universal regulator of Rho GEFs in specific cellular contexts. Elevated Hsc70 expression occurs in various tissues in which Rac1 is known to function, including in the neural tube during embryogenesis and in various types of cancer (
<xref rid="bib54" ref-type="bibr">Loones et al., 2000</xref>
;
<xref rid="bib69" ref-type="bibr">Rohde et al., 2005</xref>
;
<xref rid="bib23" ref-type="bibr">Duquette and Lamarche-Vane, 2014</xref>
). Although Rac1 expression is elevated in primary tumors and Rac1 activation is required for cancer cell migration and metastasis (
<xref rid="bib10" ref-type="bibr">Bid et al., 2013</xref>
), the dysregulation of Rac1 and Hsc70 has not yet been linked in any biological system. Currently, pharmacological inhibitors of Hsc70/Hsp70 are being tested as anti-cancer agents and correlate with a function of Hsc70 in regulating Rac1-dependent processes such as cell proliferation and migration (
<xref rid="bib36" ref-type="bibr">Kaiser et al., 2011</xref>
;
<xref rid="bib5" ref-type="bibr">Balaburski et al., 2013</xref>
).</p>
<p>Furthermore, Rac1 signaling is required for neuronal polarization and migration during neocortex development (
<xref rid="bib4" ref-type="bibr">Azzarelli et al., 2015</xref>
). Whereas wild-type Rac1 enhances neuronal migration, expression of dominant-negative or constitutively active Rac1 results in accumulation of neurons in the intermediate zone and failure to extend leading processes (
<xref rid="bib42" ref-type="bibr">Konno et al., 2005</xref>
;
<xref rid="bib83" ref-type="bibr">Yang et al., 2012</xref>
). Because Hsc70 is required for Trio-dependent Rac1 activation, the impeded polarization and radial migration of dominant-negative Hsc70
<sup>D10N</sup>
-expressing neurons may be in part caused by dysregulation of Rac1. Normally, immature neurons go through a multipolar stage before becoming radially polarized during migration to the upper cortical layers (
<xref rid="bib61" ref-type="bibr">Nadarajah et al., 2001</xref>
), thus the reduced polarization of Hsc70
<sup>D10N</sup>
-expressing neurons is not a result of delayed neuronal differentiation. Further study should focus on whether this is because of Hsc70’s function in regulating Rac1-dependent cytoskeletal dynamics or by a complementary component of cell migration. Indeed the endocytic machinery components clathrin and dynamin are also important for cortical neuron radial migration in vivo by supporting cell soma translocation (
<xref rid="bib74" ref-type="bibr">Shieh et al., 2011</xref>
). Because Hsc70 is required for endocytosis and clathrin uncoating via dynamin regulation (
<xref rid="bib15" ref-type="bibr">Chang et al., 2002</xref>
) it is likely that Hsc70 supports neuronal migration via both cytoskeletal and endosomal mechanisms.</p>
<p>Because the netrin-1–induced association of Hsc70 with DCC is prolonged in comparison to that with Trio alone, it suggests that Hsc70 may have an additional or downstream function in the DCC signaling complex independent of its regulation of Trio Rac1 GEF activity. The preferential association of Hsc70 with surface DCC further implies that Hsc70 in part regulates surface DCC localization or stability. Indeed we show that Hsc70 chaperone activity is required for the sustained enrichment of surface DCC in cortical growth cones downstream of netrin-1. Recruitment of DCC to the plasma membrane is important for netrin-1–induced axon guidance in cortical neurons. To date, a few mechanisms have been demonstrated that support netrin-1–induced DCC surface targeting from intracellular pools, including depolarization, activation of protein kinase A, and RhoA inhibition (
<xref rid="bib12" ref-type="bibr">Bouchard et al., 2004</xref>
,
<xref rid="bib13" ref-type="bibr">2008</xref>
;
<xref rid="bib59" ref-type="bibr">Moore et al., 2008</xref>
). We have previously reported that Trio supports the growth cone enrichment of surface DCC downstream of netrin-1 in cortical neurons (
<xref rid="bib22" ref-type="bibr">DeGeer et al., 2013</xref>
). The Hsc70 ATPase activity is required for the stabilized enrichment of surface DCC at cortical growth cones treated with netrin-1. Therefore, we postulate that Hsc70 and Trio function by supporting the enrichment of surface DCC or permitting the mobilization of DCC from intracellular pools to the plasma membrane to allow a proper chemoattractive response of growth cones to netrin-1 (
<xref ref-type="fig" rid="fig8">Fig. 8</xref>
). Although further studies are required to delineate how Trio and Hsc70 contribute to surface DCC localization, one interesting possibility is local exocytosis of DCC-embedded vesicles. Previous studies report that netrin-1–induced axon outgrowth is dependent on exocytosis-driven plasma membrane insertion at the leading edge of the extending growth cone (
<xref rid="bib18" ref-type="bibr">Cotrufo et al., 2011</xref>
;
<xref rid="bib81" ref-type="bibr">Winkle et al., 2014</xref>
). Exocytosis and membrane fusion are mediated by the SNARE complex comprising a v-SNARE such as vesicle-associated membrane protein 2 and plasma membrane t-SNAREs, SNAP25 and syntaxin-1 (
<xref rid="bib77" ref-type="bibr">Südhof and Rothman, 2009</xref>
). DCC forms a complex with syntaxin-1 downstream of netrin-1, and in this way it induces the local exocytosis of vesicle-associated membrane protein 2–expressing vesicles during axon outgrowth (
<xref rid="bib18" ref-type="bibr">Cotrufo et al., 2011</xref>
). Furthermore, the E3 ubiquitin ligase TRIM9 associates directly with both SNAP-25 and DCC and promotes netrin-1–dependent axon branching in cortical neurons (
<xref rid="bib81" ref-type="bibr">Winkle et al., 2014</xref>
). Interestingly, Hsc70 is closely linked to the exocytotic machinery at synapses by associating with vesicular cysteine-string protein α and SNAP25, enabling a SNARE complex formation at the plasma membrane (
<xref rid="bib72" ref-type="bibr">Sharma et al., 2011</xref>
). In addition, another TRIM protein, TRIM22, has been recently connected to the Hsc70 partner C terminus of Hsc70-interacting protein (
<xref rid="bib27" ref-type="bibr">Gao et al., 2013</xref>
), suggesting that Hsc70 may contribute in part to DCC-driven exocytosis through a TRIM9/SNAP25-dependent mechanism.</p>
<p>Although some evidence supports the ability for neurons to regenerate and form functional contacts after CNS injury, our knowledge of the cellular mechanisms underlying these processes and treatments for these conditions remains incomplete (
<xref rid="bib57" ref-type="bibr">Mar et al., 2014</xref>
). Dysfunction of Hsc70 has been implicated in various neurodegenerative disorders including Huntington’s, Parkinson’s, and Alzheimer’s diseases (
<xref rid="bib75" ref-type="bibr">Shimura et al., 2004</xref>
;
<xref rid="bib41" ref-type="bibr">Koga et al., 2011</xref>
;
<xref rid="bib80" ref-type="bibr">Turturici et al., 2011</xref>
;
<xref rid="bib64" ref-type="bibr">Pemberton and Melki, 2012</xref>
). To our knowledge this is the first study to implicate Hsc70 in the regulation of Rac1-dependent cellular processes, raising the possibility that Rac1 dysregulation in neurons contributes to the pathophysiology of neurodegenerative diseases (
<xref rid="bib21" ref-type="bibr">DeGeer and Lamarche-Vane, 2013</xref>
). Indeed, Hsc70 expression is induced in response to cerebral ischemia, thus supporting a role for Hsc70 in axon regeneration and repair (
<xref rid="bib60" ref-type="bibr">Muranyi et al., 2005</xref>
;
<xref rid="bib16" ref-type="bibr">Chen et al., 2007</xref>
). It will be of great interest to investigate whether selectively augmenting Hsc70 chaperone activity will promote nerve regrowth in the context of neurodegeneration.</p>
</sec>
<sec sec-type="materials|methods" id="s12">
<title>Materials and methods</title>
<sec id="s13">
<title>DNA constructs, antibodies, and reagents</title>
<p>pEGFP-Trio and deletion mutants, pEGFP-Hsc70, pEGFP-Hsc70
<sup>D10N</sup>
, pRK5-DCC, and pCIG2 constructs have been described previously (
<xref rid="bib24" ref-type="bibr">Estrach et al., 2002</xref>
;
<xref rid="bib48" ref-type="bibr">Li et al., 2002</xref>
;
<xref rid="bib31" ref-type="bibr">Hand et al., 2005</xref>
;
<xref rid="bib14" ref-type="bibr">Briançon-Marjollet et al., 2008</xref>
;
<xref rid="bib6" ref-type="bibr">Bański et al., 2010</xref>
). Hsc70 and Hsc70
<sup>D10N</sup>
cDNA were subcloned into the pCIG2 vector by PCR amplification using the forward primer (5′-CAGCGCTCGAGGCAACCATGTCTAAGGGACC-3′) and reverse primer (5′-CTTGAATTCTTAATCCACCTCTTCAATGG-3′) using standard cloning procedures. The rabbit polyclonal anti-TrioMTP antibody was generated by J. Boudeau (Centre de Recherche de Biochimie Macromoléculaire, Montpellier, France) as previously described using an antigen encompassing residues 1581–1849 of Trio-C isoform (
<xref rid="bib22" ref-type="bibr">DeGeer et al., 2013</xref>
). Additional antibodies used were as follows: mouse anti-DCC
<sub>INT</sub>
(clone G97-449; BD), mouse anti-DCC
<sub>EXT</sub>
(clone AF5; EMD Millipore), rabbit anti-pERK1/2 (pThr202/pThr204) and anti-ERK1/2 (Cell Signaling Technology), rabbit anti-pFAK (pY861) and anti-FAK (Invitrogen), rabbit anti-GFP (Invitrogen), mouse anti-Hsc70 (clone B-6; Santa Cruz Biotechnology, Inc.), rabbit anti-Hsp70 (Enzo Life Sciences), mouse anti-Rac1 (BD), mouse anti-tubulin (EMD Millipore), and goat anti–rabbit Alexa Fluor 488 and goat anti–mouse Cy3 (Molecular Probes). Recombinant chick netrin-1 was secreted by 293-EBNA cells stably expressing chick netrin-1 (
<xref rid="bib70" ref-type="bibr">Serafini et al., 1994</xref>
) tagged at its C terminus with the myc epitope and was purified by heparin affinity chromatography (GE Healthcare).</p>
</sec>
<sec id="s14">
<title>Cell culture and transfection</title>
<p>HEK293 cells were cultured at 37°C in DMEM (Wisent Bioproducts) supplemented with 10% FBS (Wisent Bioproducts), 2 mM
<sc>l</sc>
-glutamine, penicillin, and streptomycin (Invitrogen) under humidified conditions with 5% CO
