La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000017 ( Pmc/Corpus ); précédent : 0000169; suivant : 0000180 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Age-dependent α-synuclein aggregation in the
<italic>Microcebus murinus</italic>
lemur primate</title>
<author>
<name sortKey="Canron, Marie Helene" sort="Canron, Marie Helene" uniqKey="Canron M" first="Marie-Hélène" last="Canron">Marie-Hélène Canron</name>
<affiliation>
<nlm:aff id="a1">
<institution>Univ. de Bordeaux, Institut des Maladies Neurodégénératives</institution>
, UMR 5293, F-33000 Bordeaux, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>CNRS, Institut des Maladies Neurodégénératives</institution>
, UMR 5293, F-33000 Bordeaux, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Perret, Martine" sort="Perret, Martine" uniqKey="Perret M" first="Martine" last="Perret">Martine Perret</name>
<affiliation>
<nlm:aff id="a3">
<institution>CNRS UMR 7179, MNHN, Département Ecologie et gestion de la biodiversité</institution>
, Brunoy, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vital, Anne" sort="Vital, Anne" uniqKey="Vital A" first="Anne" last="Vital">Anne Vital</name>
<affiliation>
<nlm:aff id="a1">
<institution>Univ. de Bordeaux, Institut des Maladies Neurodégénératives</institution>
, UMR 5293, F-33000 Bordeaux, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>CNRS, Institut des Maladies Neurodégénératives</institution>
, UMR 5293, F-33000 Bordeaux, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bezard, Erwan" sort="Bezard, Erwan" uniqKey="Bezard E" first="Erwan" last="Bézard">Erwan Bézard</name>
<affiliation>
<nlm:aff id="a1">
<institution>Univ. de Bordeaux, Institut des Maladies Neurodégénératives</institution>
, UMR 5293, F-33000 Bordeaux, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>CNRS, Institut des Maladies Neurodégénératives</institution>
, UMR 5293, F-33000 Bordeaux, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dehay, Benjamin" sort="Dehay, Benjamin" uniqKey="Dehay B" first="Benjamin" last="Dehay">Benjamin Dehay</name>
<affiliation>
<nlm:aff id="a1">
<institution>Univ. de Bordeaux, Institut des Maladies Neurodégénératives</institution>
, UMR 5293, F-33000 Bordeaux, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>CNRS, Institut des Maladies Neurodégénératives</institution>
, UMR 5293, F-33000 Bordeaux, France</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23205271</idno>
<idno type="pmc">3510464</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510464</idno>
<idno type="RBID">PMC:3510464</idno>
<idno type="doi">10.1038/srep00910</idno>
<date when="2012">2012</date>
<idno type="wicri:Area/Pmc/Corpus">000017</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000017</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Age-dependent α-synuclein aggregation in the
<italic>Microcebus murinus</italic>
lemur primate</title>
<author>
<name sortKey="Canron, Marie Helene" sort="Canron, Marie Helene" uniqKey="Canron M" first="Marie-Hélène" last="Canron">Marie-Hélène Canron</name>
<affiliation>
<nlm:aff id="a1">
<institution>Univ. de Bordeaux, Institut des Maladies Neurodégénératives</institution>
, UMR 5293, F-33000 Bordeaux, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>CNRS, Institut des Maladies Neurodégénératives</institution>
, UMR 5293, F-33000 Bordeaux, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Perret, Martine" sort="Perret, Martine" uniqKey="Perret M" first="Martine" last="Perret">Martine Perret</name>
<affiliation>
<nlm:aff id="a3">
<institution>CNRS UMR 7179, MNHN, Département Ecologie et gestion de la biodiversité</institution>
, Brunoy, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vital, Anne" sort="Vital, Anne" uniqKey="Vital A" first="Anne" last="Vital">Anne Vital</name>
<affiliation>
<nlm:aff id="a1">
<institution>Univ. de Bordeaux, Institut des Maladies Neurodégénératives</institution>
, UMR 5293, F-33000 Bordeaux, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>CNRS, Institut des Maladies Neurodégénératives</institution>
, UMR 5293, F-33000 Bordeaux, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bezard, Erwan" sort="Bezard, Erwan" uniqKey="Bezard E" first="Erwan" last="Bézard">Erwan Bézard</name>
<affiliation>
<nlm:aff id="a1">
<institution>Univ. de Bordeaux, Institut des Maladies Neurodégénératives</institution>
, UMR 5293, F-33000 Bordeaux, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>CNRS, Institut des Maladies Neurodégénératives</institution>
, UMR 5293, F-33000 Bordeaux, France</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dehay, Benjamin" sort="Dehay, Benjamin" uniqKey="Dehay B" first="Benjamin" last="Dehay">Benjamin Dehay</name>
<affiliation>
<nlm:aff id="a1">
<institution>Univ. de Bordeaux, Institut des Maladies Neurodégénératives</institution>
, UMR 5293, F-33000 Bordeaux, France</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>CNRS, Institut des Maladies Neurodégénératives</institution>
, UMR 5293, F-33000 Bordeaux, France</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific Reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Since age-dependent deposition of Aβ-amyloid has been reported in the
<italic>Microcebus</italic>
<italic>murinus</italic>
, we posited that this animal could as well be a model of age-related synucleinopathy. We characterized the distribution of Aβ-amyloid, α-synuclein and two of its modified forms in the brain of
<italic>Microcebus</italic>
<italic>murinus</italic>
aged from 1.5 to 10 years. Intracytoplasmic α-synuclein aggregates were observed only in aged animals in different brain regions, which were also phospho-Ser129 and nitrated α-synuclein immunoreactive. Age-dependent α-synuclein aggregation occurs spontaneously in mouse lemur primates.
