La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change

Identifieur interne : 002141 ( Istex/Corpus ); précédent : 002140; suivant : 002142

Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change

Auteurs : Simon Bélanger ; Huixiang Xie ; Nickolay Krotkov ; Pierre Larouche ; Warwick F. Vincent ; Marcel Babin

Source :

RBID : ISTEX:DCED973B91EA6779865092101D977F52CDEF6192

Abstract

Photomineralization of terrigenous dissolved organic matter (tDOM) in the Arctic Ocean is limited by persistent sea ice cover that reduces the amount of ultraviolet (UV) radiation reaching the underlying water column. UV‐dependent processes are likely to accelerate as a result of shrinking sea ice extent and decreasing ice thickness caused by climatic warming over this region. In this study, we made the first quantitative estimates of photomineralization of tDOM in a coastal Arctic ecosystem under current and future sea ice regimes. We used an optical‐photochemical coupled model incorporating water column optics and experimental measurements of photoproduction of dissolved inorganic carbon (DIC), the main carbon product of DOM photochemistry. Apparent quantum yields of DIC photoproduction were determined on water samples from the Mackenzie River estuary, the Mackenzie Shelf, and Amundsen Gulf. UV irradiances just below the sea surface were estimated by combining satellite backscattered and passive microwave radiance measurements with a radiative transfer model. The mean annual DIC photoproduction between 1979 and 2003 was estimated as 66.5 ± 18.5 Gg carbon in the surface waters of the southeastern Beaufort Sea, where UV absorption is dominated by chromophoric dissolved organic matter discharged by the Mackenzie River. This value is equivalent to 10% of bacterial respiration rates, 8% of new primary production rates and 2.8 ± 0.6% of the 1.3 Tg of dissolved organic carbon (DOC) discharged annually by the Mackenzie River into the area. During periods of reduced ice cover such as 1998, the latter value could rise to 5.1% of the annual riverine DOC discharge. Under an ice‐free scenario, the model predicted that 150.5 Gg of DIC would be photochemically produced, mineralizing 6.2% of the DOC input from the Mackenzie River. These results show that the predicted trend of ongoing contraction of sea ice cover will greatly accelerate the photomineralization of tDOM in Arctic surface waters.