<sub>2</sub>
. Cells were transfected with the indicated constructs using linear polyethylenimine (PolySciences) at a 1:10 ratio (cDNA/polyethylenimine) as described previously (
<xref rid="bib22" ref-type="bibr">DeGeer et al., 2013</xref>
).</p>
</sec>
<sec id="s15">
<title>Primary cortical neuron culture and electroporation</title>
<p>Cortical neurons from E17.5 rat embryos were dissociated mechanically and electroporated with cDNA constructs or siRNAs as indicated using the Amaxa Rat Neuron Nucleofector kit (Lonza). After electroporation, neurons were plated on either poly-
<sc>d</sc>
-lysine (0.1 mg/ml; Sigma-Aldrich)–coated dishes or poly-
<sc>l</sc>
-lysine (0.1 mg/ml, Sigma-Aldrich)–treated coverslips in 24-well plates at a density of 200,000 cells/well. Neurons were cultured in attachment medium (DMEM, 10% FBS, supplemented with 2 mM
<sc>l</sc>
-glutamine, penicillin, and streptomycin [Invitrogen]) under humidified conditions with 5% CO
<sub>2</sub>
. After 1.5 h, the medium was replaced with maintenance medium (Neurobasal-A medium [Invitrogen], supplemented with 2% B27 [Invitrogen], 1%
<sc>l</sc>
-glutamine, penicillin, and streptomycin [Invitrogen]). After DIV1 or 2, the neurons were treated for the indicated times with recombinant netrin-1 (500 ng/ml). Down-regulation of endogenous Hsc70 was achieved by electroporating dissociated E17.5 rat cortical neurons with 150 nM synthetic Hsc70 siRNAs designed to target the 5′-UTR of the rat Hsc70 mRNA (5′-UCUGUGUGGUCUCGUCAUCUU-3′; Thermo Fisher Scientific) versus control siRNA (Silencer #1; Ambion) together with 4 µg of pmaxGFP vector (Lonza) used as a reporter. Only GFP-expressing neurons were assessed. The siRNA-resistant GFP-Hsc70 or GFP-Hsc70
<sup>D10N</sup>
plasmids were coelectroporated where indicated, and expression of the exogenous proteins was verified by Western blotting (
<xref ref-type="fig" rid="fig2">Fig. 2 H</xref>
). Similarly, down-regulation of Trio was achieved by electroporating 300 nM of synthetic Trio siRNA (5′-GAACAUGAUUGACGAGCAUUU-3′; Thermo Fosher Scientific) as previously described (
<xref rid="bib22" ref-type="bibr">DeGeer et al., 2013</xref>
).</p>
</sec>
<sec id="s16">
<title>Cortical tissue culture</title>
<p>Cortical tissues were extracted from E17.5 rat embryos. After light mechanical dissociation, tissues were transferred to a 4-well plate containing prewarmed maintenance medium and allowed to equilibrate to 37°C. Immediately after netrin-1 stimulation, samples were transferred to ice, collected, and processed as described previously (
<xref rid="bib22" ref-type="bibr">DeGeer et al., 2013</xref>
).</p>
</sec>
<sec id="s17">
<title>Mass spectrometry analysis</title>
<p>E17.5 rat cortical tissue was treated with 500 ng/ml netrin-1 for 5 min, and protein lysates were collected and subsequently probed with anti-Trio antibodies conjugated to protein A–Sepharose beads. Antibody–protein complexes were resolved by SDS-PAGE, and proteins were visualized by silver staining. A prominent band of ∼65–75 kD was extracted from the gel and proteins were digested with trypsin and chymotrypsin. Peptide samples underwent mass spectrometric analysis (QTRAP4000 and MALDI-TOF, Genome Innovation Centre, Montreal, Canada). Mascot searches of resulting sequences were performed using the UniProt database with a rat filter and identified five peptides corresponding to Hsc70.</p>
</sec>
<sec id="s18">
<title>Immunoprecipitation and immunoblotting</title>
<p>Cortical tissues were lysed in buffer containing 20 mM Hepes, pH 7.5, 100 mM NaCl, 10% glycerol, 1% Triton X-100, 20 mM sodium fluoride, 1 mM sodium orthovanadate, 1 mM PMSF, and 1 µg/ml aprotinin and leupeptin (BioShop). Protein lysates were centrifuged at 10,000
<italic>g</italic>
for 5 min at 4°C to remove insoluble materials. For immunoprecipitation from primary cortical lysates, 1 mg of protein lysate underwent preclearing with protein A– or G–Sepharose beads for 1 h at 4°C. Supernatants were then incubated for 1 h at 4°C with 9 µg of rabbit anti-TrioMTP or 1.5 µg of mouse anti-DCC (AF-5) followed by addition of 40 µl of protein A– or G–Sepharose beads for 2 h (GE Healthcare). Beads were washed a minimum of four times with ice-cold lysis buffer and heated to 95°C in SDS sample buffer. Protein samples were resolved by SDS-PAGE, transferred to nitrocellulose membranes for immunoblotting with the appropriate antibodies, and visualized by ECL (PerkinElmer). For surface and intracellular DCC immunoprecipitations, cortical neurons were treated with or without 500 ng/ml of netrin-1 for 5 min and transferred to ice. Cells were then washed with ice-cold PBS containing 1 mM magnesium chloride and 0.1 mM calcium chloride and then blocked in ice-cold 1% BSA/PBS for 20 min. After blocking, the cells were incubated with either mouse IgGs or mouse anti-DCC
<sub>EXT</sub>
(AF-5) antibodies at 1 µg/ml in ice-cold PBS for 40 min on ice, followed by three, 5-min washes with cold PBS. Proteins were extracted with RIPA buffer (150 mM NaCl, 50 mM Hepes, pH 7.5, 1% NP-40, 10 mM EDTA, pH 8.0, 0.5% sodium deoxycholate, 0.1% SDS, 20 mM sodium fluoride, 1 mM sodium orthovanadate, 1 mM PMSF, and 1 µg/ml aprotinin and leupeptin [BioShop]), and protein lysates were centrifuged at 10,000
<italic>g</italic>
for 5 min at 4°C. Surface DCC was isolated by incubation with protein G–Sepharose beads for 1 h at 4°C. The supernatant corresponding to the intracellular DCC pool was collected for each sample, and immunoprecipitations were subsequently performed with either IgGs or anti-DCC.</p>
</sec>
<sec id="s19">
<title>Rac1 activation assay</title>
<p>Transfected HEK293 cells were serum starved overnight and then lysed in buffer containing 25 mM Hepes, pH 7.5, 1% NP-40, 10 mM MgCl
<sub>2</sub>
, 100 mM NaCl, 5% glycerol, 1 mM PMSF, and 1 µg/ml aprotinin and leupeptin (BioShop). Protein lysates were centrifuged at 10,000
<italic>g</italic>
for 2 min at 4°C to remove insoluble materials. Endogenous GTP-Rac1 was pulled down by incubating the protein lysates for 30 min at 4°C with the CRIB domain of mouse PAK3 (amino acids 73–146) fused to GST and coupled to glutathione-Sepharose beads. The beads were washed twice with 25 mM Hepes, pH 7.5, 1% NP-40, 30 mM MgCl
<sub>2</sub>
, 40 mM NaCl, and 1 mM DTT and resuspended in SDS sample buffer. Protein samples were resolved by SDS-PAGE and transferred onto nitrocellulose membranes for immunoblotting with the anti-Rac1 antibody. The levels of GTP-bound Rac1 were assessed by densitometry using Quantity One software (Bio-Rad Laboratories) and normalized to the total amount of GTPases detected in the total cell lysates.</p>
</sec>
<sec id="s20">
<title>Immunofluorescence, microscopy, and Pearson’s correlation coefficient</title>
<p>Cortical neurons (DIV1 or 2) were fixed with 3.7% formaldehyde (Sigma-Aldrich) in 20% sucrose/PBS for 30 min at 37°C and permeabilized as described previously (
<xref rid="bib22" ref-type="bibr">DeGeer et al., 2013</xref>
). Immunostaining was performed with the indicated primary antibodies and the respective Cy3 or Alexa Fluor 488–conjugated secondary antibodies and all coverslips were mounted with ProLong Gold Antifade reagent (Invitrogen). To assess protein colocalization, coimmunostained cortical neurons were imaged on a laser-scanning confocal microscope (LSM510; Carl Zeiss) with a Plan Apochromat 63×/1.4 oil immersion objective lens and analyzed with Zen2009 software (Carl Zeiss). Quantification of colocalization using Pearson’s correlation coefficient was performed using MetaMorph software (Molecular Devices), analyzing >15 neurons per condition in at least three independent experiments. One-way analysis of variance (ANOVA) was performed, and the data were presented as a mean
<italic>r</italic>
± SEM. For axon outgrowth assays, neurons were visualized with a motorized inverted microscope (IX81; Olympus) using a 40× U Pplan Fluorite oil immersion objective lens. Images were recorded with a CoolSnap 4K camera (Photometrics) and analyzed with Metamorph software. For surface DCC detection, cortical neurons remained unpermeabilized, were blocked in 1% BSA/PBS, and were incubated with anti-DCC
<sub>EXT</sub>
in 1% BSA/PBS at 4°C overnight. Cy3-conjugated secondary antibodies were used to label surface DCC. Images were acquired as for the axon outgrowth experiments, and the mean pixel intensity of DCC fluorescence on growth cones and axonal surfaces was measured from acquired images using Metamorph software, using exclusive thresholding to eliminate background fluorescence.</p>
</sec>
<sec id="s21">
<title>Axon outgrowth analysis and Dunn chamber assays</title>
<p>To analyze axon outgrowth of primary cortical neurons (DIV2), electroporated (GFP
<sup>+</sup>
) cells were analyzed for each condition from at least three independent experiments. Axon lengths were measured manually from acquired images with MetaMorph software. One-way ANOVA with Fisher’s least significant difference post-test was used for statistical analysis, and the data were presented as the mean cortical neuron axon length ± SEM. For turning assays, dissociated cortical neurons (DIV2) were plated on coverslips used for Dunn chamber assembly as previously described (
<xref rid="bib82" ref-type="bibr">Yam et al., 2009</xref>
). Gradients were generated with purified netrin-1 VI-V (200 ng/ml) or buffer containing PBS in the outer well. Cell images were acquired every 3–4 min for at least 90 min at 37°C on a temperature controlled stage. Neurites of at least 10-µm length were tracked in GFP-expressing neurons. The final position of the growth cone was used to determine the angle turned over 90 min relative to the gradient position. Measurements are presented in rose histograms in bins of 10° with the length of each segment representing the frequency of measurements in percent. Mean turning angle and mean displacement are also represented.</p>
</sec>
<sec id="s22">
