La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Basal ganglia network mediates the control of movement amplitude

Identifieur interne : 000586 ( PascalFrancis/Curation ); précédent : 000585; suivant : 000587

Basal ganglia network mediates the control of movement amplitude

Auteurs : M. Desmurget [France] ; S. T. Grafton [États-Unis] ; P. Vindras [Suisse] ; H. Grea [États-Unis] ; R. S. Turner [France]

Source :

RBID : Pascal:04-0163568

Descripteurs français

English descriptors

Abstract

In the present study we address the hypothesis that the basal ganglia are specifically involved in the planning of movement amplitude (or related covariates). This prediction has often been put forward based on the observation that Parkinson's disease (PD) patients exhibit hypokinesia. A close examination of the literature shows, however, that this commonly reported clinical symptom is not consistently echoed by experimental observations. When required to point to visual targets in the absence of vision of the moving limb, PD subjects exhibit various patterns of inaccuracy, including hypometria, hypermetria, systematic direction bias, or direction-dependent errors. They have even been shown to be as accurate as healthy, age-matched subjects. The main aim of the current study is to address the origin of these inconsistencies. To this end, we required nine patients presenting with advanced PD and 15 age-matched control subjects to perform planar reaching movements to visual targets. Eight targets were presented in equally spaced directions around a circle centered on the hand's starting location. Based on a previously validated parsing procedure, end-point errors were segmented into localization and planning errors. Localization errors refer to the existence of systematic biases in the estimation of the initial hand location. These biases can potentially transform a simple pattern of pure amplitude errors into a complex pattern involving both amplitude and direction errors. Results indicated that localization errors were different in the PD patients and the control subjects. This is not surprising knowing both that proprioception is altered in PD patients and that the ability to locate the hand at rest relies mainly on the proprioceptive sense, even when vision is available. Unlike normal subjects, localization errors in PD were idiosyncratic, lacking a consistent pattern across subjects. When the confounding effect of initial hand localization errors was canceled, we found that end-point errors were only due to the implementation of an underscaled movement gain (15%), without direction bias. Interestingly, the level of undershoot was found to increase with the severity of the disease (inferred from the Unified Parkinson's Disease Rating Scale, UPDRS, motor score). We also observed that movement variability was amplified (32%), but only along the main movement axis (extent variability). Direction variability was not significantly different in the patient population and the control group. When considered together, these results support the idea that the basal ganglia are specifically involved in the control of movement amplitude (or of some covariates). We propose that this structure participates in extent planning by modulating cortical activity and/or the tuning of the spinal interneuronal circuits.
pA  
A01 01  1    @0 0014-4819
A02 01      @0 EXBRAP
A03   1    @0 Exp. brain res.
A05       @2 153
A06       @2 2
A08 01  1  ENG  @1 Basal ganglia network mediates the control of movement amplitude
A09 01  1  ENG  @1 The cognitive and neural bases of visually guided action
A11 01  1    @1 DESMURGET (M.)
A11 02  1    @1 GRAFTON (S. T.)
A11 03  1    @1 VINDRAS (P.)
A11 04  1    @1 GREA (H.)
A11 05  1    @1 TURNER (R. S.)
A12 01  1    @1 MILNER (David) @9 ed.
A12 02  1    @1 KARNATH (Hans-Otto) @9 ed.
A12 03  1    @1 DESMURGET (Michel) @9 ed.
A14 01      @1 Space and Action, INSERM U534, 16 av. du Doyen Lepine @2 69500 Bron @3 FRA @Z 1 aut. @Z 5 aut.
A14 02      @1 Center for Cognitive Neuroscience, Dartmouth College, 6162 Moore Hall @2 Hanover, NH 03755 @3 USA @Z 2 aut.
A14 03      @1 FPSE, University de Genève, 40 bd du pont d'Arve, Uni Mail @2 1205 Geneva @3 CHE @Z 3 aut.
A14 04      @1 Department of Neurosurgery, UCSF, Box 0520 @2 San Francisco, Calif. @3 USA @Z 4 aut.
A15 01      @1 Cognitive Neuroscience Research Unit, Wolfson Research Institute, University of Durham, University Boulevard @2 Stockton-on-Tees, TS17 6BH @3 GBR @Z 1 aut.
A15 02      @1 Department of Cognitive Neurology, University of Tübingen, Hoppe-Seyler-Str. 3 @2 72076 Tübingen @3 DEU @Z 2 aut.
A15 03      @1 'Space and Action', INSERM, U534, 13 Av. du Doyen Lépine @2 69500 Bron @3 FRA @Z 3 aut.
A20       @1 197-209
A21       @1 2003
A23 01      @0 ENG
A43 01      @1 INIST @2 12535 @5 354000116269760080
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 1 p.3/4
A47 01  1    @0 04-0163568
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Experimental brain research
A66 01      @0 DEU