Url:
DOI: 10.1029/2006GB002708

Links to Exploration step

ISTEX:DCED973B91EA6779865092101D977F52CDEF6192

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change</title>
<author>
<name sortKey="Belanger, Simon" sort="Belanger, Simon" uniqKey="Belanger S" first="Simon" last="Bélanger">Simon Bélanger</name>
<affiliation>
<mods:affiliation>Laboratoire d'océanographie de Villefranche, Université Pierre et Marie Curie‐Paris, Villefranche‐sur‐Mer, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Also at Laboratoire d'océanographie de Villefranche, CNRS, Villefranche‐sur‐Mer, France.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: sbe@obs-vlfr.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xie, Huixiang" sort="Xie, Huixiang" uniqKey="Xie H" first="Huixiang" last="Xie">Huixiang Xie</name>
<affiliation>
<mods:affiliation>Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Quebec, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Krotkov, Nickolay" sort="Krotkov, Nickolay" uniqKey="Krotkov N" first="Nickolay" last="Krotkov">Nickolay Krotkov</name>
<affiliation>
<mods:affiliation>Goddard Earth Sciences and Technology Center, University of Maryland Baltimore County, Maryland, Baltimore, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Larouche, Pierre" sort="Larouche, Pierre" uniqKey="Larouche P" first="Pierre" last="Larouche">Pierre Larouche</name>
<affiliation>
<mods:affiliation>Institut Maurice‐Lamontagne, Pêches et Océans Canada, Mont‐Joli, Quebec, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vincent, Warwick F" sort="Vincent, Warwick F" uniqKey="Vincent W" first="Warwick F." last="Vincent">Warwick F. Vincent</name>
<affiliation>
<mods:affiliation>Département de Biologie and Centre d'Études Nordiques, Université Laval, Quebec City, Quebec, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Babin, Marcel" sort="Babin, Marcel" uniqKey="Babin M" first="Marcel" last="Babin">Marcel Babin</name>
<affiliation>
<mods:affiliation>Laboratoire d'océanographie de Villefranche, Université Pierre et Marie Curie‐Paris, Villefranche‐sur‐Mer, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Also at Laboratoire d'océanographie de Villefranche, CNRS, Villefranche‐sur‐Mer, France.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:DCED973B91EA6779865092101D977F52CDEF6192</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1029/2006GB002708</idno>
<idno type="url">https://api.istex.fr/document/DCED973B91EA6779865092101D977F52CDEF6192/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002141</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002141</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change</title>
<author>
<name sortKey="Belanger, Simon" sort="Belanger, Simon" uniqKey="Belanger S" first="Simon" last="Bélanger">Simon Bélanger</name>
<affiliation>
<mods:affiliation>Laboratoire d'océanographie de Villefranche, Université Pierre et Marie Curie‐Paris, Villefranche‐sur‐Mer, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Also at Laboratoire d'océanographie de Villefranche, CNRS, Villefranche‐sur‐Mer, France.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: sbe@obs-vlfr.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xie, Huixiang" sort="Xie, Huixiang" uniqKey="Xie H" first="Huixiang" last="Xie">Huixiang Xie</name>
<affiliation>
<mods:affiliation>Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Quebec, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Krotkov, Nickolay" sort="Krotkov, Nickolay" uniqKey="Krotkov N" first="Nickolay" last="Krotkov">Nickolay Krotkov</name>
<affiliation>
<mods:affiliation>Goddard Earth Sciences and Technology Center, University of Maryland Baltimore County, Maryland, Baltimore, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Larouche, Pierre" sort="Larouche, Pierre" uniqKey="Larouche P" first="Pierre" last="Larouche">Pierre Larouche</name>
<affiliation>
<mods:affiliation>Institut Maurice‐Lamontagne, Pêches et Océans Canada, Mont‐Joli, Quebec, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vincent, Warwick F" sort="Vincent, Warwick F" uniqKey="Vincent W" first="Warwick F." last="Vincent">Warwick F. Vincent</name>
<affiliation>
<mods:affiliation>Département de Biologie and Centre d'Études Nordiques, Université Laval, Quebec City, Quebec, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Babin, Marcel" sort="Babin, Marcel" uniqKey="Babin M" first="Marcel" last="Babin">Marcel Babin</name>
<affiliation>
<mods:affiliation>Laboratoire d'océanographie de Villefranche, Université Pierre et Marie Curie‐Paris, Villefranche‐sur‐Mer, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Also at Laboratoire d'océanographie de Villefranche, CNRS, Villefranche‐sur‐Mer, France.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Global Biogeochemical Cycles</title>
<title level="j" type="abbrev">Global Biogeochem. Cycles</title>
<idno type="ISSN">0886-6236</idno>
<idno type="eISSN">1944-9224</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2006-12">2006-12</date>
<biblScope unit="volume">20</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
<idno type="ISSN">0886-6236</idno>
</series>
<idno type="istex">DCED973B91EA6779865092101D977F52CDEF6192</idno>
<idno type="DOI">10.1029/2006GB002708</idno>
