La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Trace element geochemistry of CR chondrite metal

Identifieur interne : 002518 ( Istex/Corpus ); précédent : 002517; suivant : 002519

Trace element geochemistry of CR chondrite metal

Auteurs : Emmanuel Jacquet ; Marine Paulhiac-Pison ; Olivier Alard ; Anton T. Kearsley ; Matthieu Gounelle

Source :

RBID : ISTEX:34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB

Abstract

We report trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) of metal grains from nine different CR chondrites, distinguishing grains from chondrule interior (“interior grains”), chondrule surficial shells (“margin grains”), and the matrix (“isolated grains”). Save for a few anomalous grains, Ni‐normalized trace element patterns are similar for all three petrographic settings, with largely unfractionated refractory siderophile elements and depleted volatile Au, Cu, Ag, S. All three types of grains are interpreted to derive from a common precursor approximated by the least‐melted, fine‐grained objects in CR chondrites. This also excludes recondensation of metal vapor as the origin of the bulk of margin grains. The metal precursors were presumably formed by incomplete condensation, with evidence for high‐temperature isolation of refractory platinum‐group‐element (PGE)‐rich condensates before mixing with lower temperature PGE‐depleted condensates. The rounded shape of the Ni‐rich, interior grains shows that they were molten and that they equilibrated with silicates upon slow cooling (1–100 K h−1), largely by oxidation/evaporation of Fe, hence their high Pd content, for example. We propose that Ni‐poorer, amoeboid margin grains, often included in the pyroxene‐rich periphery common to type I chondrules, result from less intense processing of a rim accreted onto the chondrule subsequent to the melting event recorded by the interior grains. This means either that there were two separate heating events, which formed olivine/interior grains and pyroxene/margin grains, respectively, between which dust was accreted around the chondrule, or that there was a single high‐temperature event, of which the chondrule margin records a late “quenching phase,” in which case dust accreted onto chondrules while they were molten. In the latter case, high dust concentrations in the chondrule‐forming region (at least three orders of magnitude above minimum mass solar nebula models) are indicated.

Url:
DOI: 10.1111/maps.12212

Links to Exploration step

ISTEX:34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Trace element geochemistry of CR chondrite metal</title>
<author>
<name sortKey="Jacquet, Emmanuel" sort="Jacquet, Emmanuel" uniqKey="Jacquet E" first="Emmanuel" last="Jacquet">Emmanuel Jacquet</name>
<affiliation>
<mods:affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St Georges Street, ON, M5S 3H8, Toronto, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: ejacquet@cita.utoronto.ca</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Paulhiac Ison, Marine" sort="Paulhiac Ison, Marine" uniqKey="Paulhiac Ison M" first="Marine" last="Paulhiac-Pison">Marine Paulhiac-Pison</name>
<affiliation>
<mods:affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Ecole Normale Supérieure de Paris, 45 rue d'Ulm, 75005, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alard, Olivier" sort="Alard, Olivier" uniqKey="Alard O" first="Olivier" last="Alard">Olivier Alard</name>
<affiliation>
<mods:affiliation>Géosciences Montpellier, Université de Montpellier II, UMR 5243Place E. Bataillon, 34095, Montpellier Cedex 5, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kearsley, Anton T" sort="Kearsley, Anton T" uniqKey="Kearsley A" first="Anton T." last="Kearsley">Anton T. Kearsley</name>
<affiliation>
<mods:affiliation>Impacts and Astromaterials Research Centre, Department of Mineralogy, The Natural History Museum, SW7 5BD, London, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gounelle, Matthieu" sort="Gounelle, Matthieu" uniqKey="Gounelle M" first="Matthieu" last="Gounelle">Matthieu Gounelle</name>
<affiliation>
<mods:affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institut Universitaire de France, Maison des Universités, 103 boulevard Saint‐Michel, 75005, Paris, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1111/maps.12212</idno>
<idno type="url">https://api.istex.fr/document/34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002518</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002518</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Trace element geochemistry of CR chondrite metal</title>
<author>
<name sortKey="Jacquet, Emmanuel" sort="Jacquet, Emmanuel" uniqKey="Jacquet E" first="Emmanuel" last="Jacquet">Emmanuel Jacquet</name>
<affiliation>
<mods:affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St Georges Street, ON, M5S 3H8, Toronto, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: ejacquet@cita.utoronto.ca</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Paulhiac Ison, Marine" sort="Paulhiac Ison, Marine" uniqKey="Paulhiac Ison M" first="Marine" last="Paulhiac-Pison">Marine Paulhiac-Pison</name>
<affiliation>
<mods:affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Ecole Normale Supérieure de Paris, 45 rue d'Ulm, 75005, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alard, Olivier" sort="Alard, Olivier" uniqKey="Alard O" first="Olivier" last="Alard">Olivier Alard</name>
<affiliation>
<mods:affiliation>Géosciences Montpellier, Université de Montpellier II, UMR 5243Place E. Bataillon, 34095, Montpellier Cedex 5, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kearsley, Anton T" sort="Kearsley, Anton T" uniqKey="Kearsley A" first="Anton T." last="Kearsley">Anton T. Kearsley</name>
<affiliation>
<mods:affiliation>Impacts and Astromaterials Research Centre, Department of Mineralogy, The Natural History Museum, SW7 5BD, London, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gounelle, Matthieu" sort="Gounelle, Matthieu" uniqKey="Gounelle M" first="Matthieu" last="Gounelle">Matthieu Gounelle</name>
<affiliation>
<mods:affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institut Universitaire de France, Maison des Universités, 103 boulevard Saint‐Michel, 75005, Paris, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Meteoritics & Planetary Science</title>
<title level="j" type="abbrev">Meteorit Planet Sci</title>
<idno type="ISSN">1086-9379</idno>
<idno type="eISSN">1945-5100</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2013-10">2013-10</date>
<biblScope unit="volume">48</biblScope>
<biblScope unit="issue">10</biblScope>
<biblScope unit="page" from="1981">1981</biblScope>
<biblScope unit="page" to="1999">1999</biblScope>
</imprint>
<idno type="ISSN">1086-9379</idno>
</series>
<idno type="istex">34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB</idno>
<idno type="DOI">10.1111/maps.12212</idno>
<idno type="ArticleID">MAPS12212</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1086-9379</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">We report trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) of metal grains from nine different CR chondrites, distinguishing grains from chondrule interior (“interior grains”), chondrule surficial shells (“margin grains”), and the matrix (“isolated grains”). Save for a few anomalous grains, Ni‐normalized trace element patterns are similar for all three petrographic settings, with largely unfractionated refractory siderophile elements and depleted volatile Au, Cu, Ag, S. All three types of grains are interpreted to derive from a common precursor approximated by the least‐melted, fine‐grained objects in CR chondrites. This also excludes recondensation of metal vapor as the origin of the bulk of margin grains. The metal precursors were presumably formed by incomplete condensation, with evidence for high‐temperature isolation of refractory platinum‐group‐element (PGE)‐rich condensates before mixing with lower temperature PGE‐depleted condensates. The rounded shape of the Ni‐rich, interior grains shows that they were molten and that they equilibrated with silicates upon slow cooling (1–100 K h−1), largely by oxidation/evaporation of Fe, hence their high Pd content, for example. We propose that Ni‐poorer, amoeboid margin grains, often included in the pyroxene‐rich periphery common to type I chondrules, result from less intense processing of a rim accreted onto the chondrule subsequent to the melting event recorded by the interior grains. This means either that there were two separate heating events, which formed olivine/interior grains and pyroxene/margin grains, respectively, between which dust was accreted around the chondrule, or that there was a single high‐temperature event, of which the chondrule margin records a late “quenching phase,” in which case dust accreted onto chondrules while they were molten. In the latter case, high dust concentrations in the chondrule‐forming region (at least three orders of magnitude above minimum mass solar nebula models) are indicated.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Emmanuel Jacquet</name>