C01 01    ENG  @0 In the present study we address the hypothesis that the basal ganglia are specifically involved in the planning of movement amplitude (or related covariates). This prediction has often been put forward based on the observation that Parkinson's disease (PD) patients exhibit hypokinesia. A close examination of the literature shows, however, that this commonly reported clinical symptom is not consistently echoed by experimental observations. When required to point to visual targets in the absence of vision of the moving limb, PD subjects exhibit various patterns of inaccuracy, including hypometria, hypermetria, systematic direction bias, or direction-dependent errors. They have even been shown to be as accurate as healthy, age-matched subjects. The main aim of the current study is to address the origin of these inconsistencies. To this end, we required nine patients presenting with advanced PD and 15 age-matched control subjects to perform planar reaching movements to visual targets. Eight targets were presented in equally spaced directions around a circle centered on the hand's starting location. Based on a previously validated parsing procedure, end-point errors were segmented into localization and planning errors. Localization errors refer to the existence of systematic biases in the estimation of the initial hand location. These biases can potentially transform a simple pattern of pure amplitude errors into a complex pattern involving both amplitude and direction errors. Results indicated that localization errors were different in the PD patients and the control subjects. This is not surprising knowing both that proprioception is altered in PD patients and that the ability to locate the hand at rest relies mainly on the proprioceptive sense, even when vision is available. Unlike normal subjects, localization errors in PD were idiosyncratic, lacking a consistent pattern across subjects. When the confounding effect of initial hand localization errors was canceled, we found that end-point errors were only due to the implementation of an underscaled movement gain (15%), without direction bias. Interestingly, the level of undershoot was found to increase with the severity of the disease (inferred from the Unified Parkinson's Disease Rating Scale, UPDRS, motor score). We also observed that movement variability was amplified (32%), but only along the main movement axis (extent variability). Direction variability was not significantly different in the patient population and the control group. When considered together, these results support the idea that the basal ganglia are specifically involved in the control of movement amplitude (or of some covariates). We propose that this structure participates in extent planning by modulating cortical activity and/or the tuning of the spinal interneuronal circuits.
C02 01  X    @0 002B17G
C03 01  X  FRE  @0 Noyau gris central @5 01
C03 01  X  ENG  @0 Basal ganglion @5 01
C03 01  X  SPA  @0 Núcleo basal @5 01
C03 02  X  FRE  @0 Préparation motrice @5 02
C03 02  X  ENG  @0 Motor preparation @5 02
C03 02  X  SPA  @0 Preparación motriz @5 02
C03 03  X  FRE  @0 Mouvement orienté @5 03
C03 03  X  ENG  @0 Goal directed movement @5 03
C03 03  X  SPA  @0 Movimiento orientado @5 03
C03 04  X  FRE  @0 Main @5 04
C03 04  X  ENG  @0 Hand @5 04
C03 04  X  SPA  @0 Mano @5 04
C03 05  X  FRE  @0 Planification @5 05
C03 05  X  ENG  @0 Planning @5 05
C03 05  X  SPA  @0 Planificación @5 05
C03 06  X  FRE  @0 Estimation @5 06
C03 06  X  ENG  @0 Estimation @5 06
C03 06  X  SPA  @0 Estimación @5 06
C03 07  X  FRE  @0 Proprioception @5 07
C03 07  X  ENG  @0 Proprioception @5 07
C03 07  X  SPA  @0 Propiocepción @5 07
C03 08  X  FRE  @0 Précision @5 08
C03 08  X  ENG  @0 Accuracy @5 08
C03 08  X  SPA  @0 Precisión @5 08
C03 09  X  FRE  @0 Contrôle moteur @5 10
C03 09  X  ENG  @0 Motor control @5 10
C03 09  X  SPA  @0 Control motor @5 10
C03 10  X  FRE  @0 Parkinson maladie @5 12
C03 10  X  ENG  @0 Parkinson disease @5 12
C03 10  X  SPA  @0 Parkinson enfermedad @5 12
C03 11  X  FRE  @0 Homme @5 54
C03 11  X  ENG  @0 Human @5 54
C03 11  X  SPA  @0 Hombre @5 54
C07 01  X  FRE  @0 Encéphale pathologie @5 20
C07 01  X  ENG  @0 Cerebral disorder @5 20
C07 01  X  SPA  @0 Encéfalo patología @5 20
C07 02  X  FRE  @0 Système nerveux pathologie @5 22
C07 02  X  ENG  @0 Nervous system diseases @5 22
C07 02  X  SPA  @0 Sistema nervioso patología @5 22
C07 03  X  FRE  @0 Extrapyramidal syndrome @5 23
C07 03  X  ENG  @0 Extrapyramidal syndrome @5 23
C07 03  X  SPA  @0 Extrapiramidal síndrome @5 23
C07 04  X  FRE  @0 Maladie dégénérative @5 24
C07 04  X  ENG  @0 Degenerative disease @5 24
C07 04  X  SPA  @0 Enfermedad degenerativa @5 24
C07 05  X  FRE  @0 Système nerveux central pathologie @5 25
C07 05  X  ENG  @0 Central nervous system disease @5 25
C07 05  X  SPA  @0 Sistema nervosio central patología @5 25
N21       @1 110
pR  
A30 01  1  ENG  @1 The cognitive and neural bases of visually guided action. Workshop @3 La Londe-les-Maures FRA @4 2002-09