<idno type="ArticleID">2006GB002708</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0886-6236</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Photomineralization of terrigenous dissolved organic matter (tDOM) in the Arctic Ocean is limited by persistent sea ice cover that reduces the amount of ultraviolet (UV) radiation reaching the underlying water column. UV‐dependent processes are likely to accelerate as a result of shrinking sea ice extent and decreasing ice thickness caused by climatic warming over this region. In this study, we made the first quantitative estimates of photomineralization of tDOM in a coastal Arctic ecosystem under current and future sea ice regimes. We used an optical‐photochemical coupled model incorporating water column optics and experimental measurements of photoproduction of dissolved inorganic carbon (DIC), the main carbon product of DOM photochemistry. Apparent quantum yields of DIC photoproduction were determined on water samples from the Mackenzie River estuary, the Mackenzie Shelf, and Amundsen Gulf. UV irradiances just below the sea surface were estimated by combining satellite backscattered and passive microwave radiance measurements with a radiative transfer model. The mean annual DIC photoproduction between 1979 and 2003 was estimated as 66.5 ± 18.5 Gg carbon in the surface waters of the southeastern Beaufort Sea, where UV absorption is dominated by chromophoric dissolved organic matter discharged by the Mackenzie River. This value is equivalent to 10% of bacterial respiration rates, 8% of new primary production rates and 2.8 ± 0.6% of the 1.3 Tg of dissolved organic carbon (DOC) discharged annually by the Mackenzie River into the area. During periods of reduced ice cover such as 1998, the latter value could rise to 5.1% of the annual riverine DOC discharge. Under an ice‐free scenario, the model predicted that 150.5 Gg of DIC would be photochemically produced, mineralizing 6.2% of the DOC input from the Mackenzie River. These results show that the predicted trend of ongoing contraction of sea ice cover will greatly accelerate the photomineralization of tDOM in Arctic surface waters.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Simon Bélanger</name>
<affiliations>
<json:string>Laboratoire d'océanographie de Villefranche, Université Pierre et Marie Curie‐Paris, Villefranche‐sur‐Mer, France</json:string>
<json:string>Also at Laboratoire d'océanographie de Villefranche, CNRS, Villefranche‐sur‐Mer, France.</json:string>
<json:string>E-mail: sbe@obs-vlfr.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>Huixiang Xie</name>
<affiliations>
<json:string>Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Quebec, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Nickolay Krotkov</name>
<affiliations>
<json:string>Goddard Earth Sciences and Technology Center, University of Maryland Baltimore County, Maryland, Baltimore, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Pierre Larouche</name>
<affiliations>
<json:string>Institut Maurice‐Lamontagne, Pêches et Océans Canada, Mont‐Joli, Quebec, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Warwick F. Vincent</name>
<affiliations>
<json:string>Département de Biologie and Centre d'Études Nordiques, Université Laval, Quebec City, Quebec, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Marcel Babin</name>
<affiliations>
<json:string>Laboratoire d'océanographie de Villefranche, Université Pierre et Marie Curie‐Paris, Villefranche‐sur‐Mer, France</json:string>
<json:string>Also at Laboratoire d'océanographie de Villefranche, CNRS, Villefranche‐sur‐Mer, France.</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Beaufort Sea</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>CDOM photooxidation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>global warming</value>
</json:item>
</subject>
<articleId>
<json:string>2006GB002708</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Photomineralization of terrigenous dissolved organic matter (tDOM) in the Arctic Ocean is limited by persistent sea ice cover that reduces the amount of ultraviolet (UV) radiation reaching the underlying water column. UV‐dependent processes are likely to accelerate as a result of shrinking sea ice extent and decreasing ice thickness caused by climatic warming over this region. In this study, we made the first quantitative estimates of photomineralization of tDOM in a coastal Arctic ecosystem under current and future sea ice regimes. We used an optical‐photochemical coupled model incorporating water column optics and experimental measurements of photoproduction of dissolved inorganic carbon (DIC), the main carbon product of DOM photochemistry. Apparent quantum yields of DIC photoproduction were determined on water samples from the Mackenzie River estuary, the Mackenzie Shelf, and Amundsen Gulf. UV irradiances just below the sea surface were estimated by combining satellite backscattered and passive microwave radiance measurements with a radiative transfer model. The mean annual DIC photoproduction between 1979 and 2003 was estimated as 66.5 ± 18.5 Gg carbon in the surface waters of the southeastern Beaufort Sea, where UV absorption is dominated by chromophoric dissolved organic matter discharged by the Mackenzie River. This value is equivalent to 10% of bacterial respiration rates, 8% of new primary production rates and 2.8 ± 0.6% of the 1.3 Tg of dissolved organic carbon (DOC) discharged annually by the Mackenzie River into the area. During periods of reduced ice cover such as 1998, the latter value could rise to 5.1% of the annual riverine DOC discharge. Under an ice‐free scenario, the model predicted that 150.5 Gg of DIC would be photochemically produced, mineralizing 6.2% of the DOC input from the Mackenzie River. These results show that the predicted trend of ongoing contraction of sea ice cover will greatly accelerate the photomineralization of tDOM in Arctic surface waters.</abstract>