<affiliations>
<json:string>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</json:string>
<json:string>Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St Georges Street, ON, M5S 3H8, Toronto, Canada</json:string>
<json:string>E-mail: ejacquet@cita.utoronto.ca</json:string>
</affiliations>
</json:item>
<json:item>
<name>Marine Paulhiac‐Pison</name>
<affiliations>
<json:string>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</json:string>
<json:string>Ecole Normale Supérieure de Paris, 45 rue d'Ulm, 75005, Paris, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Olivier Alard</name>
<affiliations>
<json:string>Géosciences Montpellier, Université de Montpellier II, UMR 5243Place E. Bataillon, 34095, Montpellier Cedex 5, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Anton T. Kearsley</name>
<affiliations>
<json:string>Impacts and Astromaterials Research Centre, Department of Mineralogy, The Natural History Museum, SW7 5BD, London, UK</json:string>
</affiliations>
</json:item>
<json:item>
<name>Matthieu Gounelle</name>
<affiliations>
<json:string>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</json:string>
<json:string>Institut Universitaire de France, Maison des Universités, 103 boulevard Saint‐Michel, 75005, Paris, France</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>MAPS12212</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>We report trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) of metal grains from nine different CR chondrites, distinguishing grains from chondrule interior (“interior grains”), chondrule surficial shells (“margin grains”), and the matrix (“isolated grains”). Save for a few anomalous grains, Ni‐normalized trace element patterns are similar for all three petrographic settings, with largely unfractionated refractory siderophile elements and depleted volatile Au, Cu, Ag, S. All three types of grains are interpreted to derive from a common precursor approximated by the least‐melted, fine‐grained objects in CR chondrites. This also excludes recondensation of metal vapor as the origin of the bulk of margin grains. The metal precursors were presumably formed by incomplete condensation, with evidence for high‐temperature isolation of refractory platinum‐group‐element (PGE)‐rich condensates before mixing with lower temperature PGE‐depleted condensates. The rounded shape of the Ni‐rich, interior grains shows that they were molten and that they equilibrated with silicates upon slow cooling (1–100 K h−1), largely by oxidation/evaporation of Fe, hence their high Pd content, for example. We propose that Ni‐poorer, amoeboid margin grains, often included in the pyroxene‐rich periphery common to type I chondrules, result from less intense processing of a rim accreted onto the chondrule subsequent to the melting event recorded by the interior grains. This means either that there were two separate heating events, which formed olivine/interior grains and pyroxene/margin grains, respectively, between which dust was accreted around the chondrule, or that there was a single high‐temperature event, of which the chondrule margin records a late “quenching phase,” in which case dust accreted onto chondrules while they were molten. In the latter case, high dust concentrations in the chondrule‐forming region (at least three orders of magnitude above minimum mass solar nebula models) are indicated.</abstract>
<qualityIndicators>
<score>10</score>
<pdfVersion>1.7</pdfVersion>
<pdfPageSize>595.276 x 790.866 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2051</abstractCharCount>
<pdfWordCount>9951</pdfWordCount>
<pdfCharCount>62943</pdfCharCount>
<pdfPageCount>19</pdfPageCount>
<abstractWordCount>288</abstractWordCount>
</qualityIndicators>
<title>Trace element geochemistry of CR chondrite metal</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>N. M Abreu</name>
</json:item>
</author>
<host>
<volume>46</volume>
<author></author>
<title>Meteoritics & Planetary Science</title>
</host>
<title>Petrographic evidence of shock metamorphism in CR2 chondrite GRO 03116 (abstract #5211)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N. M. Abreu</name>
</json:item>
<json:item>
<name>A. J. Brearley</name>
</json:item>
</author>
<host>
<volume>74</volume>
<pages>
<last>1171</last>
<first>1146</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>Early solar system processes recorded in the matrices of two highly pristine CR3 carbonaceous chondrites, MET 00426 and QUE 99177</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Exotic minerals found in opaque nodules in CR chondrite GRA 06100 (abstract #5266)</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>F. Afiattalab</name>
</json:item>
<json:item>
<name>J. T. Wasson</name>
</json:item>
</author>
<host>
<volume>44</volume>
<pages>
<last>443</last>
<first>431</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>Composition of the metal phases in ordinary chondrites—Implications regarding classification and metamorphism</title>
</json:item>
<json:item>
<author>
<json:item>
<name>O. Alard</name>
</json:item>
<json:item>
<name>W. L. Griffin</name>
</json:item>
<json:item>
<name>J.‐P. Lorand</name>
</json:item>
<json:item>
<name>S. E. Jackson</name>
</json:item>
<json:item>
<name>S. Y. O'Reilly</name>
</json:item>
</author>
<host>
<volume>407</volume>
<pages>
<last>894</last>
<first>891</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Non‐chondritic distribution of the highly siderophile elements in mantle sulphides</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. M. O'D. Alexander</name>
</json:item>
<json:item>
<name>J. N. Grossman</name>
</json:item>
<json:item>
<name>D. S. Ebel</name>
</json:item>
<json:item>
<name>F. J. Ciesla</name>
</json:item>
</author>
<host>
<volume>320</volume>
<pages>
<last>1619</last>
<first>1617</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>The formation conditions of chondrules and chondrites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Amelin</name>
</json:item>
<json:item>
<name>A. N. Krot</name>
</json:item>
<json:item>
<name>I. D. Hutcheon</name>
</json:item>
<json:item>
<name>A. A. Ulyanov</name>
</json:item>
</author>
<host>
<volume>297</volume>
<pages>
<last>1683</last>
<first>1678</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Lead isotopic ages of chondrules and calcium‐aluminum‐rich inclusions</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Bischoff</name>
</json:item>
<json:item>
<name>H. Palme</name>
</json:item>
<json:item>
<name>R. D. Ash</name>
</json:item>
<json:item>
<name>R. N. Clayton</name>
</json:item>
<json:item>
<name>L. Schultz</name>
</json:item>
<json:item>
<name>U. Herpers</name>
</json:item>
<json:item>
<name>D. Stoffler</name>
</json:item>
<json:item>
<name>M. M. Grady</name>
</json:item>
<json:item>
<name>C. T. Pillinger</name>
</json:item>
<json:item>
<name>B. Spettel</name>
</json:item>
<json:item>
<name>H. Weber</name>
</json:item>
<json:item>
<name>T. Grund</name>
</json:item>
<json:item>
<name>M. Endress</name>
</json:item>
<json:item>
<name>D Weber</name>
</json:item>
</author>
<host>
<volume>57</volume>
<pages>
<last>1603</last>
<first>1587</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>Paired Renazzo‐type (CR) carbonaceous chondrites from the Sahara</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Brearley</name>
</json:item>
<json:item>
<name>A. Jones</name>
</json:item>
</author>
<host>
<volume>36</volume>
<pages>
<last>3‐398</last>
<first>3‐1</first>
</pages>
<author></author>
<title>Planetary materials</title>
</host>
<title>Reviews in Mineralogy and Geochemistry</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Briani</name>