<italic>Microcebus murinus</italic>
may provide a model to study age-associated α-synucleinopathy and for testing putative therapeutic interventions for both Alzheimer's and Parkinson's diseases.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Moore, D J" uniqKey="Moore D">D. J. Moore</name>
</author>
<author>
<name sortKey="Dawson, T M" uniqKey="Dawson T">T. M. Dawson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jenner, P" uniqKey="Jenner P">P. Jenner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meredith, G E" uniqKey="Meredith G">G. E. Meredith</name>
</author>
<author>
<name sortKey="Sonsalla, P K" uniqKey="Sonsalla P">P. K. Sonsalla</name>
</author>
<author>
<name sortKey="Chesselet, M F" uniqKey="Chesselet M">M. F. Chesselet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dehay, B" uniqKey="Dehay B">B. Dehay</name>
</author>
<author>
<name sortKey="Bezard, E" uniqKey="Bezard E">E. Bezard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bezard, E" uniqKey="Bezard E">E. Bezard</name>
</author>
<author>
<name sortKey="Yue, Z" uniqKey="Yue Z">Z. Yue</name>
</author>
<author>
<name sortKey="Kirik, D" uniqKey="Kirik D">D. Kirik</name>
</author>
<author>
<name sortKey="Spillantini, M G" uniqKey="Spillantini M">M. G. Spillantini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Austad, S N" uniqKey="Austad S">S. N. Austad</name>
</author>
<author>
<name sortKey="Fischer, K E" uniqKey="Fischer K">K. E. Fischer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Languille, S" uniqKey="Languille S">S. Languille</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bons, N" uniqKey="Bons N">N. Bons</name>
</author>
<author>
<name sortKey="Rieger, F" uniqKey="Rieger F">F. Rieger</name>
</author>
<author>
<name sortKey="Prudhomme, D" uniqKey="Prudhomme D">D. Prudhomme</name>
</author>
<author>
<name sortKey="Fisher, A" uniqKey="Fisher A">A. Fisher</name>
</author>
<author>
<name sortKey="Krause, K H" uniqKey="Krause K">K. H. Krause</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bons, N" uniqKey="Bons N">N. Bons</name>
</author>
<author>
<name sortKey="Mestre, N" uniqKey="Mestre N">N. Mestre</name>
</author>
<author>
<name sortKey="Petter, A" uniqKey="Petter A">A. Petter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bons, N" uniqKey="Bons N">N. Bons</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kraska, A" uniqKey="Kraska A">A. Kraska</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Picq, J L" uniqKey="Picq J">J. L. Picq</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dhenain, M" uniqKey="Dhenain M">M. Dhenain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dhenain, M" uniqKey="Dhenain M">M. Dhenain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oueslati, A" uniqKey="Oueslati A">A. Oueslati</name>
</author>
<author>
<name sortKey="Fournier, M" uniqKey="Fournier M">M. Fournier</name>
</author>
<author>
<name sortKey="Lashuel, H A" uniqKey="Lashuel H">H. A. Lashuel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, J P" uniqKey="Anderson J">J. P. Anderson</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Sci Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Sci Rep</journal-id>
<journal-title-group>
<journal-title>Scientific Reports</journal-title>
</journal-title-group>
<issn pub-type="epub">2045-2322</issn>
<publisher>
<publisher-name>Nature Publishing Group</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23205271</article-id>
<article-id pub-id-type="pmc">3510464</article-id>
<article-id pub-id-type="pii">srep00910</article-id>
<article-id pub-id-type="doi">10.1038/srep00910</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Age-dependent α-synuclein aggregation in the
<italic>Microcebus murinus</italic>
lemur primate</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Canron</surname>
<given-names>Marie-Hélène</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Perret</surname>
<given-names>Martine</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Vital</surname>
<given-names>Anne</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bézard</surname>