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0163568

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Basal ganglia network mediates the control of movement amplitude</title>
<author>
<name sortKey="Desmurget, M" sort="Desmurget, M" uniqKey="Desmurget M" first="M." last="Desmurget">M. Desmurget</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Space and Action, INSERM U534, 16 av. du Doyen Lepine</s1>
<s2>69500 Bron</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Grafton, S T" sort="Grafton, S T" uniqKey="Grafton S" first="S. T." last="Grafton">S. T. Grafton</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Center for Cognitive Neuroscience, Dartmouth College, 6162 Moore Hall</s1>
<s2>Hanover, NH 03755</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Vindras, P" sort="Vindras, P" uniqKey="Vindras P" first="P." last="Vindras">P. Vindras</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>FPSE, University de Genève, 40 bd du pont d'Arve, Uni Mail</s1>
<s2>1205 Geneva</s2>
<s3>CHE</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
</affiliation>
</author>
<author>
<name sortKey="Grea, H" sort="Grea, H" uniqKey="Grea H" first="H." last="Grea">H. Grea</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Neurosurgery, UCSF, Box 0520</s1>
<s2>San Francisco, Calif.</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Turner, R S" sort="Turner, R S" uniqKey="Turner R" first="R. S." last="Turner">R. S. Turner</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Space and Action, INSERM U534, 16 av. du Doyen Lepine</s1>
<s2>69500 Bron</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0163568</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 04-0163568 INIST</idno>
<idno type="RBID">Pascal:04-0163568</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000E48</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000586</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Basal ganglia network mediates the control of movement amplitude</title>
<author>
<name sortKey="Desmurget, M" sort="Desmurget, M" uniqKey="Desmurget M" first="M." last="Desmurget">M. Desmurget</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Space and Action, INSERM U534, 16 av. du Doyen Lepine</s1>
<s2>69500 Bron</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Grafton, S T" sort="Grafton, S T" uniqKey="Grafton S" first="S. T." last="Grafton">S. T. Grafton</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Center for Cognitive Neuroscience, Dartmouth College, 6162 Moore Hall</s1>
<s2>Hanover, NH 03755</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Vindras, P" sort="Vindras, P" uniqKey="Vindras P" first="P." last="Vindras">P. Vindras</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>FPSE, University de Genève, 40 bd du pont d'Arve, Uni Mail</s1>
<s2>1205 Geneva</s2>
<s3>CHE</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
</affiliation>
</author>
<author>
<name sortKey="Grea, H" sort="Grea, H" uniqKey="Grea H" first="H." last="Grea">H. Grea</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Neurosurgery, UCSF, Box 0520</s1>
<s2>San Francisco, Calif.</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Turner, R S" sort="Turner, R S" uniqKey="Turner R" first="R. S." last="Turner">R. S. Turner</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Space and Action, INSERM U534, 16 av. du Doyen Lepine</s1>
<s2>69500 Bron</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Experimental brain research</title>
<title level="j" type="abbreviated">Exp. brain res.</title>
<idno type="ISSN">0014-4819</idno>
<imprint>
<date when="2003">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Experimental brain research</title>
<title level="j" type="abbreviated">Exp. brain res.</title>
<idno type="ISSN">0014-4819</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Accuracy</term>
<term>Basal ganglion</term>
<term>Estimation</term>
<term>Goal directed movement</term>
<term>Hand</term>
<term>Human</term>
<term>Motor control</term>
<term>Motor preparation</term>
<term>Parkinson disease</term>
<term>Planning</term>
<term>Proprioception</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Noyau gris central</term>
<term>Préparation motrice</term>
<term>Mouvement orienté</term>
<term>Main</term>
<term>Planification</term>
<term>Estimation</term>
<term>Proprioception</term>
<term>Précision</term>
<term>Contrôle moteur</term>
<term>Parkinson maladie</term>
<term>Homme</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Homme</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the present study we address the hypothesis that the basal ganglia are specifically involved in the planning of movement amplitude (or related covariates). This prediction has often been put forward based on the observation that Parkinson's disease (PD) patients exhibit hypokinesia. A close examination of the literature shows, however, that this commonly reported clinical symptom is not consistently echoed by experimental observations. When required to point to visual targets in the absence of vision of the moving limb, PD subjects exhibit various patterns of inaccuracy, including hypometria, hypermetria, systematic direction bias, or direction-dependent errors. They have even been shown to be as accurate as healthy, age-matched subjects. The main aim of the current study is to address the origin of these inconsistencies. To this end, we required nine patients presenting with advanced PD and 15 age-matched control subjects to perform planar reaching movements to visual targets. Eight targets were