</json:item>
<json:item>
<name>E. Quirico</name>
</json:item>
<json:item>
<name>M. Gounelle</name>
</json:item>
<json:item>
<name>M. Paulhiac‐Pison</name>
</json:item>
<json:item>
<name>G. Montagnac</name>
</json:item>
<json:item>
<name>P. Beck</name>
</json:item>
<json:item>
<name>F.‐R. Orthous‐Daunay</name>
</json:item>
<json:item>
<name>L. Bonal</name>
</json:item>
<json:item>
<name>E. Jacquet</name>
</json:item>
<json:item>
<name>A. Kearsley</name>
</json:item>
<json:item>
<name>S. S. Russell</name>
</json:item>
</author>
<host>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>Short duration thermal metamorphism in CR chondrites</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Buchwald V. F. 1975. Handbook of iron meteorites: Their history, distribution, composition and structure. I. Iron meteorites in general. Berkeley, California: University of California Press.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>K. W. Burton</name>
</json:item>
<json:item>
<name>B. Cenki‐Tok</name>
</json:item>
<json:item>
<name>F. Mokadem</name>
</json:item>
<json:item>
<name>J. Harvey</name>
</json:item>
<json:item>
<name>A. Gannoun</name>
</json:item>
<json:item>
<name>O. Alard</name>
</json:item>
<json:item>
<name>I. J. Parkinson</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>573</last>
<first>570</first>
</pages>
<author></author>
<title>Nature Geoscience</title>
</host>
<title>Unradiogenic lead in Earth's upper mantle</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. J. Campbell</name>
</json:item>
<json:item>
<name>M. Humayun</name>
</json:item>
</author>
<host>
<volume>68</volume>
<pages>
<last>3422</last>
<first>3409</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>Formation of metal in the CH chondrites ALH 85085 and PCA 91467</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. J. Campbell</name>
</json:item>
<json:item>
<name>S. B. Simon</name>
</json:item>
<json:item>
<name>M. Humayun</name>
</json:item>
<json:item>
<name>L. Grossman</name>
</json:item>
</author>
<host>
<volume>67</volume>
<pages>
<last>3134</last>
<first>3119</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>Chemical evolution of metal in refractory inclusions in CV3 chondrites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. J. Campbell</name>
</json:item>
<json:item>
<name>B. Zanda</name>
</json:item>
<json:item>
<name>C. Perron</name>
</json:item>
<json:item>
<name>A. Meibom</name>
</json:item>
<json:item>
<name>M. I. Petaev</name>
</json:item>
</author>
<host>
<pages>
<last>431</last>
<first>407</first>
</pages>
<author></author>
<title>Chondrites and the protoplanetary disk</title>
</host>
<title>Origin and thermal history of Fe‐Ni metal in primitive chondrites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. J. Capobianco</name>
</json:item>
<json:item>
<name>J. H. Jones</name>
</json:item>
<json:item>
<name>M. J. Drake</name>
</json:item>
</author>
<host>
<volume>98</volume>
<pages>
<last>5443</last>
<first>5433</first>
</pages>
<author></author>
<title>Journal of Geophysical Research</title>
</host>
<title>Metal‐silicates thermochemistry at high temperature: Magma oceans and the “excess siderophile element” problem of the Earth's upper mantle</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. R. J. Charles</name>
</json:item>
<json:item>
<name>D. W. Davis</name>
</json:item>
</author>
<host>
<volume>45</volume>
<author></author>
<title>Meteoritics & Planetary Science</title>
</host>
<title>(207Pb/206Pb)* ID‐TIMS ages of NWA 801 chondrules and Mokoia CAIS by a progressive dissolution (abstract #5391)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. C. Connolly</name>
</json:item>
<json:item>
<name>G. R. Huss</name>
</json:item>
<json:item>
<name>G. J. Wasserburg</name>
</json:item>
</author>
<host>
<volume>65</volume>
<pages>
<last>4588</last>
<first>4567</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>On the formation of Fe‐Ni metal in Renazzo‐like carbonaceous chondrites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. S. Ebel</name>
</json:item>
<json:item>
<name>M. K. Weisberg</name>
</json:item>
<json:item>
<name>J. Hertz</name>
</json:item>
<json:item>
<name>A. J. Campbell</name>
</json:item>
</author>
<host>
<volume>43</volume>
<pages>
<last>1740</last>
<first>1725</first>
</pages>
<author></author>
<title>Meteoritics & Planetary Science</title>
</host>
<title>Shape, metal abundance, chemistry, and origin of chondrules in the Renazzo (CR) chondrite</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. L. Gooding</name>
</json:item>
<json:item>
<name>K. Keil</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>43</last>
<first>17</first>
</pages>
<author></author>
<title>Meteoritics</title>
</host>
<title>Relative abundances of chondrule primary textural types in ordinary chondrites and their bearing on conditions of chondrule formation</title>
</json:item>
<json:item>
<host>
<author></author>
<title>The composition of primitive meteorites</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>W. L. Griffin</name>
</json:item>
<json:item>
<name>W. J. Powell</name>
</json:item>
<json:item>
<name>N. J. Pearson</name>
</json:item>
<json:item>
<name>S. Y. O'Reilly</name>
</json:item>
</author>
<host>
<volume>40</volume>
<pages>
<last>311</last>
<first>308</first>
</pages>
<author></author>
<title>Short Course Series</title>
</host>
<title>Glitter: Data reduction software for laser ablation ICP‐MS</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Grossman</name>
</json:item>
<json:item>
<name>A. V. Fedkin</name>
</json:item>
<json:item>
<name>S. B. Simon</name>
</json:item>
</author>
<host>
<volume>47</volume>
<pages>
<last>2169</last>
<first>2160</first>
</pages>
<author></author>
<title>Meteoritics & Planetary Science</title>
</host>
<title>Formation of the first oxidized iron in the solar system</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Güttler</name>
</json:item>
<json:item>
<name>J. Blum</name>
</json:item>
<json:item>
<name>A. Zsom</name>
</json:item>
<json:item>
<name>C. W. Ormel</name>
</json:item>
<json:item>
<name>C. P. Dullemond</name>
</json:item>
</author>
<host>
<volume>513</volume>
<pages>
<first>56</first>
</pages>
<author></author>
<title>Astronomy & Astrophysics</title>
</host>
<title>The outcome of protoplanetary dust growth: Pebbles, boulders or planetesimals? I. Mapping the zoo of laboratory collision experiments</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Hayashi</name>
</json:item>
</author>
<host>
<volume>70</volume>
<pages>
<last>53</last>
<first>35</first>
</pages>
<author></author>
<title>Progress of Theoretical Physics Supplement</title>
</host>
<title>Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. H. Hewins</name>
</json:item>
<json:item>
<name>B. Zanda</name>
</json:item>
</author>
<host>
<volume>47</volume>
<pages>
<last>1138</last>
<first>1120</first>
</pages>
<author></author>
<title>Meteoritics & Planetary Science</title>
</host>
<title>Chondrules: Precursors and interactions with the nebular gas</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. H. Hewins</name>
</json:item>
<json:item>
<name>Y. Yu</name>
</json:item>
<json:item>
<name>B. Zanda</name>
</json:item>
<json:item>
<name>M. Bourot‐Denise</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>298</last>
<first>275</first>
</pages>
<author></author>
<title>Antarctic Meteorite Research</title>
</host>
<title>Do nebular fractionations, evaporative losses, or both, influence chondrule compositions?</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. H. Hewins</name>
</json:item>
<json:item>
<name>B. Zanda</name>
</json:item>
<json:item>
<name>C. Bendersky</name>
</json:item>
</author>
<host>
<volume>78</volume>
<pages>
<last>17</last>
<first>1</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>Evaporation and recondensation of sodium in Semarkona type II chondrules</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Howard</name>
</json:item>
</author>
<host>
<volume>92</volume>
<pages>
<last>212</last>
<first>168</first>
</pages>
<author></author>
<title>Philosophical Transactions</title>
</host>
<title>Experiments and observations on certain stony and metalline substances which at different times are said to have fallen on the Earth; also on various kinds of native irons</title>
</json:item>
<json:item>
<host>
<author></author>