<given-names>Erwan</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dehay</surname>
<given-names>Benjamin</given-names>
</name>
<xref ref-type="corresp" rid="c1">a</xref>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<aff id="a1">
<label>1</label>
<institution>Univ. de Bordeaux, Institut des Maladies Neurodégénératives</institution>
, UMR 5293, F-33000 Bordeaux, France</aff>
<aff id="a2">
<label>2</label>
<institution>CNRS, Institut des Maladies Neurodégénératives</institution>
, UMR 5293, F-33000 Bordeaux, France</aff>
<aff id="a3">
<label>3</label>
<institution>CNRS UMR 7179, MNHN, Département Ecologie et gestion de la biodiversité</institution>
, Brunoy, France</aff>
</contrib-group>
<author-notes>
<corresp id="c1">
<label>a</label>
<email>benjamin.dehay@u-bordeaux2.fr</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>30</day>
<month>11</month>
<year>2012</year>
</pub-date>
<pub-date pub-type="collection">
<year>2012</year>
</pub-date>
<volume>2</volume>
<elocation-id>910</elocation-id>
<history>
<date date-type="received">
<day>31</day>
<month>07</month>
<year>2012</year>
</date>
<date date-type="accepted">
<day>01</day>
<month>11</month>
<year>2012</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2012, Macmillan Publishers Limited. All rights reserved</copyright-statement>
<copyright-year>2012</copyright-year>
<copyright-holder>Macmillan Publishers Limited. All rights reserved</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc-nd/3.0/">
<pmc-comment>author-paid</pmc-comment>
<license-p>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc-nd/3.0/">http://creativecommons.org/licenses/by-nc-nd/3.0/</ext-link>
</license-p>
</license>
</permissions>
<abstract>
<p>Since age-dependent deposition of Aβ-amyloid has been reported in the
<italic>Microcebus</italic>
<italic>murinus</italic>
, we posited that this animal could as well be a model of age-related synucleinopathy. We characterized the distribution of Aβ-amyloid, α-synuclein and two of its modified forms in the brain of
<italic>Microcebus</italic>
<italic>murinus</italic>
aged from 1.5 to 10 years. Intracytoplasmic α-synuclein aggregates were observed only in aged animals in different brain regions, which were also phospho-Ser129 and nitrated α-synuclein immunoreactive. Age-dependent α-synuclein aggregation occurs spontaneously in mouse lemur primates.
<italic>Microcebus murinus</italic>
may provide a model to study age-associated α-synucleinopathy and for testing putative therapeutic interventions for both Alzheimer's and Parkinson's diseases.</p>
</abstract>
</article-meta>
</front>
<body>
<p>Animal models are an essential tool for basic pathophysiological research, age-related research as well as drug development and compound testing in neurodegenerative diseases
<xref ref-type="bibr" rid="b1">1</xref>
<xref ref-type="bibr" rid="b2">2</xref>
<xref ref-type="bibr" rid="b3">3</xref>
. So far, most of animal studies on neurodegenerative disorders are based on transgenic mice or rats. Although very useful to unravel cellular mechanisms associated to neuronal cell death during the time course of the disease, no mammalian model recapitulates the full spectrum required age-dependent neurodegeneration, especially in Parkinson disease (PD)
<xref ref-type="bibr" rid="b4">4</xref>
<xref ref-type="bibr" rid="b5">5</xref>
. The aggregation-prone protein, α-synuclein, has been implicated in various neurodegenerative disorders by participating in abnormal protein depositions, such as PD, dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). The absence of adequate in vivo experimental models of synucleinopathy has severe repercussions for therapeutic intervention success
<xref ref-type="bibr" rid="b5">5</xref>
. Natural or ecological models would be an alternative to model pathological accumulation of α-synuclein. Of interest, among primate models,
<italic>Microcebus murinus</italic>
might be a very good candidate to study age-associated synucleinopathy
<xref ref-type="bibr" rid="b6">6</xref>
<xref ref-type="bibr" rid="b7">7</xref>
. The
<italic>Microcebus murinus</italic>