<title>In utero electroporation</title>
<p>CD1 mouse embryos were staged using the morning of the vaginal plug as E0.5. To drive GFP reporter expression in layer II/III neurons, E14.5 embryos were electroporated with pCIG2 expression vectors containing an IRES-EGFP cassette under the control of the CAG promoter (
<xref rid="bib31" ref-type="bibr">Hand et al., 2005</xref>
). In utero electroporation was performed essentially as described previously (
<xref rid="bib44" ref-type="bibr">Langevin et al., 2007</xref>
). In brief, 3 µg/µl of plasmid was injected into the telencephalon and electroporated using 6× 50-V/50-ms square wave pulses with 1-s intervals.</p>
</sec>
<sec id="s23">
<title>Histology</title>
<p>Immunohistochemistry was performed as previously described (
<xref rid="bib44" ref-type="bibr">Langevin et al., 2007</xref>
). In brief, dissected E17.5 brains were fixed overnight at 4°C in 4% paraformaldehyde/PBS. Brains were cryoprotected in 20% sucrose/PBS at 4°C overnight and frozen in OCT on liquid nitrogen. Cryosections (16 µm) were collected on Superfrost Plus slides (Thermo Fisher Scientific). Blocking and antibody incubations (anti-GFP, 1:1,000) were performed in PBS supplemented with 0.4% Triton X-100 and 0.3% BSA, and all washes were with PBS. Slides were mounted in Mowiol (EMD Millipore) and imaging was performed using an Imager M2 upright microscope (Carl Zeiss) with an AxioCam ICc5 camera (Carl Zeiss) or a laser-scanning confocal microscope (LSM780; Carl Zeiss) with a Plan Apochromat 20×/0.8 or 63×/1.4 oil differential interference contrast objective lenses. Images were processed with Zen software and Photoshop CS5 (Adobe). Cortical layers were subdivided based on cell density, and neuronal migration was scored from confocal images (>350 GFP
<sup>+</sup>
neurons from at least five brains, per condition). Neuronal polarization of GFP
<sup>+</sup>
cells in the intermediate zone were scored by assessing maximal projections of confocal Z-stacks taken at 0.5-µm increments to visualize processes out of plane (>250 GFP
<sup>+</sup>
neurons from at least six brains, per condition). Nonpolarized neurons were considered round cells without any processes.</p>
</sec>
<sec id="s24">
<title>Statistical analysis</title>
<p>Statistical analysis was performed with GraphPad Prism 6 (GraphPad Software). The data are presented as the mean ± the SEM.</p>
</sec>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>We are grateful to Jérôme Boudeau for the anti-Trio antibodies. We thank Min Fu and the imaging core facility of the Research Institute of the McGill University Health Centre for assistance with confocal microscopy. We thank Heena Kumra and Dieter Reinhardt for assistance with brightfield microscopy. We also thank Line Roy and Daniel Boismenu for their assistance with the mass spectrometry analysis.</p>
<p>This research was supported by the Canadian Institute of Health Research grant MOP-14701 (to N. Lamarche-Vane) and MOP-102584 (to M. Cayouette) and the Canada Foundation for Innovation-Leaders Opportunity Fund to N. Lamarche-Vane. N. Lamarche-Vane was a recipient of a Fonds de la Recherche en Santé du Québec Chercheur-National and a William Dawson Scholar.</p>
<p>The authors declare no competing financial interests.</p>
</ack>
<fn-group>
<fn id="fnd0e6693">
<p>
<def-list>
<title>Abbreviations used in this paper:</title>
<def-item>
<term>ANOVA</term>
<def>
<p>analysis of variance</p>
</def>
</def-item>
<def-item>
<term>CRIB</term>
<def>
<p>Cdc42/Rac interactive binding</p>
</def>
</def-item>
<def-item>
<term>CNS</term>
<def>
<p>central nervous system</p>
</def>
</def-item>
<def-item>
<term>DCC</term>
<def>
<p>Deleted in Colorectal Cancer</p>
</def>
</def-item>
<def-item>
<term>DIV</term>
<def>
<p>days in vitro</p>
</def>
</def-item>
<def-item>
<term>GEF</term>
<def>
<p>guanine nucleotide exchange factor</p>
</def>
</def-item>
<def-item>
<term>GEFD</term>
<def>
<p>GEF domain</p>
</def>
</def-item>
<def-item>
<term>IP</term>
<def>
<p>immunoprecipitated</p>
</def>
</def-item>
</def-list>
</p>
</fn>
</fn-group>
<ref-list>
<ref id="bib1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ackerman</surname>
<given-names>S.L.</given-names>
</name>
,
<name>
<surname>Kozak</surname>
<given-names>L.P.</given-names>
</name>
,
<name>
<surname>Przyborski</surname>
<given-names>S.A.</given-names>
</name>
,
<name>
<surname>Rund</surname>
<given-names>L.A.</given-names>
</name>
,
<name>
<surname>Boyer</surname>
<given-names>B.B.</given-names>
</name>
, and
<name>
<surname>Knowles</surname>
<given-names>B.B.</given-names>
</name>
</person-group>
<year>1997</year>
<article-title>The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein</article-title>
.
<source>Nature.</source>
<volume>386</volume>
:
<fpage>838</fpage>
<lpage>842</lpage>
.
<pub-id pub-id-type="doi">10.1038/386838a0</pub-id>
<pub-id pub-id-type="pmid">9126743</pub-id>
</mixed-citation>
</ref>
<ref id="bib2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Antoine-Bertrand</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Villemure</surname>
<given-names>J.F.</given-names>
</name>
, and
<name>
<surname>Lamarche-Vane</surname>
<given-names>N.</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Implication of rho GTPases in neurodegenerative diseases</article-title>
.
<source>Curr. Drug Targets.</source>
<volume>12</volume>
:
<fpage>1202</fpage>
<lpage>1215</lpage>
.
<pub-id pub-id-type="doi">10.2174/138945011795906543</pub-id>
<pub-id pub-id-type="pmid">21561415</pub-id>
</mixed-citation>
</ref>
<ref id="bib3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aquino</surname>
<given-names>D.A.</given-names>
</name>
,
<name>
<surname>Klipfel</surname>
<given-names>A.A.</given-names>
</name>
,
<name>
<surname>Brosnan</surname>
<given-names>C.F.</given-names>
</name>
, and
<name>
<surname>Norton</surname>
<given-names>W.T.</given-names>
</name>
</person-group>
<year>1993</year>
<article-title>The 70-kDa heat shock cognate protein (HSC70) is a major constituent of the central nervous system and is up-regulated only at the mRNA level in acute experimental autoimmune encephalomyelitis</article-title>
.
<source>J. Neurochem.</source>
<volume>61</volume>
:
<fpage>1340</fpage>
<lpage>1348</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1471-4159.1993.tb13627.x</pub-id>
<pub-id pub-id-type="pmid">8376991</pub-id>
</mixed-citation>
</ref>
<ref id="bib4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Azzarelli</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Kerloch</surname>
<given-names>T.</given-names>
</name>
, and
<name>
<surname>Pacary</surname>
<given-names>E.</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Regulation of cerebral cortex development by Rho GTPases: insights from
<italic>in vivo</italic>
studies</article-title>
.
<source>Front. Cell. Neurosci.</source>
<volume>8</volume>
:
<fpage>445</fpage>
.
<pub-id pub-id-type="pmid">25610373</pub-id>
</mixed-citation>
</ref>
<ref id="bib5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Balaburski</surname>
<given-names>G.M.</given-names>
</name>
,
<name>
<surname>Leu</surname>
<given-names>J.I.</given-names>
</name>
,
<name>
<surname>Beeharry</surname>
<given-names>N.</given-names>
</name>
,
<name>
<surname>Hayik</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Andrake</surname>
<given-names>M.D.</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Herlyn</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Villanueva</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Dunbrack</surname>
<given-names>R.L.J.</given-names>
<suffix>Jr</suffix>
</name>
.,
<name>
<surname>Yen</surname>
<given-names>T.</given-names>
</name>
,
<etal></etal>
</person-group>
<year>2013</year>
<article-title>A modified HSP70 inhibitor shows broad activity as an anticancer agent</article-title>
.
<source>Mol. Cancer Res.</source>
<volume>11</volume>
:
<fpage>219</fpage>
<lpage>229</lpage>
.
<pub-id pub-id-type="doi">10.1158/1541-7786.MCR-12-0547-T</pub-id>
<pub-id pub-id-type="pmid">23303345</pub-id>
</mixed-citation>
</ref>
<ref id="bib6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bański</surname>
<given-names>P.</given-names>
</name>
,
<name>
<surname>Mahboubi</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Kodiha</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Shrivastava</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Kanagaratham</surname>
<given-names>C.</given-names>
</name>
, and
<name>
<surname>Stochaj</surname>
<given-names>U.</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Nucleolar targeting of the chaperone hsc70 is regulated by stress, cell signaling, and a composite targeting signal which is controlled by autoinhibition</article-title>
.
<source>J. Biol. Chem.</source>
<volume>285</volume>
:
<fpage>21858</fpage>
<lpage>21867</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.M110.117291</pub-id>
<pub-id pub-id-type="pmid">20457599</pub-id>
</mixed-citation>
</ref>
<ref id="bib7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barallobre</surname>
<given-names>M.J.</given-names>
</name>
,
<name>
<surname>Pascual</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Del Río</surname>
<given-names>J.A.</given-names>
</name>
, and
<name>
<surname>Soriano</surname>
<given-names>E.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>The Netrin family of guidance factors: emphasis on Netrin-1 signalling</article-title>
.
<source>Brain Res. Brain Res. Rev.</source>
<volume>49</volume>
:
<fpage>22</fpage>
<lpage>47</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.brainresrev.2004.11.003</pub-id>
<pub-id pub-id-type="pmid">15960985</pub-id>
</mixed-citation>
</ref>
<ref id="bib8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bashaw</surname>
<given-names>G.J.</given-names>
</name>
, and
<name>
<surname>Klein</surname>
<given-names>R.</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Signaling from axon guidance receptors</article-title>
.