<title>The origin of chondrules in CR chondrites: An ironclad perspective (abstract #8004)</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Humayun</name>
</json:item>
</author>
<host>
<volume>47</volume>
<pages>
<last>1208</last>
<first>1191</first>
</pages>
<author></author>
<title>Meteoritics & Planetary Science</title>
</host>
<title>Chondrule cooling rates inferred from diffusive profiles in metal lumps from the Acfer 097 CR2 chondrite</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Formation of Renazzo chondrule metal inferred from siderophile elements (abstract #1965)</title>
</host>
</json:item>
<json:item>
<host>
<author></author>
<title>Elemental distribution in metal from the CR chondrites Acfer 059 and PCA 91082 (abstract #1840)</title>
</host>
</json:item>
<json:item>
<host>
<author></author>
<title>Hutchison R. 2004. Meteorites. Cambridge, UK: Cambridge University Press.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>S. N. Hylton</name>
</json:item>
<json:item>
<name>D. S. Ebel</name>
</json:item>
<json:item>
<name>M. K Weisberg</name>
</json:item>
</author>
<host>
<volume>40</volume>
<author></author>
<title>Meteoritics & Planetary Science</title>
</host>
<title>A 3‐D tomographic survey of compound chondrules in CR chondrite Acfer 139 (abstract #5305)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Jacquet</name>
</json:item>
<json:item>
<name>O. Alard</name>
</json:item>
<json:item>
<name>M. Gounelle</name>
</json:item>
</author>
<host>
<volume>47</volume>
<pages>
<last>1714</last>
<first>1695</first>
</pages>
<author></author>
<title>Meteoritics & Planetary Science</title>
</host>
<title>Chondrule trace element geochemistry at the mineral scale</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. H. Jones</name>
</json:item>
<json:item>
<name>M. J. Drake</name>
</json:item>
</author>
<host>
<volume>322</volume>
<pages>
<last>228</last>
<first>221</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Geochemical constraints on core formation in the Earth</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Petrology and thermal history of type IA chondrules in the Semarkona (LL3.0) chondrite</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>W. R. Kelly</name>
</json:item>
<json:item>
<name>J. W. Larimer</name>
</json:item>
</author>
<host>
<volume>41</volume>
<pages>
<last>111</last>
<first>93</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>Chemical fractionations in meteorites. VIII—Iron meteorites and the cosmochemical history of the metal phase</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Kimura</name>
</json:item>
<json:item>
<name>J. N. Grossman</name>
</json:item>
<json:item>
<name>M. K. Weisberg</name>
</json:item>
</author>
<host>
<volume>43</volume>
<pages>
<last>1177</last>
<first>1161</first>
</pages>
<author></author>
<title>Meteoritics & Planetary Science</title>
</host>
<title>Fe‐Ni metal in primitive chondrites: Indicators of classification and metamorphic conditions for ordinary and CO chondrites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Kimura</name>
</json:item>
<json:item>
<name>J. N. Grossman</name>
</json:item>
<json:item>
<name>M. K. Weisberg</name>
</json:item>
</author>
<host>
<volume>46</volume>
<pages>
<last>442</last>
<first>431</first>
</pages>
<author></author>
<title>Meteoritics & Planetary Science</title>
</host>
<title>Fe‐Ni metal and sulfide minerals in CM chondrites: An indicator for thermal history</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N. T. Kita</name>
</json:item>
<json:item>
<name>T. Ushikubo</name>
</json:item>
</author>
<host>
<volume>47</volume>
<pages>
<last>1119</last>
<first>1108</first>
</pages>
<author></author>
<title>Meteoritics & Planetary Science</title>
</host>
<title>Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Kong</name>
</json:item>
<json:item>
<name>H. Palme</name>
</json:item>
</author>
<host>
<volume>63</volume>
<pages>
<last>3682</last>
<first>3673</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>Compositional and genetic relationship between chondrules, chondrule rims, metal, and matrix in the Renazzo chondrite</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Kong</name>
</json:item>
<json:item>
<name>M. Ebihara</name>
</json:item>
<json:item>
<name>H. Palme</name>
</json:item>
</author>
<host>
<volume>63</volume>
<pages>
<last>2652</last>
<first>2637</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>Distribution of siderophile elements in CR chondrites: Evidence for evaporation and recondensation during chondrule formation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. A. Kring</name>
</json:item>
</author>
<host>
<volume>105</volume>
<pages>
<last>80</last>
<first>65</first>
</pages>
<author></author>
<title>Earth and Planetary Science Letters</title>
</host>
<title>High temperature rims around chondrules in primitive chondrites: Evidence for fluctuating conditions in the solar nebula</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. N. Krot</name>
</json:item>
<json:item>
<name>A. Meibom</name>
</json:item>
<json:item>
<name>M. K. Weisberg</name>
</json:item>
<json:item>
<name>K. Keil</name>
</json:item>
</author>
<host>
<volume>37</volume>
<pages>
<last>1490</last>
<first>1451</first>
</pages>
<author></author>
<title>Meteoritics & Planetary Science</title>
</host>
<title>Invited review: The CR chondrite clan: Implications for early solar system processes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. W. Larimer</name>
</json:item>
<json:item>
<name>E. Anders</name>
</json:item>
</author>
<host>
<volume>34</volume>
<pages>
<last>387</last>
<first>367</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>Chemical fractionations in meteorites–III. Major element fractionations in chondrites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. S. Lauretta</name>
</json:item>
<json:item>
<name>D. T. Kremser</name>
</json:item>
<json:item>
<name>B. Fegley Jr.</name>
</json:item>
</author>
<host>
<volume>122</volume>
<pages>
<last>315</last>
<first>288</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>The rate of iron sulfide formation in the solar nebula</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. S. Lee</name>
</json:item>
<json:item>
<name>A. E. Rubin</name>
</json:item>
<json:item>
<name>J. T. Wasson</name>
</json:item>
</author>
<host>
<volume>56</volume>
<pages>
<last>2533</last>
<first>2521</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>Origin of metallic Fe‐Ni in Renazzo and related chondrites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Libourel</name>
</json:item>
<json:item>
<name>A. N. Krot</name>
</json:item>
</author>
<host>
<volume>254</volume>
<pages>
<last>8</last>
<first>1</first>
</pages>
<author></author>
<title>Earth and Planetary Science Letters</title>
</host>
<title>Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Libourel</name>
</json:item>
<json:item>
<name>A. N. Krot</name>
</json:item>
<json:item>
<name>L. Tissandier</name>
</json:item>
</author>
<host>
<volume>251</volume>
<pages>
<last>240</last>
<first>232</first>
</pages>
<author></author>
<title>Earth and Planetary Science Letters</title>
</host>
<title>Role of gas‐melt interaction during chondrule formation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Lodders</name>
</json:item>
</author>
<host>
<volume>591</volume>
<pages>
<last>1247</last>
<first>1220</first>
</pages>
<author></author>
<title>The Astrophysical Journal</title>
</host>
<title>Solar system abundances and condensation temperatures of the elements</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. P. Longerich</name>
</json:item>
<json:item>
<name>D. Günther</name>
</json:item>
<json:item>
<name>S. E. Jackson</name>
</json:item>
</author>
<host>
<volume>355</volume>
<pages>
<last>542</last>
<first>538</first>
</pages>
<author></author>
<title>Fresenius' Journal of Analytical Chemistry</title>
</host>
<title>Elemental fractionation in laser ablation inductively coupled plasma mass spectrometry</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.‐P. Lorand</name>
</json:item>
<json:item>
<name>O. Alard</name>
</json:item>
</author>
<host>
<volume>278</volume>
<pages>
<last>130</last>
<first>120</first>
</pages>
<author></author>
<title>Chemical Geology</title>
</host>
<title>Determination of selenium and tellurium concentrations in Pyrenean peridotites (Ariège, France): Nw insight into S/Se/Te systematics of the upper mantle samples</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.‐P. Lorand</name>