, a small lemurian primate, also referred to as the mouse lemur, has been described as a useful primate model for human cerebral aging and Alzheimer disease
<xref ref-type="bibr" rid="b8">8</xref>
. In mouse lemurs, histological studies have shown cerebral morphological and neuropathological alterations associated to ageing, including abundant Aβ amyloid plaques, Tau pathology, and atrophy of brain areas such as the cortex, the hippocampus, the thalamus and hypothalamus, the basal ganglia and the cerebellum
<xref ref-type="bibr" rid="b9">9</xref>
<xref ref-type="bibr" rid="b10">10</xref>
<xref ref-type="bibr" rid="b11">11</xref>
<xref ref-type="bibr" rid="b12">12</xref>
. In addition, as in humans, magnetic resonance imaging has corroborated age-associated cerebral atrophy and iron accumulation
<xref ref-type="bibr" rid="b13">13</xref>
<xref ref-type="bibr" rid="b14">14</xref>
. Based on these studies, we assessed the occurrence of spontaneous α-synuclein accumulation in the mouse lemur brain at different ages. Thus, the present study focuses on
<italic>Microcebus murinus</italic>
as a potential model for the study of age-associated synucleinopathy.</p>
<sec disp-level="1" sec-type="results">
<title>Results</title>
<p>We characterized the regional distribution of immunopositivity for misfolded proteins implicated in neurodegenerative diseases, such as Aβ deposits and α-synuclein aggregates (
<xref ref-type="fig" rid="f1">Fig. 1A–B</xref>
). Intracytoplasmic α-synuclein aggregates were observed only in old animals in the anterior olfactory nucleus, cortex, and regions implicated in PD, such as the substantia nigra pars compacta (SNpc) and the striatum (
<xref ref-type="fig" rid="f1">Fig. 1D–F–H</xref>
) and not in young individuals (
<xref ref-type="fig" rid="f1">Fig. 1C–E–G</xref>
). An antibody that specifically recognizes phospho-Ser129 was used to determine whether neuronal cell bodies in the mouse lemur contain this modified form of α-synuclein and whether α-synuclein phosphorylation is enhanced by aging. Phospho-Ser129 α-synuclein immunoreactive neurons were found in the cerebellum, hippocampus, thalamus, red nucleus, olfactory tubercle, cortex, SNpc and striatum of old mouse lemur primates (
<xref ref-type="fig" rid="f1">Fig. 1J–L–N</xref>
), whereas no immunostaining was detected in young animals (
<xref ref-type="fig" rid="f1">Fig. 1I–K–M</xref>
). Double immunofluorescence examination revealed that phosphor-Ser129 α-synuclein increases occurred within SNpc dopaminergic neurons in aged animals (
<xref ref-type="fig" rid="f2">Fig. 2A</xref>
). Other post-translational modification may occur in α-synuclein concerns nitration. Midbrain sections from young and old animals were therefore stained with an anti-nitrated α-synuclein antibody to detect potential age-related modifications. Similar to the results with phosphorylated α-synuclein, immunoreactivity for nitrated α-synuclein was slightly increased within nigral neurons of aged animals (
<xref ref-type="fig" rid="f2">Fig. 2B</xref>
).</p>
<p>Brain sections were immunostained with antibody against Aβ-amyloid as a control for proteinopathy. Aβ deposits were observed in many brain regions, such as cortex, cerebellum, inferior and superior colliculi, and anterior olfactory nucleus (
<xref ref-type="fig" rid="f1">Fig. 1B</xref>
). Diffuse plaques were strongly positive for Aβ-amyloid in the cortex of old animals (
<xref ref-type="fig" rid="f1">Fig. 1P</xref>
) whereas no Aβ deposits were found in young animals (
<xref ref-type="fig" rid="f1">Fig. 1O</xref>
). We did not observe βA4-amyloid immunostaining either in the SNpc or in the striatum whatever the age of the animals.</p>
</sec>
<sec disp-level="1" sec-type="discussion">
<title>Discussion</title>
<p>The purpose of this study was to investigate age-related accumulation of α-synuclein. We found that it specifically occurs as mouse lemur primates aged, and within regions implicated in PD, such as the SNpc.</p>
<p>Diffuse extracellular cortical Aβ-amyloid deposits were detected in every aged
<italic>Microcebus</italic>