presented in equally spaced directions around a circle centered on the hand's starting location. Based on a previously validated parsing procedure, end-point errors were segmented into localization and planning errors. Localization errors refer to the existence of systematic biases in the estimation of the initial hand location. These biases can potentially transform a simple pattern of pure amplitude errors into a complex pattern involving both amplitude and direction errors. Results indicated that localization errors were different in the PD patients and the control subjects. This is not surprising knowing both that proprioception is altered in PD patients and that the ability to locate the hand at rest relies mainly on the proprioceptive sense, even when vision is available. Unlike normal subjects, localization errors in PD were idiosyncratic, lacking a consistent pattern across subjects. When the confounding effect of initial hand localization errors was canceled, we found that end-point errors were only due to the implementation of an underscaled movement gain (15%), without direction bias. Interestingly, the level of undershoot was found to increase with the severity of the disease (inferred from the Unified Parkinson's Disease Rating Scale, UPDRS, motor score). We also observed that movement variability was amplified (32%), but only along the main movement axis (extent variability). Direction variability was not significantly different in the patient population and the control group. When considered together, these results support the idea that the basal ganglia are specifically involved in the control of movement amplitude (or of some covariates). We propose that this structure participates in extent planning by modulating cortical activity and/or the tuning of the spinal interneuronal circuits.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0014-4819</s0>
</fA01>
<fA02 i1="01">
<s0>EXBRAP</s0>
</fA02>
<fA03 i2="1">
<s0>Exp. brain res.</s0>
</fA03>
<fA05>
<s2>153</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Basal ganglia network mediates the control of movement amplitude</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>The cognitive and neural bases of visually guided action</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>DESMURGET (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GRAFTON (S. T.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>VINDRAS (P.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GREA (H.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>TURNER (R. S.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>MILNER (David)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>KARNATH (Hans-Otto)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>DESMURGET (Michel)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Space and Action, INSERM U534, 16 av. du Doyen Lepine</s1>
<s2>69500 Bron</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Center for Cognitive Neuroscience, Dartmouth College, 6162 Moore Hall</s1>
<s2>Hanover, NH 03755</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>FPSE, University de Genève, 40 bd du pont d'Arve, Uni Mail</s1>
<s2>1205 Geneva</s2>
<s3>CHE</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Neurosurgery, UCSF, Box 0520</s1>
<s2>San Francisco, Calif.</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Cognitive Neuroscience Research Unit, Wolfson Research Institute, University of Durham, University Boulevard</s1>
<s2>Stockton-on-Tees, TS17 6BH</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Department of Cognitive Neurology, University of Tübingen, Hoppe-Seyler-Str. 3</s1>
<s2>72076 Tübingen</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>'Space and Action', INSERM, U534, 13 Av. du Doyen Lépine</s1>
<s2>69500 Bron</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA20>
<s1>197-209</s1>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>12535</s2>
<s5>354000116269760080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0163568</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Experimental brain research</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In the present study we address the hypothesis that the basal ganglia are specifically involved in the planning of movement amplitude (or related covariates). This prediction has often been put forward based on the observation that Parkinson's disease (PD) patients exhibit hypokinesia. A close examination of the literature shows, however, that this commonly reported clinical symptom is not consistently echoed by experimental observations. When required to point to visual targets in the absence of vision of the moving limb, PD subjects exhibit various patterns of inaccuracy, including hypometria, hypermetria, systematic direction bias, or direction-dependent errors. They have even been shown to be as accurate as healthy, age-matched subjects. The main aim of the current study is to address the origin of these inconsistencies. To this end, we required nine patients presenting with advanced PD and 15 age-matched control subjects to perform planar reaching movements to visual targets. Eight targets were presented in equally spaced directions around a circle centered on the hand's starting location. Based on a previously validated parsing procedure, end-point errors were segmented into localization and planning errors. Localization errors refer to the existence of systematic biases in the estimation of the initial hand location. These biases can potentially transform a simple pattern of pure amplitude errors into a complex