</json:item>
<json:item>
<name>O. Alard</name>
</json:item>
</author>
<host>
<volume>101</volume>
<pages>
<last>128</last>
<first>115</first>
</pages>
<author></author>
<title>Mineralogy and Petrology</title>
</host>
<title>Pyrite tracks assimilation of crustal sulfur in Pyrenean peridotites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Marrocchi</name>
</json:item>
<json:item>
<name>G Libourel</name>
</json:item>
</author>
<host>
<volume>119</volume>
<pages>
<last>136</last>
<first>117</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>Sulfur and sulfides in chondrules</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. B. Massalski</name>
</json:item>
<json:item>
<name>F. R. Park</name>
</json:item>
<json:item>
<name>L. F. Vassamillet</name>
</json:item>
</author>
<host>
<volume>30</volume>
<pages>
<last>662</last>
<first>649</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>Speculations about plessite</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. A. Morris</name>
</json:item>
<json:item>
<name>S. J. Desch</name>
</json:item>
</author>
<host>
<volume>722</volume>
<pages>
<last>1494</last>
<first>1474</first>
</pages>
<author></author>
<title>The Astrophysical Journal</title>
</host>
<title>Thermal histories of chondrules in solar nebula shocks</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Mullane</name>
</json:item>
<json:item>
<name>O. Alard</name>
</json:item>
<json:item>
<name>M. Gounelle</name>
</json:item>
<json:item>
<name>S. S. Russell</name>
</json:item>
</author>
<host>
<volume>208</volume>
<pages>
<last>28</last>
<first>5</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>Laser ablation ICP‐MS study of IIIAB irons and pallasites: Constraints on the behavior of highly siderophile elements during and after planetesimal formation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. W. Ormel</name>
</json:item>
<json:item>
<name>J. N. Cuzzi</name>
</json:item>
</author>
<host>
<volume>466</volume>
<pages>
<last>420</last>
<first>413</first>
</pages>
<author></author>
<title>Astronomy & Astrophysics</title>
</host>
<title>Closed‐form expression for particle relative velocities induced by turbulence</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Palme</name>
</json:item>
</author>
<host>
<volume>4</volume>
<pages>
<last>238</last>
<first>233</first>
</pages>
<author></author>
<title>Elements</title>
</host>
<title>Platinum‐group elements in cosmochemistry</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Palme</name>
</json:item>
<json:item>
<name>F. Wlotzka</name>
</json:item>
<json:item>
<name>B. Spettel</name>
</json:item>
<json:item>
<name>G. Dreibus</name>
</json:item>
<json:item>
<name>H. Weber</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>57</last>
<first>49</first>
</pages>
<author></author>
<title>Meteoritics</title>
</host>
<title>Camel Donga—A eucrite with high metal content</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. T. Prior</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>44</last>
<first>26</first>
</pages>
<author></author>
<title>Mineralogical Magazine</title>
</host>
<title>On the genetic relationship and classification of meteorites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Quitté</name>
</json:item>
<json:item>
<name>P. Telouk</name>
</json:item>
<json:item>
<name>F. Albarède</name>
</json:item>
</author>
<host>
<volume>73</volume>
<pages>
<first>5417</first>
</pages>
<author></author>
<title>Meteoritics & Planetary Science Supplement</title>
</host>
<title>182Hf‐182W Systematics in CR2 chondrites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. J. Reisener</name>
</json:item>
<json:item>
<name>J. I. Goldstein</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<last>1678</last>
<first>1669</first>
</pages>
<author></author>
<title>Meteoritics & Planetary Science</title>
</host>
<title>Ordinary chondrite metallography: Part 1 Fe‐Ni taenite cooling experiments</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Microstructure of condensate Fe‐Ni metal particles in the CH chondrite PAT 91546 (abstract #1445)</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Righter</name>
</json:item>
</author>
<host>
<volume>31</volume>
<pages>
<last>174</last>
<first>135</first>
</pages>
<author></author>
<title>Annual Review of Earth and Planetary Sciences</title>
</host>
<title>Metal‐silicate partitioning of siderophile elements and core formation in the early Earth</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Righter</name>
</json:item>
<json:item>
<name>A. J. Campbell</name>
</json:item>
<json:item>
<name>M. Humayun</name>
</json:item>
</author>
<host>
<volume>69</volume>
<pages>
<last>3158</last>
<first>3145</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>Diffusion of trace elements in FeNi metal: Application to zoned metal grains in chondrites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Rochette</name>
</json:item>
<json:item>
<name>J. Gattacceca</name>
</json:item>
<json:item>
<name>L. Bonal</name>
</json:item>
<json:item>
<name>M. Bourot‐Denise</name>
</json:item>
<json:item>
<name>V. Chevrier</name>
</json:item>
<json:item>
<name>J.‐P. Clerc</name>
</json:item>
<json:item>
<name>G. Consolmagno</name>
</json:item>
<json:item>
<name>L. Folco</name>
</json:item>
<json:item>
<name>M. Gounelle</name>
</json:item>
<json:item>
<name>T. Kohout</name>
</json:item>
<json:item>
<name>L. Pesonen</name>
</json:item>
<json:item>
<name>E. Quirico</name>
</json:item>
<json:item>
<name>L. Sagnotti</name>
</json:item>
<json:item>
<name>A. Skripnik</name>
</json:item>
</author>
<host>
<volume>43</volume>
<pages>
<last>980</last>
<first>959</first>
</pages>
<author></author>
<title>Meteoritics & Planetary Science</title>
</host>
<title>Magnetic classification of stony meteorites: 2. Non‐ordinary chondrites</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Microvision: Image analysis toolbox for measuring and quantifying components of high‐definition images</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>A. E. Rubin</name>
</json:item>
</author>
<host>
<volume>74</volume>
<pages>
<last>4828</last>
<first>4807</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>Physical properties of chondrules in different chondrite groups: Implications for multiple melting events in dusty environments</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. E. Rubin</name>
</json:item>
<json:item>
<name>J. T. Wasson</name>
</json:item>
</author>
<host>
<volume>69</volume>
<pages>
<last>220</last>
<first>211</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>Non‐spherical lobate chondrules in CO3.0 Y‐81020: General implications for the formation of low‐FeO porphyritic chondrules in CO chondrites</title>
</json:item>
<json:item>
<host>
<author></author>
<title>On the nebular and aqueous signatures in the CR chondrites (abstract #1262)</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>D. L. Schrader</name>
</json:item>
<json:item>
<name>H. C. Connolly Jr.</name>
</json:item>
<json:item>
<name>D. S. Lauretta</name>
</json:item>
<json:item>
<name>K. Nagashima</name>
</json:item>
<json:item>
<name>G. R. Huss</name>
</json:item>
<json:item>
<name>J. Davidson</name>
</json:item>
<json:item>
<name>K. J. Domanik</name>
</json:item>
</author>
<host>
<volume>101</volume>
<pages>
<last>327</last>
<first>302</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>The formation and alteration of the Renazzo‐like carbonaceous chondrites II: Linking O‐isotope composition and oxidation state of chondrule olivine</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. R. D. Scott</name>
</json:item>
<json:item>
<name>A. N. Krot</name>
</json:item>
</author>
<host>
<pages>
<last>200</last>
<first>143</first>
</pages>
<author></author>
<title>Meteorites, comets, and planets</title>
</host>
<title>Chondrites and their components</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. W. G. Sears</name>
</json:item>
<json:item>
<name>S. Huang</name>
</json:item>
<json:item>
<name>P. H. Benoit</name>
</json:item>
</author>
<host>
<pages>
<last>231</last>
<first>221</first>
</pages>
<author></author>
<title>Chondrules and the protoplanetary disk</title>
</host>
<title>Open‐system behaviour during chondrule formation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Uesugi</name>
</json:item>