<source>Cold Spring Harb. Perspect. Biol.</source>
<volume>2</volume>
:
<fpage>a001941</fpage>
<pub-id pub-id-type="doi">10.1101/cshperspect.a001941</pub-id>
<pub-id pub-id-type="pmid">20452961</pub-id>
</mixed-citation>
</ref>
<ref id="bib9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bellanger</surname>
<given-names>J.-M.</given-names>
</name>
,
<name>
<surname>Lazaro</surname>
<given-names>J.B.</given-names>
</name>
,
<name>
<surname>Diriong</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Fernandez</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Lamb</surname>
<given-names>N.</given-names>
</name>
, and
<name>
<surname>Debant</surname>
<given-names>A.</given-names>
</name>
</person-group>
<year>1998</year>
<article-title>The two guanine nucleotide exchange factor domains of Trio link the Rac1 and the RhoA pathways in vivo</article-title>
.
<source>Oncogene.</source>
<volume>16</volume>
:
<fpage>147</fpage>
<lpage>152</lpage>
.
<pub-id pub-id-type="doi">10.1038/sj.onc.1201532</pub-id>
<pub-id pub-id-type="pmid">9464532</pub-id>
</mixed-citation>
</ref>
<ref id="bib10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bid</surname>
<given-names>H.K.</given-names>
</name>
,
<name>
<surname>Roberts</surname>
<given-names>R.D.</given-names>
</name>
,
<name>
<surname>Manchanda</surname>
<given-names>P.K.</given-names>
</name>
, and
<name>
<surname>Houghton</surname>
<given-names>P.J.</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>RAC1: an emerging therapeutic option for targeting cancer angiogenesis and metastasis</article-title>
.
<source>Mol. Cancer Ther.</source>
<volume>12</volume>
:
<fpage>1925</fpage>
<lpage>1934</lpage>
.
<pub-id pub-id-type="doi">10.1158/1535-7163.MCT-13-0164</pub-id>
<pub-id pub-id-type="pmid">24072884</pub-id>
</mixed-citation>
</ref>
<ref id="bib11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blangy</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Vignal</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Schmidt</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Debant</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Gauthier-Rouvière</surname>
<given-names>C.</given-names>
</name>
, and
<name>
<surname>Fort</surname>
<given-names>P.</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>TrioGEF1 controls Rac- and Cdc42-dependent cell structures through the direct activation of rhoG</article-title>
.
<source>J. Cell Sci.</source>
<volume>113</volume>
:
<fpage>729</fpage>
<lpage>739</lpage>
.
<pub-id pub-id-type="pmid">10652265</pub-id>
</mixed-citation>
</ref>
<ref id="bib12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bouchard</surname>
<given-names>J.-F.</given-names>
</name>
,
<name>
<surname>Moore</surname>
<given-names>S.W.</given-names>
</name>
,
<name>
<surname>Tritsch</surname>
<given-names>N.X.</given-names>
</name>
,
<name>
<surname>Roux</surname>
<given-names>P.P.</given-names>
</name>
,
<name>
<surname>Shekarabi</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Barker</surname>
<given-names>P.A.</given-names>
</name>
, and
<name>
<surname>Kennedy</surname>
<given-names>T.E.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Protein kinase A activation promotes plasma membrane insertion of DCC from an intracellular pool: a novel mechanism regulating commissural axon extension</article-title>
.
<source>J. Neurosci.</source>
<volume>24</volume>
:
<fpage>3040</fpage>
<lpage>3050</lpage>
.
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.4934-03.2004</pub-id>
<pub-id pub-id-type="pmid">15044543</pub-id>
</mixed-citation>
</ref>
<ref id="bib13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bouchard</surname>
<given-names>J.-F.</given-names>
</name>
,
<name>
<surname>Horn</surname>
<given-names>K.E.</given-names>
</name>
,
<name>
<surname>Stroh</surname>
<given-names>T.</given-names>
</name>
, and
<name>
<surname>Kennedy</surname>
<given-names>T.E.</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Depolarization recruits DCC to the plasma membrane of embryonic cortical neurons and enhances axon extension in response to netrin-1</article-title>
.
<source>J. Neurochem.</source>
<volume>107</volume>
:
<fpage>398</fpage>
<lpage>417</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1471-4159.2008.05609.x</pub-id>
<pub-id pub-id-type="pmid">18691385</pub-id>
</mixed-citation>
</ref>
<ref id="bib14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Briançon-Marjollet</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Ghogha</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Nawabi</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Triki</surname>
<given-names>I.</given-names>
</name>
,
<name>
<surname>Auziol</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Fromont</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Piché</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Enslen</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Chebli</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Cloutier</surname>
<given-names>J.F.</given-names>
</name>
,
<etal></etal>
</person-group>
<year>2008</year>
<article-title>Trio mediates netrin-1-induced Rac1 activation in axon outgrowth and guidance</article-title>
.
<source>Mol. Cell. Biol.</source>
<volume>28</volume>
:
<fpage>2314</fpage>
<lpage>2323</lpage>
.
<pub-id pub-id-type="doi">10.1128/MCB.00998-07</pub-id>
<pub-id pub-id-type="pmid">18212043</pub-id>
</mixed-citation>
</ref>
<ref id="bib15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chang</surname>
<given-names>H.C.</given-names>
</name>
,
<name>
<surname>Newmyer</surname>
<given-names>S.L.</given-names>
</name>
,
<name>
<surname>Hull</surname>
<given-names>M.J.</given-names>
</name>
,
<name>
<surname>Ebersold</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Schmid</surname>
<given-names>S.L.</given-names>
</name>
, and
<name>
<surname>Mellman</surname>
<given-names>I.</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>Hsc70 is required for endocytosis and clathrin function in
<italic>Drosophila</italic>
</article-title>
.
<source>J. Cell Biol.</source>
<volume>159</volume>
:
<fpage>477</fpage>
<lpage>487</lpage>
.
<pub-id pub-id-type="doi">10.1083/jcb.200205086</pub-id>
<pub-id pub-id-type="pmid">12427870</pub-id>
</mixed-citation>
</ref>
<ref id="bib16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Liao</surname>
<given-names>W.P.</given-names>
</name>
,
<name>
<surname>Lu</surname>
<given-names>Q.</given-names>
</name>
,
<name>
<surname>Wong</surname>
<given-names>W.S.</given-names>
</name>
, and
<name>
<surname>Wong</surname>
<given-names>P.T.</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Upregulation of dihydropyrimidinase-related protein 2, spectrin α II chain, heat shock cognate protein 70 pseudogene 1 and tropomodulin 2 after focal cerebral ischemia in rats—a proteomics approach</article-title>
.
<source>Neurochem. Int.</source>
<volume>50</volume>
:
<fpage>1078</fpage>
<lpage>1086</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.neuint.2006.11.008</pub-id>
<pub-id pub-id-type="pmid">17196711</pub-id>
</mixed-citation>
</ref>
<ref id="bib17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cook</surname>
<given-names>D.R.</given-names>
</name>
,
<name>
<surname>Rossman</surname>
<given-names>K.L.</given-names>
</name>
, and
<name>
<surname>Der</surname>
<given-names>C.J.</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease</article-title>
.
<source>Oncogene.</source>
<volume>33</volume>
:
<fpage>4021</fpage>
<lpage>4035</lpage>
.
<pub-id pub-id-type="doi">10.1038/onc.2013.362</pub-id>
<pub-id pub-id-type="pmid">24037532</pub-id>
</mixed-citation>
</ref>
<ref id="bib18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cotrufo</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Pérez-Brangulí</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Muhaisen</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Ros</surname>
<given-names>O.</given-names>
</name>
,
<name>
<surname>Andrés</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Baeriswyl</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Fuschini</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Tarrago</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Pascual</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Ureña</surname>
<given-names>J.</given-names>
</name>
,
<etal></etal>
</person-group>
<year>2011</year>
<article-title>A signaling mechanism coupling netrin-1/deleted in colorectal cancer chemoattraction to SNARE-mediated exocytosis in axonal growth cones</article-title>
.
<source>J. Neurosci.</source>
<volume>31</volume>
:
<fpage>14463</fpage>
<lpage>14480</lpage>
.
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.3018-11.2011</pub-id>
<pub-id pub-id-type="pmid">21994363</pub-id>
</mixed-citation>
</ref>
<ref id="bib19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Daugaard</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Rohde</surname>
<given-names>M.</given-names>
</name>
, and
<name>
<surname>Jäättelä</surname>
<given-names>M.</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions</article-title>
.
<source>FEBS Lett.</source>
<volume>581</volume>
:
<fpage>3702</fpage>
<lpage>3710</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.febslet.2007.05.039</pub-id>
<pub-id pub-id-type="pmid">17544402</pub-id>
</mixed-citation>
</ref>
<ref id="bib20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Debant</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Serra-Pagès</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Seipel</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>O’Brien</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Tang</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Park</surname>
<given-names>S.H.</given-names>
</name>
, and
<name>
<surname>Streuli</surname>
<given-names>M.</given-names>
</name>
</person-group>
<year>1996</year>
<article-title>The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains</article-title>
.
<source>Proc. Natl. Acad. Sci. USA.</source>
<volume>93</volume>
:
<fpage>5466</fpage>
<lpage>5471</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.93.11.5466</pub-id>
<pub-id pub-id-type="pmid">8643598</pub-id>
</mixed-citation>
</ref>
<ref id="bib21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>DeGeer</surname>
<given-names>J.</given-names>
</name>
, and
<name>
<surname>Lamarche-Vane</surname>
<given-names>N.</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Rho GTPases in neurodegeneration diseases</article-title>
.
<source>Exp. Cell Res.</source>
<volume>319</volume>
:
<fpage>2384</fpage>
<lpage>2394</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.yexcr.2013.06.016</pub-id>
<pub-id pub-id-type="pmid">23830879</pub-id>
</mixed-citation>
</ref>
<ref id="bib22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>DeGeer</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Boudeau</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Schmidt</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Bedford</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Lamarche-Vane</surname>
<given-names>N.</given-names>
</name>
, and
<name>
<surname>Debant</surname>
<given-names>A.</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Tyrosine phosphorylation of the Rho guanine nucleotide exchange factor Trio regulates netrin-1/DCC-mediated cortical axon outgrowth</article-title>
.
<source>Mol. Cell. Biol.</source>
<volume>33</volume>
:
<fpage>739</fpage>
<lpage>751</lpage>
.
<pub-id pub-id-type="doi">10.1128/MCB.01264-12</pub-id>
<pub-id pub-id-type="pmid">23230270</pub-id>
</mixed-citation>
</ref>
<ref id="bib23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duquette</surname>
<given-names>P.M.</given-names>
</name>
, and
<name>
<surname>Lamarche-Vane</surname>
<given-names>N.</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Rho GTPases in embryonic development</article-title>
.