pattern involving both amplitude and direction errors. Results indicated that localization errors were different in the PD patients and the control subjects. This is not surprising knowing both that proprioception is altered in PD patients and that the ability to locate the hand at rest relies mainly on the proprioceptive sense, even when vision is available. Unlike normal subjects, localization errors in PD were idiosyncratic, lacking a consistent pattern across subjects. When the confounding effect of initial hand localization errors was canceled, we found that end-point errors were only due to the implementation of an underscaled movement gain (15%), without direction bias. Interestingly, the level of undershoot was found to increase with the severity of the disease (inferred from the Unified Parkinson's Disease Rating Scale, UPDRS, motor score). We also observed that movement variability was amplified (32%), but only along the main movement axis (extent variability). Direction variability was not significantly different in the patient population and the control group. When considered together, these results support the idea that the basal ganglia are specifically involved in the control of movement amplitude (or of some covariates). We propose that this structure participates in extent planning by modulating cortical activity and/or the tuning of the spinal interneuronal circuits.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B17G</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Noyau gris central</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Basal ganglion</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Núcleo basal</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Préparation motrice</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Motor preparation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Preparación motriz</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Mouvement orienté</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Goal directed movement</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Movimiento orientado</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Main</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Hand</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Mano</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Planification</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Planning</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Planificación</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Estimation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Estimation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Estimación</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Proprioception</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Proprioception</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Propiocepción</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Précision</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Accuracy</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Precisión</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Contrôle moteur</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Motor control</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Control motor</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Parkinson maladie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Parkinson disease</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Parkinson enfermedad</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Homme</s0>
<s5>54</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Human</s0>
<s5>54</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>54</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Encéphale pathologie</s0>
<s5>20</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Cerebral disorder</s0>
<s5>20</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Encéfalo patología</s0>
<s5>20</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Système nerveux pathologie</s0>
<s5>22</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Nervous system diseases</s0>
<s5>22</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Sistema nervioso patología</s0>
<s5>22</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Extrapyramidal syndrome</s0>
<s5>23</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Extrapyramidal syndrome</s0>
<s5>23</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Extrapiramidal síndrome</s0>
<s5>23</s5>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Maladie dégénérative</s0>
<s5>24</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Degenerative disease</s0>
<s5>24</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Enfermedad degenerativa</s0>
<s5>24</s5>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Système nerveux central pathologie</s0>
<s5>25</s5>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Central nervous system disease</s0>
<s5>25</s5>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Sistema nervosio central patología</s0>
<s5>25</s5>
</fC07>
<fN21>
<s1>110</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>The cognitive and neural bases of visually guided action. Workshop</s1>
<s3>La Londe-les-Maures FRA</s3>
<s4>2002-09</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000586 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000586 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:04-0163568
   |texte=   Basal ganglia network mediates the control of movement amplitude
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024