<json:item>
<name>M. Sekiya</name>
</json:item>
<json:item>
<name>T. Nakamura</name>
</json:item>
</author>
<host>
<volume>43</volume>
<pages>
<last>730</last>
<first>717</first>
</pages>
<author></author>
<title>Meteoritics & Planetary Science</title>
</host>
<title>Kinetic stability of a melted iron globule during chondrule formation. I. Non‐rotating model</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. C. Urey</name>
</json:item>
<json:item>
<name>H. Craig</name>
</json:item>
</author>
<host>
<volume>4</volume>
<pages>
<last>82</last>
<first>36</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>The composition of the stone meteorites and the origin of the meteorites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. M. Wai</name>
</json:item>
<json:item>
<name>J. T. Wasson</name>
</json:item>
</author>
<host>
<volume>36</volume>
<pages>
<last>13</last>
<first>1</first>
</pages>
<author></author>
<title>Earth and Planetary Science Letters</title>
</host>
<title>Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. T. Wasson</name>
</json:item>
<json:item>
<name>C.‐L. Chou</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>84</last>
<first>69</first>
</pages>
<author></author>
<title>Meteoritics</title>
</host>
<title>Fractionation of moderately volatile elements in ordinary chondrites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. T. Wasson</name>
</json:item>
<json:item>
<name>A. E. Rubin</name>
</json:item>
</author>
<host>
<volume>74</volume>
<pages>
<last>2230</last>
<first>2212</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>Metal in CR chondrites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. K. Weisberg</name>
</json:item>
<json:item>
<name>M. Prinz</name>
</json:item>
<json:item>
<name>R. N. Clayton</name>
</json:item>
<json:item>
<name>T. K. Mayeda</name>
</json:item>
</author>
<host>
<volume>57</volume>
<pages>
<last>1586</last>
<first>1567</first>
</pages>
<author></author>
<title>Geochimica et Cosmochimica Acta</title>
</host>
<title>The CR (Renazzo‐type) carbonaceous chondrite group and its implications</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. K. Weisberg</name>
</json:item>
<json:item>
<name>H. C. Connolly Jr.</name>
</json:item>
<json:item>
<name>D. S. Ebel</name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>1753</last>
<first>1741</first>
</pages>
<author></author>
<title>Meteoritics & Planetary Science</title>
</host>
<title>Petrology and origin of amoeboid olivine aggregates in CR chondrites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. A. Whattam</name>
</json:item>
<json:item>
<name>R. H. Hewins</name>
</json:item>
<json:item>
<name>B. A. Cohen</name>
</json:item>
<json:item>
<name>N. C. Seaton</name>
</json:item>
<json:item>
<name>D. J. Prior</name>
</json:item>
</author>
<host>
<volume>269</volume>
<pages>
<last>211</last>
<first>200</first>
</pages>
<author></author>
<title>Earth & Planetary Science Letters</title>
</host>
<title>Granoblastic olivine aggregates in magnesian chondrules: Planetesimal fragments or thermally annealed solar nebula condensates?</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. A Wood</name>
</json:item>
</author>
<host>
<volume>2</volume>
<pages>
<last>180</last>
<first>152</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>On the origin of chondrules and chondrites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. A. Wood</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>49</last>
<first>1</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Chondrites: Their metallic minerals, thermal histories, and parent planets</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Zanda</name>
</json:item>
<json:item>
<name>R. H. Hewins</name>
</json:item>
<json:item>
<name>M. Bourot‐Denise</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<first>466</first>
</pages>
<author></author>
<title>Meteoritics</title>
</host>
<title>Metal precursors and reduction in Renazzo chondrules</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Zanda</name>
</json:item>
<json:item>
<name>M. Bourot‐Denise</name>
</json:item>
<json:item>
<name>C. Perron</name>
</json:item>
<json:item>
<name>R. H. Hewins</name>
</json:item>
</author>
<host>
<volume>265</volume>
<pages>
<last>1849</last>
<first>1846</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Origin and metamorphic redistribution of silicon, chromium, and phosphorus in the metal of chondrites</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Accretion textures, iron evaporation and re‐condensation in Renazzo chondrules (abstract #1852)</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>A.‐C. Zhang</name>
</json:item>
<json:item>
<name>W.‐B. Hsu</name>
</json:item>
<json:item>
<name>C. Floss</name>
</json:item>
<json:item>
<name>X.‐H. Li</name>
</json:item>
<json:item>
<name>Q.‐L. Li</name>
</json:item>
<json:item>
<name>Y. Liu</name>
</json:item>
<json:item>
<name>L. A. Taylor</name>
</json:item>
</author>
<host>
<volume>45</volume>
<pages>
<last>1947</last>
<first>1929</first>
</pages>
<author></author>
<title>Meteoritics & Planetary Science</title>
</host>
<title>Petrogenesis of lunar meteorite Northwest Africa 2977: Constraints from in situ microprobe results</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>48</volume>
<publisherId>
<json:string>MAPS</json:string>
</publisherId>
<pages>
<total>19</total>
<last>1999</last>
<first>1981</first>
</pages>
<issn>
<json:string>1086-9379</json:string>
</issn>
<issue>10</issue>
<subject>
<json:item>
<value>Original Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1945-5100</json:string>
</eissn>
<title>Meteoritics & Planetary Science</title>
<doi>
<json:string>10.1111/(ISSN)1945-5100</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geochemistry & geophysics</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>geochemistry & geophysics</json:string>
</scienceMetrix>
</categories>
<publicationDate>2013</publicationDate>
<copyrightDate>2013</copyrightDate>
<doi>
<json:string>10.1111/maps.12212</json:string>
</doi>
<id>34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB</id>
<score>0.14532226</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Trace element geochemistry of CR chondrite metal</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>© 2013 The Meteoritical Society© The Meteoritical Society, 2013.</p>
</availability>
<date>2013-09-24</date>
</publicationStmt>
<notesStmt>
<note>Table S1: Composition and petrographical data of analyzed metal grains. Trace element concentrations are given in ppm for LA‐ICP‐MS data and wt% for EMPA. For metal grains sited in chondrules, electron microprobe analyses (in wt%) of olivine are also tabulated. n.a. = not available, b.d. = below detection (typically 0.03 wt% for EMP analyses).</note>
<note>Institut Universitaire de France</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Trace element geochemistry of CR chondrite metal</title>
<author xml:id="author-1">
<persName>
<forename type="first">Emmanuel</forename>
<surname>Jacquet</surname>
</persName>
<email>ejacquet@cita.utoronto.ca</email>
<affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</affiliation>
<affiliation>Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St Georges Street, ON, M5S 3H8, Toronto, Canada</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Marine</forename>
<surname>Paulhiac‐Pison</surname>
</persName>
<affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</affiliation>
<affiliation>Ecole Normale Supérieure de Paris, 45 rue d'Ulm, 75005, Paris, France</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Olivier</forename>
<surname>Alard</surname>
</persName>
<affiliation>Géosciences Montpellier, Université de Montpellier II, UMR 5243Place E. Bataillon, 34095, Montpellier Cedex 5, France</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Anton T.</forename>
<surname>Kearsley</surname>
</persName>
<affiliation>Impacts and Astromaterials Research Centre, Department of Mineralogy, The Natural History Museum, SW7 5BD, London, UK</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Matthieu</forename>
<surname>Gounelle</surname>
</persName>
<affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</affiliation>
<affiliation>Institut Universitaire de France, Maison des Universités, 103 boulevard Saint‐Michel, 75005, Paris, France</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Meteoritics & Planetary Science</title>