<source>Small GTPases.</source>
<volume>5</volume>
:
<fpage>8</fpage>
<pub-id pub-id-type="doi">10.4161/sgtp.29716</pub-id>
<pub-id pub-id-type="pmid">25483305</pub-id>
</mixed-citation>
</ref>
<ref id="bib24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Estrach</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Schmidt</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Diriong</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Penna</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Blangy</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Fort</surname>
<given-names>P.</given-names>
</name>
, and
<name>
<surname>Debant</surname>
<given-names>A.</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>The human Rho-GEF trio and its target GTPase RhoG are involved in the NGF pathway, leading to neurite outgrowth</article-title>
.
<source>Curr. Biol.</source>
<volume>12</volume>
:
<fpage>307</fpage>
<lpage>312</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0960-9822(02)00658-9</pub-id>
<pub-id pub-id-type="pmid">11864571</pub-id>
</mixed-citation>
</ref>
<ref id="bib25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fazeli</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Dickinson</surname>
<given-names>S.L.</given-names>
</name>
,
<name>
<surname>Hermiston</surname>
<given-names>M.L.</given-names>
</name>
,
<name>
<surname>Tighe</surname>
<given-names>R.V.</given-names>
</name>
,
<name>
<surname>Steen</surname>
<given-names>R.G.</given-names>
</name>
,
<name>
<surname>Small</surname>
<given-names>C.G.</given-names>
</name>
,
<name>
<surname>Stoeckli</surname>
<given-names>E.T.</given-names>
</name>
,
<name>
<surname>Keino-Masu</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Masu</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Rayburn</surname>
<given-names>H.</given-names>
</name>
,
<etal></etal>
</person-group>
<year>1997</year>
<article-title>Phenotype of mice lacking functional
<italic>Deleted in colorectal cancer</italic>
(
<italic>Dcc</italic>
) gene</article-title>
.
<source>Nature.</source>
<volume>386</volume>
:
<fpage>796</fpage>
<lpage>804</lpage>
.
<pub-id pub-id-type="doi">10.1038/386796a0</pub-id>
<pub-id pub-id-type="pmid">9126737</pub-id>
</mixed-citation>
</ref>
<ref id="bib26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fothergill</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Donahoo</surname>
<given-names>A.L.</given-names>
</name>
,
<name>
<surname>Douglass</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Zalucki</surname>
<given-names>O.</given-names>
</name>
,
<name>
<surname>Yuan</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Shu</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Goodhill</surname>
<given-names>G.J.</given-names>
</name>
, and
<name>
<surname>Richards</surname>
<given-names>L.J.</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Netrin-DCC signaling regulates corpus callosum formation through attraction of pioneering axons and by modulating Slit2-mediated repulsion</article-title>
.
<source>Cereb. Cortex.</source>
<volume>24</volume>
:
<fpage>1138</fpage>
<lpage>1151</lpage>
.
<pub-id pub-id-type="doi">10.1093/cercor/bhs395</pub-id>
<pub-id pub-id-type="pmid">23302812</pub-id>
</mixed-citation>
</ref>
<ref id="bib27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Xu</surname>
<given-names>W.</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>Q.</given-names>
</name>
, and
<name>
<surname>Xiong</surname>
<given-names>S.</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Inhibition of histone deacetylase activity suppresses IFN-γ induction of tripartite motif 22 via CHIP-mediated proteasomal degradation of IRF-1</article-title>
.
<source>J. Immunol.</source>
<volume>191</volume>
:
<fpage>464</fpage>
<lpage>471</lpage>
.
<pub-id pub-id-type="doi">10.4049/jimmunol.1203533</pub-id>
<pub-id pub-id-type="pmid">23729439</pub-id>
</mixed-citation>
</ref>
<ref id="bib28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grant</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Fathalli</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Rouleau</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Joober</surname>
<given-names>R.</given-names>
</name>
, and
<name>
<surname>Flores</surname>
<given-names>C.</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Association between schizophrenia and genetic variation in
<italic>DCC</italic>
: a case–control study</article-title>
.
<source>Schizophr. Res.</source>
<volume>137</volume>
:
<fpage>26</fpage>
<lpage>31</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.schres.2012.02.023</pub-id>
<pub-id pub-id-type="pmid">22418395</pub-id>
</mixed-citation>
</ref>
<ref id="bib29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guan</surname>
<given-names>K.L.</given-names>
</name>
, and
<name>
<surname>Rao</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Signalling mechanisms mediating neuronal responses to guidance cues</article-title>
.
<source>Nat. Rev. Neurosci.</source>
<volume>4</volume>
:
<fpage>941</fpage>
<lpage>956</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrn1254</pub-id>
<pub-id pub-id-type="pmid">14682358</pub-id>
</mixed-citation>
</ref>
<ref id="bib30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gupta</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Kamynina</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Morley</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Chung</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Muakkassa</surname>
<given-names>N.</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Brathwaite</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Sharma</surname>
<given-names>G.</given-names>
</name>
, and
<name>
<surname>Manor</surname>
<given-names>D.</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Plekhg4 is a novel Dbl family guanine nucleotide exchange factor protein for rho family GTPases</article-title>
.
<source>J. Biol. Chem.</source>
<volume>288</volume>
:
<fpage>14522</fpage>
<lpage>14530</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.M112.430371</pub-id>
<pub-id pub-id-type="pmid">23572525</pub-id>
</mixed-citation>
</ref>
<ref id="bib31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hand</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Bortone</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Mattar</surname>
<given-names>P.</given-names>
</name>
,
<name>
<surname>Nguyen</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Heng</surname>
<given-names>J.I.</given-names>
</name>
,
<name>
<surname>Guerrier</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Boutt</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Peters</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Barnes</surname>
<given-names>A.P.</given-names>
</name>
,
<name>
<surname>Parras</surname>
<given-names>C.</given-names>
</name>
,
<etal></etal>
</person-group>
<year>2005</year>
<article-title>Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex</article-title>
.
<source>Neuron.</source>
<volume>48</volume>
:
<fpage>45</fpage>
<lpage>62</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.neuron.2005.08.032</pub-id>
<pub-id pub-id-type="pmid">16202708</pub-id>
</mixed-citation>
</ref>
<ref id="bib32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hartl</surname>
<given-names>F.U.</given-names>
</name>
,
<name>
<surname>Bracher</surname>
<given-names>A.</given-names>
</name>
, and
<name>
<surname>Hayer-Hartl</surname>
<given-names>M.</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Molecular chaperones in protein folding and proteostasis</article-title>
.
<source>Nature.</source>
<volume>475</volume>
:
<fpage>324</fpage>
<lpage>332</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature10317</pub-id>
<pub-id pub-id-type="pmid">21776078</pub-id>
</mixed-citation>
</ref>
<ref id="bib33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huber</surname>
<given-names>A.B.</given-names>
</name>
,
<name>
<surname>Kolodkin</surname>
<given-names>A.L.</given-names>
</name>
,
<name>
<surname>Ginty</surname>
<given-names>D.D.</given-names>
</name>
, and
<name>
<surname>Cloutier</surname>
<given-names>J.F.</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance</article-title>
.
<source>Annu. Rev. Neurosci.</source>
<volume>26</volume>
:
<fpage>509</fpage>
<lpage>563</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev.neuro.26.010302.081139</pub-id>
<pub-id pub-id-type="pmid">12677003</pub-id>
</mixed-citation>
</ref>
<ref id="bib34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Izzi</surname>
<given-names>L.</given-names>
</name>
, and
<name>
<surname>Charron</surname>
<given-names>F.</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Midline axon guidance and human genetic disorders</article-title>
.
<source>Clin. Genet.</source>
<volume>80</volume>
:
<fpage>226</fpage>
<lpage>234</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1399-0004.2011.01735.x</pub-id>
<pub-id pub-id-type="pmid">21692777</pub-id>
</mixed-citation>
</ref>
<ref id="bib35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jaffe</surname>
<given-names>A.B.</given-names>
</name>
, and
<name>
<surname>Hall</surname>
<given-names>A.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Rho GTPases: biochemistry and biology</article-title>
.
<source>Annu. Rev. Cell Dev. Biol.</source>
<volume>21</volume>
:
<fpage>247</fpage>
<lpage>269</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev.cellbio.21.020604.150721</pub-id>
<pub-id pub-id-type="pmid">16212495</pub-id>
</mixed-citation>
</ref>
<ref id="bib36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaiser</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Kühnl</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Reins</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Fischer</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Ortiz-Tanchez</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Schlee</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Mochmann</surname>
<given-names>L.H.</given-names>
</name>
,
<name>
<surname>Heesch</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Benlasfer</surname>
<given-names>O.</given-names>
</name>
,
<name>
<surname>Hofmann</surname>
<given-names>W.-K.</given-names>
</name>
,
<etal></etal>
</person-group>
<year>2011</year>
<article-title>Antileukemic activity of the HSP70 inhibitor pifithrin-μ in acute leukemia</article-title>
.
<source>Blood Cancer J.</source>
<volume>1</volume>
:
<fpage>e28</fpage>
<pub-id pub-id-type="doi">10.1038/bcj.2011.28</pub-id>
<pub-id pub-id-type="pmid">22829184</pub-id>
</mixed-citation>
</ref>
<ref id="bib37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kauppinen</surname>
<given-names>K.P.</given-names>
</name>
,
<name>
<surname>Duan</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Wels</surname>
<given-names>J.I.</given-names>
</name>
, and
<name>
<surname>Manor</surname>
<given-names>D.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Regulation of the Dbl proto-oncogene by heat shock cognate protein 70 (Hsc70)</article-title>
.
<source>J. Biol. Chem.</source>
<volume>280</volume>
:
<fpage>21638</fpage>
<lpage>21644</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.M413984200</pub-id>
<pub-id pub-id-type="pmid">15802271</pub-id>
</mixed-citation>
</ref>
<ref id="bib38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keino-Masu</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Masu</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Hinck</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Leonardo</surname>
<given-names>E.D.</given-names>
</name>
,
<name>
<surname>Chan</surname>
<given-names>S.S.-Y.</given-names>
</name>
,
<name>
<surname>Culotti</surname>
<given-names>J.G.</given-names>
</name>
, and
<name>
<surname>Tessier-Lavigne</surname>
<given-names>M.</given-names>
</name>
</person-group>
<year>1996</year>
<article-title>Deleted in Colorectal Cancer (DCC) encodes a netrin receptor</article-title>
.