brains, as previously reported by Bons and colleagues
<xref ref-type="bibr" rid="b9">9</xref>
<xref ref-type="bibr" rid="b10">10</xref>
. Indeed, these histological changes consisted in a large number of senile plaques composed of degenerated neurites sometimes surrounding an amyloid plaque. In addition to the “classic” Aβ-amyloid pathology, aging was also accompanied by the occurrence of α-synuclein in neurons of many brain areas and of interest in nigral cell bodies. Post-translational modifications of α-synuclein affect the biochemical and structural properties of the protein, and might promote aggregation and toxicity
<xref ref-type="bibr" rid="b15">15</xref>
. Phosphorylation at Ser129 has been reported to be the predominant modification of α-synuclein in Lewy bodies
<xref ref-type="bibr" rid="b16">16</xref>
. Of interest, immuno-expression of phospho-Ser129 and nitrated α-synuclein confirmed the formation of phosphorylated and nitrated protein within dopaminergic neurons. Such striking relationship between aging and misfolded protein deposition in the brain of mouse lemur primates strongly suggests that this species carries a specific and unique potential for the further study of ecologically-occurring proteinopathies.</p>
<p>In conclusion, these data show for the first time that i) α-synuclein aggregation can occur spontaneously with aging in mouse lemur primates and that ii)
<italic>Microcebus murinus</italic>
may provide an ecological model for the study of age-associated synucleinopathy. This spontaneous animal model may provide an ideal system for understanding the mechanisms and the dynamic evolution of ageing and related proteinopathies as well as a model into which identifying predictive biomarkers and testing therapeutic interventions for AD and PD.</p>
</sec>
<sec disp-level="1" sec-type="methods">
<title>Methods</title>
<sec disp-level="2">
<title>Animals</title>
<p>All mouse lemurs were housed in social cages with their mothers under controlled conditions of humidity, temperature, and light (12-h light/12-h dark cycle, lights on at 8.00 am); food and water were available ad libitum. Experiments were carried out in accordance with European Communities Council Directive of 3 June 2010 (2010/6106/EU) for care of laboratory animals in the breeding colony established at Brunoy (France, agreement A91.114.1) from a stock originally caught near the south coast of Madagascar, in 1965–1972. These studies were approved by the Ministry of Education and Science and the University of Bordeaux ethical committee. We studied 3 brains removed from young
<italic>Microcebus murinus</italic>
(2 males and 1 female) between 1.42 to 3.07 years old and 4 brains from old individuals (2 males and 2 females) aged 8.21 and 10.32 years old. All the animals were provided from the laboratory breeding colony at Brunoy (France, Perret M.).</p>
</sec>
<sec disp-level="2">
<title>Brain pathology</title>
<p>Neuropathological studies of mouse lemur brains were performed with procedures and antibodies used in human pathology, as described below.</p>
<p>Brains were fixed by immersion in 4% paraformaldehyde in 0.1 M Phosphate buffer (pH 7.4). One fixed hemi-brain was sectioned on a vibratome at 50µm on the sagittal plane. Immunohistochemistry was performed with a horseradish peroxydase (HRP) method with the following antibodies: anti α-synuclein clone LB509, a mouse monoclonal antibody (1:100 dilution; Invitrogen, Cergy-Pontoise, France); anti PSer129, a mouse monoclonal antibody against phospho-Ser129 α-synuclein (1:500; Wako); and anti Aβ-amyloid clone 6F/3D, a mouse monoclonal antibody (1:100; Dako, Trappes, France). Briefly, the sections were rinsed in PBS, permeabilized with PBS containing 0.3% triton X-100. For immunostaining with anti Aβ-amyloid and anti PSer129, sections were pretreated with formic acid (80%) and next with proteinase K (Dako, Trappes, France) for Aβ-amyloid immunolabelled sections only to enhance immunoreactivities. To block non specific reactions, sections were then exposed to a universal blocking reagent (Biogenex) for LB509 α-synuclein and PSer129 or to PBS containing 10% bovine albumin serum for 30 min for anti Aβ-amyloid. Incubation with primary antibodies lasted overnight at 4°C. Subsequently, the sections were transferred in 3% H