<title level="j" type="abbrev">Meteorit Planet Sci</title>
<idno type="pISSN">1086-9379</idno>
<idno type="eISSN">1945-5100</idno>
<idno type="DOI">10.1111/(ISSN)1945-5100</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2013-10"></date>
<biblScope unit="volume">48</biblScope>
<biblScope unit="issue">10</biblScope>
<biblScope unit="page" from="1981">1981</biblScope>
<biblScope unit="page" to="1999">1999</biblScope>
</imprint>
</monogr>
<idno type="istex">34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB</idno>
<idno type="DOI">10.1111/maps.12212</idno>
<idno type="ArticleID">MAPS12212</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2013-09-24</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>We report trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) of metal grains from nine different CR chondrites, distinguishing grains from chondrule interior (“interior grains”), chondrule surficial shells (“margin grains”), and the matrix (“isolated grains”). Save for a few anomalous grains, Ni‐normalized trace element patterns are similar for all three petrographic settings, with largely unfractionated refractory siderophile elements and depleted volatile Au, Cu, Ag, S. All three types of grains are interpreted to derive from a common precursor approximated by the least‐melted, fine‐grained objects in CR chondrites. This also excludes recondensation of metal vapor as the origin of the bulk of margin grains. The metal precursors were presumably formed by incomplete condensation, with evidence for high‐temperature isolation of refractory platinum‐group‐element (PGE)‐rich condensates before mixing with lower temperature PGE‐depleted condensates. The rounded shape of the Ni‐rich, interior grains shows that they were molten and that they equilibrated with silicates upon slow cooling (1–100 K h−1), largely by oxidation/evaporation of Fe, hence their high Pd content, for example. We propose that Ni‐poorer, amoeboid margin grains, often included in the pyroxene‐rich periphery common to type I chondrules, result from less intense processing of a rim accreted onto the chondrule subsequent to the melting event recorded by the interior grains. This means either that there were two separate heating events, which formed olivine/interior grains and pyroxene/margin grains, respectively, between which dust was accreted around the chondrule, or that there was a single high‐temperature event, of which the chondrule margin records a late “quenching phase,” in which case dust accreted onto chondrules while they were molten. In the latter case, high dust concentrations in the chondrule‐forming region (at least three orders of magnitude above minimum mass solar nebula models) are indicated.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Original Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2012-11-27">Received</change>
<change when="2013-08-07">Registration</change>
<change when="2013-09-24">Created</change>
<change when="2013-10">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:id="maps12212" xml:lang="en">
<header>
<publicationMeta level="product">
<doi origin="wiley" registered="yes">10.1111/(ISSN)1945-5100</doi>
<issn type="print">1086-9379</issn>
<issn type="electronic">1945-5100</issn>
<idGroup>
<id type="product" value="MAPS"></id>
</idGroup>
<titleGroup>
<title type="main" sort="METEORITICS AND PLANETARY SCIENCE">Meteoritics & Planetary Science</title>
<title type="short">Meteorit Planet Sci</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10110">
<doi origin="wiley">10.1111/maps.2013.48.issue-10</doi>
<copyright ownership="thirdParty">© 2013 The Meteoritical Society</copyright>
<numberingGroup>
<numbering type="journalVolume" number="48">48</numbering>
<numbering type="journalIssue">10</numbering>
</numberingGroup>
<coverDate startDate="2013-10">October 2013</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="130" status="forIssue" type="article">
<doi>10.1111/maps.12212</doi>
<idGroup>
<id type="unit" value="MAPS12212"></id>
</idGroup>
<countGroup>
<count number="19" type="pageTotal"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Original Article</title>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright ownership="thirdParty">© The Meteoritical Society, 2013.</copyright>
<eventGroup>
<event date="2012-11-27" type="manuscriptReceived"></event>
<event date="2013-08-07" type="manuscriptAccepted"></event>
<event agent="SPS" date="2013-09-24" type="xmlCreated"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.2.6 mode:FullText" date="2013-11-06"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2013-10-15"></event>
<event type="firstOnline" date="2013-10-15"></event>
<event type="publishedOnlineFinalForm" date="2013-11-06"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.6.4 mode:FullText" date="2015-10-03"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1981</numbering>
<numbering type="pageLast">1999</numbering>
</numberingGroup>
<correspondenceTo>Corresponding author. E‐mail:
<email>ejacquet@cita.utoronto.ca</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:MAPS.MAPS12212.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Trace element geochemistry of
<fc>CR</fc>
chondrite metal</title>
<title type="shortAuthors">E. Jacquet et al.</title>
</titleGroup>
<creators>
<creator affiliationRef="#maps12212-aff-0001 #maps12212-aff-0002" corresponding="yes" creatorRole="author" xml:id="maps12212-cr-0001">
<personName>
<givenNames>Emmanuel</givenNames>
<familyName>Jacquet</familyName>
</personName>
</creator>
<creator affiliationRef="#maps12212-aff-0001 #maps12212-aff-0003" creatorRole="author" xml:id="maps12212-cr-0002">
<personName>
<givenNames>Marine</givenNames>
<familyName>Paulhiac‐Pison</familyName>
</personName>
</creator>
<creator affiliationRef="#maps12212-aff-0004" creatorRole="author" xml:id="maps12212-cr-0003">
<personName>
<givenNames>Olivier</givenNames>
<familyName>Alard</familyName>
</personName>
</creator>
<creator affiliationRef="#maps12212-aff-0005" creatorRole="author" xml:id="maps12212-cr-0004">
<personName>
<givenNames>Anton T.</givenNames>
<familyName>Kearsley</familyName>
</personName>
</creator>
<creator affiliationRef="#maps12212-aff-0001 #maps12212-aff-0006" creatorRole="author" xml:id="maps12212-cr-0005">
<personName>
<givenNames>Matthieu</givenNames>
<familyName>Gounelle</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="FR" type="organization" xml:id="maps12212-aff-0001">
<orgDiv>Laboratoire de Minéralogie et Cosmochimie du Muséum</orgDiv>
<orgName>CNRS & Muséum National d'Histoire Naturelle</orgName>
<address>
<street>UMR 7202</street>
<street>57 rue Cuvier</street>
<postCode>75005</postCode>
<city>Paris</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="CA" type="organization" xml:id="maps12212-aff-0002">
<orgDiv>Canadian Institute for Theoretical Astrophysics</orgDiv>
<orgName>University of Toronto</orgName>
<address>
<street>60 St Georges Street</street>
<city>Toronto</city>
<countryPart>ON</countryPart>
<postCode>M5S 3H8</postCode>
<country>Canada</country>
</address>
</affiliation>
<affiliation countryCode="FR" type="organization" xml:id="maps12212-aff-0003">
<orgName>Ecole Normale Supérieure de Paris</orgName>
<address>
<street>45 rue d'Ulm</street>
<postCode>75005</postCode>
<city>Paris</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="FR" type="organization" xml:id="maps12212-aff-0004">
<orgDiv>Géosciences Montpellier</orgDiv>
<orgName>Université de Montpellier II</orgName>
<address>
<street>UMR 5243</street>
<street>Place E. Bataillon</street>
<postCode>34095</postCode>
<city>Montpellier Cedex 5</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="GB" type="organization" xml:id="maps12212-aff-0005">
<orgDiv>Impacts and Astromaterials Research Centre</orgDiv>
<orgDiv>Department of Mineralogy</orgDiv>
<orgName>The Natural History Museum</orgName>
<address>
<city>London</city>
<postCode>SW7 5BD</postCode>
<country>UK</country>
</address>
</affiliation>
<affiliation countryCode="FR" type="organization" xml:id="maps12212-aff-0006">
<orgDiv>Institut Universitaire de France</orgDiv>
<orgName>Maison des Universités</orgName>
<address>
<street>103 boulevard Saint‐Michel</street>
<postCode>75005</postCode>
<city>Paris</city>
<country>France</country>
</address>
</affiliation>
</affiliationGroup>
<fundingInfo>