<source>Cell.</source>
<volume>87</volume>
:
<fpage>175</fpage>
<lpage>185</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0092-8674(00)81336-7</pub-id>
<pub-id pub-id-type="pmid">8861902</pub-id>
</mixed-citation>
</ref>
<ref id="bib39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kennedy</surname>
<given-names>T.E.</given-names>
</name>
,
<name>
<surname>Serafini</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>de la Torre</surname>
<given-names>J.R.</given-names>
</name>
, and
<name>
<surname>Tessier-Lavigne</surname>
<given-names>M.</given-names>
</name>
</person-group>
<year>1994</year>
<article-title>Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord</article-title>
.
<source>Cell.</source>
<volume>78</volume>
:
<fpage>425</fpage>
<lpage>435</lpage>
.
<pub-id pub-id-type="doi">10.1016/0092-8674(94)90421-9</pub-id>
<pub-id pub-id-type="pmid">8062385</pub-id>
</mixed-citation>
</ref>
<ref id="bib40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>T.H.</given-names>
</name>
,
<name>
<surname>Lee</surname>
<given-names>H.K.</given-names>
</name>
,
<name>
<surname>Seo</surname>
<given-names>I.A.</given-names>
</name>
,
<name>
<surname>Bae</surname>
<given-names>H.R.</given-names>
</name>
,
<name>
<surname>Suh</surname>
<given-names>D.J.</given-names>
</name>
,
<name>
<surname>Wu</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Rao</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Hwang</surname>
<given-names>K.G.</given-names>
</name>
, and
<name>
<surname>Park</surname>
<given-names>H.T.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Netrin induces down-regulation of its receptor, Deleted in Colorectal Cancer, through the ubiquitin–proteasome pathway in the embryonic cortical neuron</article-title>
.
<source>J. Neurochem.</source>
<volume>95</volume>
:
<fpage>1</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1471-4159.2005.03314.x</pub-id>
<pub-id pub-id-type="pmid">16181408</pub-id>
</mixed-citation>
</ref>
<ref id="bib41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koga</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Martinez-Vicente</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Arias</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Kaushik</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Sulzer</surname>
<given-names>D.</given-names>
</name>
, and
<name>
<surname>Cuervo</surname>
<given-names>A.M.</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Constitutive upregulation of chaperone-mediated autophagy in Huntington’s disease</article-title>
.
<source>J. Neurosci.</source>
<volume>31</volume>
:
<fpage>18492</fpage>
<lpage>18505</lpage>
.
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.3219-11.2011</pub-id>
<pub-id pub-id-type="pmid">22171050</pub-id>
</mixed-citation>
</ref>
<ref id="bib42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Konno</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Yoshimura</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Hori</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Maruoka</surname>
<given-names>H.</given-names>
</name>
, and
<name>
<surname>Sobue</surname>
<given-names>K.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Involvement of the phosphatidylinositol 3-kinase/rac1 and cdc42 pathways in radial migration of cortical neurons</article-title>
.
<source>J. Biol. Chem.</source>
<volume>280</volume>
:
<fpage>5082</fpage>
<lpage>5088</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.M408251200</pub-id>
<pub-id pub-id-type="pmid">15557338</pub-id>
</mixed-citation>
</ref>
<ref id="bib43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kriegstein</surname>
<given-names>A.R.</given-names>
</name>
, and
<name>
<surname>Noctor</surname>
<given-names>S.C.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Patterns of neuronal migration in the embryonic cortex</article-title>
.
<source>Trends Neurosci.</source>
<volume>27</volume>
:
<fpage>392</fpage>
<lpage>399</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tins.2004.05.001</pub-id>
<pub-id pub-id-type="pmid">15219738</pub-id>
</mixed-citation>
</ref>
<ref id="bib44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Langevin</surname>
<given-names>L.M.</given-names>
</name>
,
<name>
<surname>Mattar</surname>
<given-names>P.</given-names>
</name>
,
<name>
<surname>Scardigli</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Roussigné</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Logan</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Blader</surname>
<given-names>P.</given-names>
</name>
, and
<name>
<surname>Schuurmans</surname>
<given-names>C.</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Validating in utero electroporation for the rapid analysis of gene regulatory elements in the murine telencephalon</article-title>
.
<source>Dev. Dyn.</source>
<volume>236</volume>
:
<fpage>1273</fpage>
<lpage>1286</lpage>
.
<pub-id pub-id-type="doi">10.1002/dvdy.21126</pub-id>
<pub-id pub-id-type="pmid">17377980</pub-id>
</mixed-citation>
</ref>
<ref id="bib45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Laurin</surname>
<given-names>M.</given-names>
</name>
, and
<name>
<surname>Côté</surname>
<given-names>J.F.</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Insights into the biological functions of Dock family guanine nucleotide exchange factors</article-title>
.
<source>Genes Dev.</source>
<volume>28</volume>
:
<fpage>533</fpage>
<lpage>547</lpage>
.
<pub-id pub-id-type="doi">10.1101/gad.236349.113</pub-id>
<pub-id pub-id-type="pmid">24637113</pub-id>
</mixed-citation>
</ref>
<ref id="bib46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leonardo</surname>
<given-names>E.D.</given-names>
</name>
,
<name>
<surname>Hinck</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Masu</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Keino-Masu</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Ackerman</surname>
<given-names>S.L.</given-names>
</name>
, and
<name>
<surname>Tessier-Lavigne</surname>
<given-names>M.</given-names>
</name>
</person-group>
<year>1997</year>
<article-title>Vertebrate homologues of
<italic>C. elegans</italic>
UNC-5 are candidate netrin receptors</article-title>
.
<source>Nature.</source>
<volume>386</volume>
:
<fpage>833</fpage>
<lpage>838</lpage>
.
<pub-id pub-id-type="doi">10.1038/386833a0</pub-id>
<pub-id pub-id-type="pmid">9126742</pub-id>
</mixed-citation>
</ref>
<ref id="bib47">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lesnick</surname>
<given-names>T.G.</given-names>
</name>
,
<name>
<surname>Sorenson</surname>
<given-names>E.J.</given-names>
</name>
,
<name>
<surname>Ahlskog</surname>
<given-names>J.E.</given-names>
</name>
,
<name>
<surname>Henley</surname>
<given-names>J.R.</given-names>
</name>
,
<name>
<surname>Shehadeh</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Papapetropoulos</surname>
<given-names>S.</given-names>
</name>
, and
<name>
<surname>Maraganore</surname>
<given-names>D.M.</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Beyond Parkinson disease: amyotrophic lateral sclerosis and the axon guidance pathway</article-title>
.
<source>PLoS ONE.</source>
<volume>3</volume>
:
<fpage>e1449</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0001449</pub-id>
<pub-id pub-id-type="pmid">18197259</pub-id>
</mixed-citation>
</ref>
<ref id="bib48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Saint-Cyr-Proulx</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Aktories</surname>
<given-names>K.</given-names>
</name>
, and
<name>
<surname>Lamarche-Vane</surname>
<given-names>N.</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>Rac1 and Cdc42 but not RhoA or Rho kinase activities are required for neurite outgrowth induced by the Netrin-1 receptor DCC (deleted in colorectal cancer) in N1E-115 neuroblastoma cells</article-title>
.
<source>J. Biol. Chem.</source>
<volume>277</volume>
:
<fpage>15207</fpage>
<lpage>15214</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.M109913200</pub-id>
<pub-id pub-id-type="pmid">11844789</pub-id>
</mixed-citation>
</ref>
<ref id="bib49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>W.</given-names>
</name>
,
<name>
<surname>Lee</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Vikis</surname>
<given-names>H.G.</given-names>
</name>
,
<name>
<surname>Lee</surname>
<given-names>S.H.</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Aurandt</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Shen</surname>
<given-names>T.L.</given-names>
</name>
,
<name>
<surname>Fearon</surname>
<given-names>E.R.</given-names>
</name>
,
<name>
<surname>Guan</surname>
<given-names>J.L.</given-names>
</name>
,
<name>
<surname>Han</surname>
<given-names>M.</given-names>
</name>
,
<etal></etal>
</person-group>
<year>2004</year>
<article-title>Activation of FAK and Src are receptor-proximal events required for netrin signaling</article-title>
.
<source>Nat. Neurosci.</source>
<volume>7</volume>
:
<fpage>1213</fpage>
<lpage>1221</lpage>
.
<pub-id pub-id-type="doi">10.1038/nn1329</pub-id>
<pub-id pub-id-type="pmid">15494734</pub-id>
</mixed-citation>
</ref>
<ref id="bib50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Gao</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Xiong</surname>
<given-names>W.</given-names>
</name>
,
<name>
<surname>Wu</surname>
<given-names>J.</given-names>
</name>
, and
<name>
<surname>Rao</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Netrin signal transduction and the guanine nucleotide exchange factor DOCK180 in attractive signaling</article-title>
.
<source>Nat. Neurosci.</source>
<volume>11</volume>
:
<fpage>28</fpage>
<lpage>35</lpage>
.
<pub-id pub-id-type="doi">10.1038/nn2022</pub-id>
<pub-id pub-id-type="pmid">18066058</pub-id>
</mixed-citation>
</ref>
<ref id="bib51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Lesnick</surname>
<given-names>T.G.</given-names>
</name>
,
<name>
<surname>Maraganore</surname>
<given-names>D.M.</given-names>
</name>
, and
<name>
<surname>Isacson</surname>
<given-names>O.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Axon guidance and synaptic maintenance: preclinical markers for neurodegenerative disease and therapeutics</article-title>
.
<source>Trends Neurosci.</source>
<volume>32</volume>
:
<fpage>142</fpage>
<lpage>149</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tins.2008.11.006</pub-id>
<pub-id pub-id-type="pmid">19162339</pub-id>
</mixed-citation>
</ref>
<ref id="bib52">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Beggs</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Jürgensen</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Park</surname>
<given-names>H.T.</given-names>
</name>
,
<name>
<surname>Tang</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Gorski</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Jones</surname>
<given-names>K.R.</given-names>
</name>
,
<name>
<surname>Reichardt</surname>
<given-names>L.F.</given-names>
</name>
,
<name>
<surname>Wu</surname>
<given-names>J.</given-names>
</name>
, and
<name>
<surname>Rao</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Netrin requires focal adhesion kinase and Src family kinases for axon outgrowth and attraction</article-title>
.
<source>Nat. Neurosci.</source>
<volume>7</volume>
:
<fpage>1222</fpage>
<lpage>1232</lpage>
.