<sub>2</sub>
O
<sub>2</sub>
in PBS for 15 min to inhibit endogenous peroxidases and treated with a ready-to-use goat anti mouse En Vision-HRP enzyme conjugate (Dako, Trappes, France) for 40 min. The highly sensitive diaminobenzidin plus (DAB+) and the 3-amino-9 ethyl carbazol plus (AEC+) (both from Dako, Trappes, France) were used as substrates chromogens. Finally, sections were counterstained with Mayer's hemalum and mounted in an aqueous medium for microscopy. Immunohistochemical negative controls were performed by omission of the primary antibody. Double immunofluorescence was performed with a mouse monoclonal phospho-Ser129 α -synuclein (1:500; Wako) and a rabbit polyclonal anti tyrosine hydroxylase (TH) (1:4000; Millipore) as well as a mouse monoclonal nitrated α-synuclein (1:100, clone Syn505; Invitrogen) and TH. For immunostaining with anti-nitrated α-synuclein, sections were pretreated 5 minutes with formic acid (80%). Secondary antibodies were Alexa Fluor 488-labeled goat anti-mouse (Invitrogen) for phospho-Ser129 α-synuclein or goat anti-mouse En Vision-HRP enzyme conjugate followed by a dylight-488 conjugated goat anti-horseradish peroxydase (Jackson ImmunoResearch Laboratories) for anti-nitrated α-synuclein. To localize TH in dopaminergic neurons, Alexa Fluor 568-labeled donkey anti-rabbit (Invitrogen) was used.</p>
</sec>
</sec>
<sec disp-level="1">
<title>Author Contributions</title>
<p>B.D. and E.B. designed research; M.H.C., M.P., A.V. performed research; M.H.C., M.P., A.V., B.D. and E.B. analyzed data; B.D. and E.B. wrote the main manuscript text and B.D. and M.H.C. prepared figures. All authors reviewed the manuscript.</p>
</sec>
</body>
<back>
<ack>
<p>This work was supported by ANR-08-MNP-018 MCHPRIMAPARK Agence Nationale de la Recherche grants (EB), Biothèque Primate - Centre National de la Recherche Scientifique Life Sciences Department (EB), a post-doc fellowship from Fondation pour la Recherche Médicale (BD) and a FP7-PEOPLE-2009-RG (BD). The Université Bordeaux Segalen and the Centre National de la Recherche Scientifique provided the infrastructural support.</p>
</ack>
<ref-list>
<ref id="b1">
<mixed-citation publication-type="journal">
<name>
<surname>Moore</surname>
<given-names>D. J.</given-names>
</name>
&
<name>
<surname>Dawson</surname>
<given-names>T. M.</given-names>
</name>
<article-title>Value of genetic models in understanding the cause and mechanisms of Parkinson's disease</article-title>
.
<source>Curr Neurol Neurosci Rep</source>
<volume>8</volume>
,
<fpage>288</fpage>
<lpage>296</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18590612</pub-id>
</mixed-citation>
</ref>
<ref id="b2">
<mixed-citation publication-type="journal">
<name>
<surname>Jenner</surname>
<given-names>P.</given-names>
</name>
<article-title>Functional models of Parkinson's disease: a valuable tool in the development of novel therapies</article-title>
.
<source>Ann Neurol</source>
<volume>64</volume>
Suppl 2,
<fpage>S16</fpage>
<lpage>29</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">19127585</pub-id>
</mixed-citation>
</ref>
<ref id="b3">
<mixed-citation publication-type="journal">
<name>
<surname>Meredith</surname>
<given-names>G. E.</given-names>
</name>
,
<name>
<surname>Sonsalla</surname>
<given-names>P. K.</given-names>
</name>
&
<name>
<surname>Chesselet</surname>
<given-names>M. F.</given-names>
</name>
<article-title>Animal models of Parkinson's disease progression</article-title>
.
<source>Acta Neuropathol</source>
<volume>115</volume>
,
<fpage>385</fpage>
<lpage>398</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18273623</pub-id>
</mixed-citation>
</ref>
<ref id="b4">
<mixed-citation publication-type="journal">
<name>
<surname>Dehay</surname>
<given-names>B.</given-names>
</name>
&
<name>
<surname>Bezard</surname>
<given-names>E.</given-names>
</name>
<article-title>New animal models of Parkinson's disease</article-title>
.