<fundingAgency>Institut Universitaire de France</fundingAgency>
</fundingInfo>
<supportingInformation>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="application/msexcel" href="urn-x:wiley:10869379:media:maps12212:maps12212-sup-0001-TableS1"></mediaResource>
<caption>
<b>Table S1:</b>
Composition and petrographical data of analyzed metal grains. Trace element concentrations are given in ppm for LA‐ICP‐MS data and wt% for EMPA. For metal grains sited in chondrules, electron microprobe analyses (in wt%) of olivine are also tabulated. n.a. = not available, b.d. = below detection (typically 0.03 wt% for EMP analyses).</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:id="maps12212-abs-0001">
<title type="main">Abstract</title>
<p>We report trace element analyses by laser ablation inductively coupled plasma mass spectrometry (
<fc>LA</fc>
<fc>ICP</fc>
<fc>MS</fc>
) of metal grains from nine different
<fc>CR</fc>
chondrites, distinguishing grains from chondrule interior (“interior grains”), chondrule surficial shells (“margin grains”), and the matrix (“isolated grains”). Save for a few anomalous grains, Ni‐normalized trace element patterns are similar for all three petrographic settings, with largely unfractionated refractory siderophile elements and depleted volatile Au, Cu, Ag, S. All three types of grains are interpreted to derive from a common precursor approximated by the least‐melted, fine‐grained objects in
<fc>CR</fc>
chondrites. This also excludes recondensation of metal vapor as the origin of the bulk of margin grains. The metal precursors were presumably formed by incomplete condensation, with evidence for high‐temperature isolation of refractory platinum‐group‐element (
<fc>PGE</fc>
)‐rich condensates before mixing with lower temperature
<fc>PGE</fc>
‐depleted condensates. The rounded shape of the Ni‐rich, interior grains shows that they were molten and that they equilibrated with silicates upon slow cooling (1–100 K h
<sup>−1</sup>
), largely by oxidation/evaporation of Fe, hence their high Pd content, for example. We propose that Ni‐poorer, amoeboid margin grains, often included in the pyroxene‐rich periphery common to type I chondrules, result from less intense processing of a rim accreted onto the chondrule subsequent to the melting event recorded by the interior grains. This means either that there were two separate heating events, which formed olivine/interior grains and pyroxene/margin grains, respectively, between which dust was accreted around the chondrule, or that there was a single high‐temperature event, of which the chondrule margin records a late “quenching phase,” in which case dust accreted onto chondrules while they were molten. In the latter case, high dust concentrations in the chondrule‐forming region (at least three orders of magnitude above minimum mass solar nebula models) are indicated.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Trace element geochemistry of CR chondrite metal</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Trace element geochemistry of CR chondrite metal</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emmanuel</namePart>
<namePart type="family">Jacquet</namePart>
<affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</affiliation>
<affiliation>Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St Georges Street, ON, M5S 3H8, Toronto, Canada</affiliation>
<affiliation>E-mail: ejacquet@cita.utoronto.ca</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Paulhiac‐Pison</namePart>
<affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</affiliation>
<affiliation>Ecole Normale Supérieure de Paris, 45 rue d'Ulm, 75005, Paris, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olivier</namePart>
<namePart type="family">Alard</namePart>
<affiliation>Géosciences Montpellier, Université de Montpellier II, UMR 5243Place E. Bataillon, 34095, Montpellier Cedex 5, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anton T.</namePart>
<namePart type="family">Kearsley</namePart>
<affiliation>Impacts and Astromaterials Research Centre, Department of Mineralogy, The Natural History Museum, SW7 5BD, London, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthieu</namePart>
<namePart type="family">Gounelle</namePart>
<affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</affiliation>
<affiliation>Institut Universitaire de France, Maison des Universités, 103 boulevard Saint‐Michel, 75005, Paris, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2013-10</dateIssued>
<dateCreated encoding="w3cdtf">2013-09-24</dateCreated>
<dateCaptured encoding="w3cdtf">2012-11-27</dateCaptured>
<dateValid encoding="w3cdtf">2013-08-07</dateValid>
<copyrightDate encoding="w3cdtf">2013</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>We report trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) of metal grains from nine different CR chondrites, distinguishing grains from chondrule interior (“interior grains”), chondrule surficial shells (“margin grains”), and the matrix (“isolated grains”). Save for a few anomalous grains, Ni‐normalized trace element patterns are similar for all three petrographic settings, with largely unfractionated refractory siderophile elements and depleted volatile Au, Cu, Ag, S. All three types of grains are interpreted to derive from a common precursor approximated by the least‐melted, fine‐grained objects in CR chondrites. This also excludes recondensation of metal vapor as the origin of the bulk of margin grains. The metal precursors were presumably formed by incomplete condensation, with evidence for high‐temperature isolation of refractory platinum‐group‐element (PGE)‐rich condensates before mixing with lower temperature PGE‐depleted condensates. The rounded shape of the Ni‐rich, interior grains shows that they were molten and that they equilibrated with silicates upon slow cooling (1–100 K h−1), largely by oxidation/evaporation of Fe, hence their high Pd content, for example. We propose that Ni‐poorer, amoeboid margin grains, often included in the pyroxene‐rich periphery common to type I chondrules, result from less intense processing of a rim accreted onto the chondrule subsequent to the melting event recorded by the interior grains. This means either that there were two separate heating events, which formed olivine/interior grains and pyroxene/margin grains, respectively, between which dust was accreted around the chondrule, or that there was a single high‐temperature event, of which the chondrule margin records a late “quenching phase,” in which case dust accreted onto chondrules while they were molten. In the latter case, high dust concentrations in the chondrule‐forming region (at least three orders of magnitude above minimum mass solar nebula models) are indicated.</abstract>
<note type="additional physical form">Table S1: Composition and petrographical data of analyzed metal grains. Trace element concentrations are given in ppm for LA‐ICP‐MS data and wt% for EMPA. For metal grains sited in chondrules, electron microprobe analyses (in wt%) of olivine are also tabulated. n.a. = not available, b.d. = below detection (typically 0.03 wt% for EMP analyses).</note>
<note type="funding">Institut Universitaire de France</note>
<relatedItem type="host">
<titleInfo>
<title>Meteoritics & Planetary Science</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Meteorit Planet Sci</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Original Article</topic>
</subject>
<identifier type="ISSN">1086-9379</identifier>
<identifier type="eISSN">1945-5100</identifier>
<identifier type="DOI">10.1111/(ISSN)1945-5100</identifier>
<identifier type="PublisherID">MAPS</identifier>
<part>
<date>2013</date>
<detail type="volume">
<caption>vol.</caption>
<number>48</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>1981</start>
<end>1999</end>
<total>19</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB</identifier>
<identifier type="DOI">10.1111/maps.12212</identifier>
<identifier type="ArticleID">MAPS12212</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2013 The Meteoritical Society© The Meteoritical Society, 2013.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002518 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002518 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB
   |texte=   Trace element geochemistry of CR chondrite metal
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024