<pub-id pub-id-type="doi">10.1038/nn1331</pub-id>
<pub-id pub-id-type="pmid">15494732</pub-id>
</mixed-citation>
</ref>
<ref id="bib53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>W.</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Kar</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Guan</surname>
<given-names>K.L.</given-names>
</name>
,
<name>
<surname>Rao</surname>
<given-names>Y.</given-names>
</name>
, and
<name>
<surname>Wu</surname>
<given-names>J.Y.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>DSCAM functions as a netrin receptor in commissural axon pathfinding</article-title>
.
<source>Proc. Natl. Acad. Sci. USA.</source>
<volume>106</volume>
:
<fpage>2951</fpage>
<lpage>2956</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.0811083106</pub-id>
<pub-id pub-id-type="pmid">19196994</pub-id>
</mixed-citation>
</ref>
<ref id="bib54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Loones</surname>
<given-names>M.T.</given-names>
</name>
,
<name>
<surname>Chang</surname>
<given-names>Y.</given-names>
</name>
, and
<name>
<surname>Morange</surname>
<given-names>M.</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>The distribution of heat shock proteins in the nervous system of the unstressed mouse embryo suggests a role in neuronal and non-neuronal differentiation</article-title>
.
<source>Cell Stress Chaperones.</source>
<volume>5</volume>
:
<fpage>291</fpage>
<lpage>305</lpage>
.
<pub-id pub-id-type="doi">10.1379/1466-1268(2000)005<0291:TDOHSP>2.0.CO;2</pub-id>
<pub-id pub-id-type="pmid">11048652</pub-id>
</mixed-citation>
</ref>
<ref id="bib55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lowery</surname>
<given-names>L.A.</given-names>
</name>
, and
<name>
<surname>Van Vactor</surname>
<given-names>D.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>The trip of the tip: understanding the growth cone machinery</article-title>
.
<source>Nat. Rev. Mol. Cell Biol.</source>
<volume>10</volume>
:
<fpage>332</fpage>
<lpage>343</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrm2679</pub-id>
<pub-id pub-id-type="pmid">19373241</pub-id>
</mixed-citation>
</ref>
<ref id="bib56">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ly</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Nikolaev</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Suresh</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Zheng</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Tessier-Lavigne</surname>
<given-names>M.</given-names>
</name>
, and
<name>
<surname>Stein</surname>
<given-names>E.</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>DSCAM is a netrin receptor that collaborates with DCC in mediating turning responses to netrin-1</article-title>
.
<source>Cell.</source>
<volume>133</volume>
:
<fpage>1241</fpage>
<lpage>1254</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2008.05.030</pub-id>
<pub-id pub-id-type="pmid">18585357</pub-id>
</mixed-citation>
</ref>
<ref id="bib57">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mar</surname>
<given-names>F.M.</given-names>
</name>
,
<name>
<surname>Bonni</surname>
<given-names>A.</given-names>
</name>
, and
<name>
<surname>Sousa</surname>
<given-names>M.M.</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Cell intrinsic control of axon regeneration</article-title>
.
<source>EMBO Rep.</source>
<volume>15</volume>
:
<fpage>254</fpage>
<lpage>263</lpage>
.
<pub-id pub-id-type="doi">10.1002/embr.201337723</pub-id>
<pub-id pub-id-type="pmid">24531721</pub-id>
</mixed-citation>
</ref>
<ref id="bib58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meriane</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Tcherkezian</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Webber</surname>
<given-names>C.A.</given-names>
</name>
,
<name>
<surname>Danek</surname>
<given-names>E.I.</given-names>
</name>
,
<name>
<surname>Triki</surname>
<given-names>I.</given-names>
</name>
,
<name>
<surname>McFarlane</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Bloch-Gallego</surname>
<given-names>E.</given-names>
</name>
, and
<name>
<surname>Lamarche-Vane</surname>
<given-names>N.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Phosphorylation of DCC by Fyn mediates Netrin-1 signaling in growth cone guidance</article-title>
.
<source>J. Cell Biol.</source>
<volume>167</volume>
:
<fpage>687</fpage>
<lpage>698</lpage>
.
<pub-id pub-id-type="doi">10.1083/jcb.200405053</pub-id>
<pub-id pub-id-type="pmid">15557120</pub-id>
</mixed-citation>
</ref>
<ref id="bib59">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moore</surname>
<given-names>S.W.</given-names>
</name>
,
<name>
<surname>Correia</surname>
<given-names>J.P.</given-names>
</name>
,
<name>
<surname>Lai Wing Sun</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Pool</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Fournier</surname>
<given-names>A.E.</given-names>
</name>
, and
<name>
<surname>Kennedy</surname>
<given-names>T.E.</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Rho inhibition recruits DCC to the neuronal plasma membrane and enhances axon chemoattraction to netrin 1</article-title>
.
<source>Development.</source>
<volume>135</volume>
:
<fpage>2855</fpage>
<lpage>2864</lpage>
.
<pub-id pub-id-type="doi">10.1242/dev.024133</pub-id>
<pub-id pub-id-type="pmid">18653556</pub-id>
</mixed-citation>
</ref>
<ref id="bib60">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muranyi</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>He</surname>
<given-names>Q.P.</given-names>
</name>
,
<name>
<surname>Fong</surname>
<given-names>K.S.</given-names>
</name>
, and
<name>
<surname>Li</surname>
<given-names>P.A.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Induction of heat shock proteins by hyperglycemic cerebral ischemia</article-title>
.
<source>Brain Res. Mol. Brain Res.</source>
<volume>139</volume>
:
<fpage>80</fpage>
<lpage>87</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.molbrainres.2005.05.023</pub-id>
<pub-id pub-id-type="pmid">15961182</pub-id>
</mixed-citation>
</ref>
<ref id="bib61">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nadarajah</surname>
<given-names>B.</given-names>
</name>
,
<name>
<surname>Brunstrom</surname>
<given-names>J.E.</given-names>
</name>
,
<name>
<surname>Grutzendler</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Wong</surname>
<given-names>R.O.</given-names>
</name>
, and
<name>
<surname>Pearlman</surname>
<given-names>A.L.</given-names>
</name>
</person-group>
<year>2001</year>
<article-title>Two modes of radial migration in early development of the cerebral cortex</article-title>
.
<source>Nat. Neurosci.</source>
<volume>4</volume>
:
<fpage>143</fpage>
<lpage>150</lpage>
.
<pub-id pub-id-type="doi">10.1038/83967</pub-id>
<pub-id pub-id-type="pmid">11175874</pub-id>
</mixed-citation>
</ref>
<ref id="bib62">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Brien</surname>
<given-names>S.P.</given-names>
</name>
,
<name>
<surname>Seipel</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Medley</surname>
<given-names>Q.G.</given-names>
</name>
,
<name>
<surname>Bronson</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Segal</surname>
<given-names>R.</given-names>
</name>
, and
<name>
<surname>Streuli</surname>
<given-names>M.</given-names>
</name>
</person-group>
<year>2000</year>
<article-title>Skeletal muscle deformity and neuronal disorder in Trio exchange factor-deficient mouse embryos</article-title>
.
<source>Proc. Natl. Acad. Sci. USA.</source>
<volume>97</volume>
:
<fpage>12074</fpage>
<lpage>12078</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.97.22.12074</pub-id>
<pub-id pub-id-type="pmid">11050238</pub-id>
</mixed-citation>
</ref>
<ref id="bib63">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olofsson</surname>
<given-names>B.</given-names>
</name>
</person-group>
<year>1999</year>
<article-title>Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling</article-title>
.
<source>Cell. Signal.</source>
<volume>11</volume>
:
<fpage>545</fpage>
<lpage>554</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0898-6568(98)00063-1</pub-id>
<pub-id pub-id-type="pmid">10433515</pub-id>
</mixed-citation>
</ref>
<ref id="bib64">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pemberton</surname>
<given-names>S.</given-names>
</name>
, and
<name>
<surname>Melki</surname>
<given-names>R.</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>The interaction of Hsc70 protein with fibrillar α-Synuclein and its therapeutic potential in Parkinson’s disease</article-title>
.
<source>Commun. Integr. Biol.</source>
<volume>5</volume>
:
<fpage>94</fpage>
<lpage>95</lpage>
.
<pub-id pub-id-type="doi">10.4161/cib.18483</pub-id>
<pub-id pub-id-type="pmid">22482021</pub-id>
</mixed-citation>
</ref>
<ref id="bib65">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Picard</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Petrie</surname>
<given-names>R.J.</given-names>
</name>
,
<name>
<surname>Antoine-Bertrand</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Saint-Cyr-Proulx</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Villemure</surname>
<given-names>J.F.</given-names>
</name>
, and
<name>
<surname>Lamarche-Vane</surname>
<given-names>N.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Spatial and temporal activation of the small GTPases RhoA and Rac1 by the netrin-1 receptor UNC5a during neurite outgrowth</article-title>
.
<source>Cell. Signal.</source>
<volume>21</volume>
:
<fpage>1961</fpage>
<lpage>1973</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cellsig.2009.09.004</pub-id>
<pub-id pub-id-type="pmid">19755150</pub-id>
</mixed-citation>
</ref>
<ref id="bib66">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Portales-Casamar</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Briançon-Marjollet</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Fromont</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Triboulet</surname>
<given-names>R.</given-names>
</name>
, and
<name>
<surname>Debant</surname>
<given-names>A.</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Identification of novel neuronal isoforms of the Rho-GEF Trio</article-title>
.
<source>Biol. Cell.</source>
<volume>98</volume>
:
<fpage>183</fpage>
<lpage>193</lpage>
.
<pub-id pub-id-type="doi">10.1042/BC20050009</pub-id>
<pub-id pub-id-type="pmid">16033331</pub-id>
</mixed-citation>
</ref>
<ref id="bib67">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rama</surname>
<given-names>N.</given-names>
</name>
,
<name>
<surname>Goldschneider</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Corset</surname>
<given-names>V.</given-names>
</name>
,
<name>
<surname>Lambert</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Pays</surname>
<given-names>L.</given-names>
</name>
, and
<name>
<surname>Mehlen</surname>
<given-names>P.</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Amyloid precursor protein regulates netrin-1-mediated commissural axon outgrowth</article-title>
.
<source>J. Biol. Chem.</source>
<volume>287</volume>
:
<fpage>30014</fpage>
<lpage>30023</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.M111.324780</pub-id>
<pub-id pub-id-type="pmid">22782894</pub-id>
</mixed-citation>
</ref>
<ref id="bib68">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Richards</surname>
<given-names>L.J.</given-names>
</name>
,
<name>
<surname>Koester</surname>
<given-names>S.E.</given-names>
</name>
,
<name>
<surname>Tuttle</surname>
<given-names>R.</given-names>
</name>
, and
<name>
<surname>O’Leary</surname>
<given-names>D.D.M.</given-names>
</name>
</person-group>
<year>1997</year>
<article-title>Directed growth of early cortical axons is influenced by a chemoattractant released from an intermediate target</article-title>
.