<source>Mov Disord</source>
<volume>26</volume>
,
<fpage>1198</fpage>
<lpage>1205</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">22046592</pub-id>
</mixed-citation>
</ref>
<ref id="b5">
<mixed-citation publication-type="journal">
<name>
<surname>Bezard</surname>
<given-names>E.</given-names>
</name>
,
<name>
<surname>Yue</surname>
<given-names>Z.</given-names>
</name>
,
<name>
<surname>Kirik</surname>
<given-names>D.</given-names>
</name>
&
<name>
<surname>Spillantini</surname>
<given-names>M. G.</given-names>
</name>
<article-title>Animal models of Parkinson's disease: Limits and relevance to neuroprotection studies</article-title>
.
<source>Mov Disord</source>
(
<year>2012</year>
).</mixed-citation>
</ref>
<ref id="b6">
<mixed-citation publication-type="journal">
<name>
<surname>Austad</surname>
<given-names>S. N.</given-names>
</name>
&
<name>
<surname>Fischer</surname>
<given-names>K. E.</given-names>
</name>
<article-title>The development of small primate models for aging research</article-title>
.
<source>ILAR J</source>
<volume>52</volume>
,
<fpage>78</fpage>
<lpage>88</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21411860</pub-id>
</mixed-citation>
</ref>
<ref id="b7">
<mixed-citation publication-type="journal">
<name>
<surname>Languille</surname>
<given-names>S.</given-names>
</name>
<italic>et al.</italic>
<article-title>The grey mouse lemur: a non-human primate model for ageing studies</article-title>
.
<source>Ageing Res Rev</source>
<volume>11</volume>
,
<fpage>150</fpage>
<lpage>162</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">21802530</pub-id>
</mixed-citation>
</ref>
<ref id="b8">
<mixed-citation publication-type="journal">
<name>
<surname>Bons</surname>
<given-names>N.</given-names>
</name>
,
<name>
<surname>Rieger</surname>
<given-names>F.</given-names>
</name>
,
<name>
<surname>Prudhomme</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Fisher</surname>
<given-names>A.</given-names>
</name>
&
<name>
<surname>Krause</surname>
<given-names>K. H.</given-names>
</name>
<article-title>Microcebus murinus: a useful primate model for human cerebral aging and Alzheimer's disease?</article-title>
<source>Genes Brain Behav</source>
<volume>5</volume>
,
<fpage>120</fpage>
<lpage>130</lpage>
(
<year>2006</year>
).
<pub-id pub-id-type="pmid">16507003</pub-id>
</mixed-citation>
</ref>
<ref id="b9">
<mixed-citation publication-type="journal">
<name>
<surname>Bons</surname>
<given-names>N.</given-names>
</name>
,
<name>
<surname>Mestre</surname>
<given-names>N.</given-names>
</name>
&
<name>
<surname>Petter</surname>
<given-names>A.</given-names>
</name>
<article-title>Senile plaques and neurofibrillary changes in the brain of an aged lemurian primate, Microcebus murinus</article-title>
.
<source>Neurobiol Aging</source>
<volume>13</volume>
,
<fpage>99</fpage>
<lpage>105</lpage>
(
<year>1992</year>
).
<pub-id pub-id-type="pmid">1542387</pub-id>
</mixed-citation>
</ref>
<ref id="b10">
<mixed-citation publication-type="journal">
<name>
<surname>Bons</surname>
<given-names>N.</given-names>
</name>
<italic>et al.</italic>
<article-title>Identification of amyloid beta protein in the brain of the small, short-lived lemurian primate Microcebus murinus</article-title>
.
<source>Neurobiol Aging</source>
<volume>15</volume>
,
<fpage>215</fpage>
<lpage>220</lpage>
(
<year>1994</year>
).
<pub-id pub-id-type="pmid">7838294</pub-id>
</mixed-citation>
</ref>
<ref id="b11">
<mixed-citation publication-type="journal">
<name>
<surname>Kraska</surname>
<given-names>A.</given-names>
</name>
<italic>et al.</italic>
<article-title>Age-associated cerebral atrophy in mouse lemur primates</article-title>
.
<source>Neurobiol Aging</source>
<volume>32</volume>
,
<fpage>894</fpage>
<lpage>906</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">19564059</pub-id>
</mixed-citation>
</ref>
<ref id="b12">
<mixed-citation publication-type="journal">
<name>
<surname>Picq</surname>
<given-names>J. L.</given-names>
</name>
<article-title>Aging affects executive functions and memory in mouse lemur primates</article-title>
.
<source>Exp Gerontol</source>
<volume>42</volume>
,
<fpage>223</fpage>
<lpage>232</lpage>
(
<year>2007</year>
).