<source>J. Neurosci.</source>
<volume>17</volume>
:
<fpage>2445</fpage>
<lpage>2458</lpage>
.
<pub-id pub-id-type="pmid">9065505</pub-id>
</mixed-citation>
</ref>
<ref id="bib69">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rohde</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Daugaard</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Jensen</surname>
<given-names>M.H.</given-names>
</name>
,
<name>
<surname>Helin</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Nylandsted</surname>
<given-names>J.</given-names>
</name>
, and
<name>
<surname>Jäättelä</surname>
<given-names>M.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms</article-title>
.
<source>Genes Dev.</source>
<volume>19</volume>
:
<fpage>570</fpage>
<lpage>582</lpage>
.
<pub-id pub-id-type="doi">10.1101/gad.305405</pub-id>
<pub-id pub-id-type="pmid">15741319</pub-id>
</mixed-citation>
</ref>
<ref id="bib70">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Serafini</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Kennedy</surname>
<given-names>T.E.</given-names>
</name>
,
<name>
<surname>Galko</surname>
<given-names>M.J.</given-names>
</name>
,
<name>
<surname>Mirzayan</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Jessell</surname>
<given-names>T.M.</given-names>
</name>
, and
<name>
<surname>Tessier-Lavigne</surname>
<given-names>M.</given-names>
</name>
</person-group>
<year>1994</year>
<article-title>The netrins define a family of axon outgrowth-promoting proteins homologous to
<italic>C. elegans</italic>
UNC-6</article-title>
.
<source>Cell.</source>
<volume>78</volume>
:
<fpage>409</fpage>
<lpage>424</lpage>
.
<pub-id pub-id-type="doi">10.1016/0092-8674(94)90420-0</pub-id>
<pub-id pub-id-type="pmid">8062384</pub-id>
</mixed-citation>
</ref>
<ref id="bib71">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Serafini</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Colamarino</surname>
<given-names>S.A.</given-names>
</name>
,
<name>
<surname>Leonardo</surname>
<given-names>E.D.</given-names>
</name>
,
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Beddington</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Skarnes</surname>
<given-names>W.C.</given-names>
</name>
, and
<name>
<surname>Tessier-Lavigne</surname>
<given-names>M.</given-names>
</name>
</person-group>
<year>1996</year>
<article-title>Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system</article-title>
.
<source>Cell.</source>
<volume>87</volume>
:
<fpage>1001</fpage>
<lpage>1014</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0092-8674(00)81795-X</pub-id>
<pub-id pub-id-type="pmid">8978605</pub-id>
</mixed-citation>
</ref>
<ref id="bib72">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharma</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Burré</surname>
<given-names>J.</given-names>
</name>
, and
<name>
<surname>Südhof</surname>
<given-names>T.C.</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>CSPα promotes SNARE-complex assembly by chaperoning SNAP-25 during synaptic activity</article-title>
.
<source>Nat. Cell Biol.</source>
<volume>13</volume>
:
<fpage>30</fpage>
<lpage>39</lpage>
.
<pub-id pub-id-type="doi">10.1038/ncb2131</pub-id>
<pub-id pub-id-type="pmid">21151134</pub-id>
</mixed-citation>
</ref>
<ref id="bib73">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shekarabi</surname>
<given-names>M.</given-names>
</name>
, and
<name>
<surname>Kennedy</surname>
<given-names>T.E.</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>The netrin-1 receptor DCC promotes filopodia formation and cell spreading by activating Cdc42 and Rac1</article-title>
.
<source>Mol. Cell. Neurosci.</source>
<volume>19</volume>
:
<fpage>1</fpage>
<lpage>17</lpage>
.
<pub-id pub-id-type="doi">10.1006/mcne.2001.1075</pub-id>
<pub-id pub-id-type="pmid">11817894</pub-id>
</mixed-citation>
</ref>
<ref id="bib74">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shieh</surname>
<given-names>J.C.</given-names>
</name>
,
<name>
<surname>Schaar</surname>
<given-names>B.T.</given-names>
</name>
,
<name>
<surname>Srinivasan</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Brodsky</surname>
<given-names>F.M.</given-names>
</name>
, and
<name>
<surname>McConnell</surname>
<given-names>S.K.</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Endocytosis regulates cell soma translocation and the distribution of adhesion proteins in migrating neurons</article-title>
.
<source>PLoS ONE.</source>
<volume>6</volume>
:
<fpage>e17802</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0017802</pub-id>
<pub-id pub-id-type="pmid">21445347</pub-id>
</mixed-citation>
</ref>
<ref id="bib75">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shimura</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Schwartz</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Gygi</surname>
<given-names>S.P.</given-names>
</name>
, and
<name>
<surname>Kosik</surname>
<given-names>K.S.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival</article-title>
.
<source>J. Biol. Chem.</source>
<volume>279</volume>
:
<fpage>4869</fpage>
<lpage>4876</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.M305838200</pub-id>
<pub-id pub-id-type="pmid">14612456</pub-id>
</mixed-citation>
</ref>
<ref id="bib76">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Srour</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Rivière</surname>
<given-names>J.B.</given-names>
</name>
,
<name>
<surname>Pham</surname>
<given-names>J.M.</given-names>
</name>
,
<name>
<surname>Dubé</surname>
<given-names>M.P.</given-names>
</name>
,
<name>
<surname>Girard</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Morin</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Dion</surname>
<given-names>P.A.</given-names>
</name>
,
<name>
<surname>Asselin</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Rochefort</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Hince</surname>
<given-names>P.</given-names>
</name>
,
<etal></etal>
</person-group>
<year>2010</year>
<article-title>Mutations in
<italic>DCC</italic>
cause congenital mirror movements</article-title>
.
<source>Science.</source>
<volume>328</volume>
:
<fpage>592</fpage>
<pub-id pub-id-type="doi">10.1126/science.1186463</pub-id>
<pub-id pub-id-type="pmid">20431009</pub-id>
</mixed-citation>
</ref>
<ref id="bib77">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Südhof</surname>
<given-names>T.C.</given-names>
</name>
, and
<name>
<surname>Rothman</surname>
<given-names>J.E.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Membrane fusion: grappling with SNARE and SM proteins</article-title>
.
<source>Science.</source>
<volume>323</volume>
:
<fpage>474</fpage>
<lpage>477</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1161748</pub-id>
<pub-id pub-id-type="pmid">19164740</pub-id>
</mixed-citation>
</ref>
<ref id="bib78">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tcherkezian</surname>
<given-names>J.</given-names>
</name>
, and
<name>
<surname>Lamarche-Vane</surname>
<given-names>N.</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Current knowledge of the large RhoGAP family of proteins</article-title>
.
<source>Biol. Cell.</source>
<volume>99</volume>
:
<fpage>67</fpage>
<lpage>86</lpage>
.
<pub-id pub-id-type="doi">10.1042/BC20060086</pub-id>
<pub-id pub-id-type="pmid">17222083</pub-id>
</mixed-citation>
</ref>
<ref id="bib79">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tessier-Lavigne</surname>
<given-names>M.</given-names>
</name>
, and
<name>
<surname>Goodman</surname>
<given-names>C.S.</given-names>
</name>
</person-group>
<year>1996</year>
<article-title>The molecular biology of axon guidance</article-title>
.
<source>Science.</source>
<volume>274</volume>
:
<fpage>1123</fpage>
<lpage>1133</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.274.5290.1123</pub-id>
<pub-id pub-id-type="pmid">8895455</pub-id>
</mixed-citation>
</ref>
<ref id="bib80">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Turturici</surname>
<given-names>G.</given-names>
</name>
,
<name>
<surname>Sconzo</surname>
<given-names>G.</given-names>
</name>
, and
<name>
<surname>Geraci</surname>
<given-names>F.</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Hsp70 and its molecular role in nervous system diseases</article-title>
.
<source>Biochem. Res. Int.</source>
<volume>2011</volume>
:
<fpage>618127</fpage>
<pub-id pub-id-type="doi">10.1155/2011/618127</pub-id>
<pub-id pub-id-type="pmid">21403864</pub-id>
</mixed-citation>
</ref>
<ref id="bib81">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Winkle</surname>
<given-names>C.C.</given-names>
</name>
,
<name>
<surname>McClain</surname>
<given-names>L.M.</given-names>
</name>
,
<name>
<surname>Valtschanoff</surname>
<given-names>J.G.</given-names>
</name>
,
<name>
<surname>Park</surname>
<given-names>C.S.</given-names>
</name>
,
<name>
<surname>Maglione</surname>
<given-names>C.</given-names>
</name>
, and
<name>
<surname>Gupton</surname>
<given-names>S.L.</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>A novel Netrin-1–sensitive mechanism promotes local SNARE-mediated exocytosis during axon branching</article-title>
.
<source>J. Cell Biol.</source>
<volume>205</volume>
:
<fpage>217</fpage>
<lpage>232</lpage>
.
<pub-id pub-id-type="doi">10.1083/jcb.201311003</pub-id>
<pub-id pub-id-type="pmid">24778312</pub-id>
</mixed-citation>
</ref>
<ref id="bib82">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yam</surname>
<given-names>P.T.</given-names>
</name>
,
<name>
<surname>Langlois</surname>
<given-names>S.D.</given-names>
</name>
,
<name>
<surname>Morin</surname>
<given-names>S.</given-names>
</name>
, and
<name>
<surname>Charron</surname>
<given-names>F.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Sonic hedgehog guides axons through a noncanonical, Src-family-kinase-dependent signaling pathway</article-title>
.
<source>Neuron.</source>
<volume>62</volume>
:
<fpage>349</fpage>
<lpage>362</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.neuron.2009.03.022</pub-id>
<pub-id pub-id-type="pmid">19447091</pub-id>
</mixed-citation>
</ref>
<ref id="bib83">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Sun</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Zhu</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Shi</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>H.</given-names>
</name>
, and
<name>
<surname>Xu</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>POSH localizes activated Rac1 to control the formation of cytoplasmic dilation of the leading process and neuronal migration</article-title>
.
<source>Cell Reports.</source>
<volume>2</volume>
:
<fpage>640</fpage>
<lpage>651</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.celrep.2012.08.007</pub-id>
<pub-id pub-id-type="pmid">22959435</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000069 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000069 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4555821
   |texte=   Hsc70 chaperone activity underlies Trio GEF function in axon growth and guidance induced by netrin-1
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26323693" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonFranceV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024