<pub-id pub-id-type="pmid">17084573</pub-id>
</mixed-citation>
</ref>
<ref id="b13">
<mixed-citation publication-type="journal">
<name>
<surname>Dhenain</surname>
<given-names>M.</given-names>
</name>
<italic>et al.</italic>
<article-title>MRI description of cerebral atrophy in mouse lemur primates</article-title>
.
<source>Neurobiol Aging</source>
<volume>21</volume>
,
<fpage>81</fpage>
<lpage>88</lpage>
(
<year>2000</year>
).
<pub-id pub-id-type="pmid">10794852</pub-id>
</mixed-citation>
</ref>
<ref id="b14">
<mixed-citation publication-type="journal">
<name>
<surname>Dhenain</surname>
<given-names>M.</given-names>
</name>
<italic>et al.</italic>
<article-title>Cerebral T2-weighted signal decrease during aging in the mouse lemur primate reflects iron accumulation</article-title>
.
<source>Neurobiol Aging</source>
<volume>19</volume>
,
<fpage>65</fpage>
<lpage>69</lpage>
(
<year>1998</year>
).
<pub-id pub-id-type="pmid">9562505</pub-id>
</mixed-citation>
</ref>
<ref id="b15">
<mixed-citation publication-type="journal">
<name>
<surname>Oueslati</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Fournier</surname>
<given-names>M.</given-names>
</name>
&
<name>
<surname>Lashuel</surname>
<given-names>H. A.</given-names>
</name>
<article-title>Role of post-translational modifications in modulating the structure, function and toxicity of alpha-synuclein: implications for Parkinson's disease pathogenesis and therapies</article-title>
.
<source>Prog Brain Res</source>
<volume>183</volume>
,
<fpage>115</fpage>
<lpage>145</lpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">20696318</pub-id>
</mixed-citation>
</ref>
<ref id="b16">
<mixed-citation publication-type="journal">
<name>
<surname>Anderson</surname>
<given-names>J. P.</given-names>
</name>
<italic>et al.</italic>
<article-title>Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease</article-title>
.
<source>J Biol Chem</source>
<volume>281</volume>
,
<fpage>29739</fpage>
<lpage>29752</lpage>
(
<year>2006</year>
).
<pub-id pub-id-type="pmid">16847063</pub-id>
</mixed-citation>
</ref>
</ref-list>
<fn-group>
<fn fn-type="conflict">
<p>EB is Chief Scientific Officer of Motac neuroscience Ltd. All other authors reported no biomedical financial interests or potential conflicts of interest.</p>
</fn>
</fn-group>
</back>
<floats-group>
<fig id="f1">
<label>Figure 1</label>
<caption>
<title>Distribution of synuclein and amyloid pathology in mouse lemur brains.</title>
<p>(A) Sagittal section of mouse lemur stained with Mayer's hemalum showing midbrain and forebrain regions. Scale bar = 2 mm. (B) Sagittal section of mouse lemur stained with Mayer's hemalun showing distribution of βA4 (purple stars), α-synuclein (pink stars), Phospho-Ser129 α-synuclein (orange stars) immunoreactive regions. (C–H) Magnifications of selected α-synuclein positive regions in young and old animals boxed in A: cortex (C–D), SNpc (E–F), striatum (G–H). (I–N) Magnifications of selected Phospho-Ser129 α-synuclein positive regions in young and old animals boxed in A: cortex (I–J), SNpc (K–L), striatum (M–N). (O–T) Magnifications of selected βA4 positive regions in young and old animals boxed in A: cortex (O–P), SNpc (Q–R), striatum (S–T); Scale bar = 10 µm.</p>
</caption>
<graphic xlink:href="srep00910-f1"></graphic>
</fig>
<fig id="f2">
<label>Figure 2</label>
<caption>
<title>Phosphorylated and nitrated α-synuclein immunoreactivity is enhanced in the substantia nigra of old (n = 4) as compared with young (n = 3) mouse lemur.</title>
<p>(A) Representative midbrain sections from young and old mouse lemur co-immunostained with tyrosine hydroxylase (TH, red) and an anti-phosphorylated α-synuclein (P-Ser129 α-synuclein, green). The merged image shows colabeling within a nigral neuron. (B) Double immunofluorescence for nitrated α-synuclein (green) in TH-positive neurons (red) in young and old animals. The merged image shows coimmunoreactivity within a nigral neuron. Scale bar for panels A and B = 10 µm.</p>
</caption>
<graphic xlink:href="srep00910-f2"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000017  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000017  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024