<qualityIndicators>
<score>8.5</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2014</abstractCharCount>
<pdfWordCount>9154</pdfWordCount>
<pdfCharCount>53751</pdfCharCount>
<pdfPageCount>13</pdfPageCount>
<abstractWordCount>305</abstractWordCount>
</qualityIndicators>
<title>Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>K. Aagaard</name>
</json:item>
<json:item>
<name>E. C. Carmack</name>
</json:item>
</author>
<host>
<volume>94</volume>
<pages>
<last>14,498</last>
<first>14,485</first>
</pages>
<issue>C10</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>The role of sea ice and other fresh water in the arctic circulation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. M. W. Amon</name>
</json:item>
</author>
<host>
<pages>
<last>99</last>
<first>83</first>
</pages>
<author></author>
<title>The Organic Carbon Cycle in the Arctic Ocean</title>
</host>
<title>The role of dissolved organic matter for the organic carbon cycle in the Arctic Ocean</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. M. W. Amon</name>
</json:item>
<json:item>
<name>B. Meon</name>
</json:item>
</author>
<host>
<volume>92</volume>
<pages>
<last>330</last>
<first>311</first>
</pages>
<author></author>
<title>Mar. Chem.</title>
</host>
<title>The biogeochemistry of dissolved organic matter and nutrients in two large Arctic estuaries and potential implications for our understanding of the Arctic Ocean system</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Arctic Climate Impact Assessment (2005), Arctic Climate Impact Assessment, 1042 pp., Cambridge Press Univ., New York.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>K. R. Arrigo</name>
</json:item>
<json:item>
<name>G. L. van Dijken</name>
</json:item>
</author>
<host>
<volume>31</volume>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>Annual cycles of sea ice and phytoplankton in Cape Bathurst polynya, southeastern Beaufort Sea, Canadian Arctic</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Babin</name>
</json:item>
<json:item>
<name>D. Stramski</name>
</json:item>
</author>
<host>
<volume>47</volume>
<pages>
<last>915</last>
<first>911</first>
</pages>
<author></author>
<title>Limnol. Oceanogr.</title>
</host>
<title>Light absorption by aquatic particles in the near‐infrared spectral region</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Babin</name>
</json:item>
<json:item>
<name>D. Stramski</name>
</json:item>
<json:item>
<name>G. M. Ferrari</name>
</json:item>
<json:item>
<name>H. Claustre</name>
</json:item>
<json:item>
<name>A. Bricaud</name>
</json:item>
<json:item>
<name>G. Obolensky</name>
</json:item>
<json:item>
<name>N. Hoepffner</name>
</json:item>
</author>
<host>
<volume>108</volume>
<issue>C7</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. G. Barber</name>
</json:item>
<json:item>
<name>J. M. Hanesiak</name>
</json:item>
</author>
<host>
<volume>109</volume>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Meteorological forcing of sea ice concentrations in the southern Beaufort Sea over the period 1979 to 2000</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Benner</name>
</json:item>
<json:item>
<name>S. Opsahl</name>
</json:item>
</author>
<host>
<volume>32</volume>
<pages>
<last>611</last>
<first>597</first>
</pages>
<author></author>
<title>Org. Geochem.</title>
</host>
<title>Molecular indicators of the sources and transformations of dissolved organic matter in the Mississippi river plume</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Benner</name>
</json:item>
<json:item>
<name>B. Benitez‐Nelson</name>
</json:item>
<json:item>
<name>K. Kaiser</name>
</json:item>
<json:item>
<name>R. M. W. Amon</name>
</json:item>
</author>
<host>
<volume>31</volume>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Benner</name>
</json:item>
<json:item>
<name>P. Louchouarn</name>
</json:item>
<json:item>
<name>R. M. W. Amon</name>
</json:item>
</author>
<host>
<volume>19</volume>
<author></author>
<title>Global Biogeochem. Cycles</title>
</host>
<title>Terrigenous dissolved organic matter in the Arctic Ocean and its transport to surface and deep waters of the North Atlantic</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Camill</name>
</json:item>
</author>
<host>
<volume>68</volume>
<pages>
<last>152</last>
<first>135</first>
</pages>
<author></author>
<title>Clim. Change</title>
</host>
<title>Permafrost thaw accelerates in boreal peatlands during late‐20th century climate warming</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. C. Carmack</name>
</json:item>
<json:item>
<name>R. W. Macdonald</name>
</json:item>
</author>
<host>
<volume>55</volume>
<pages>
<last>45</last>
<first>29</first>
</pages>
<author></author>
<title>Arctic</title>
</host>
<title>Oceanography of the Canadian Shelf of the Beaufort Sea: A setting for marine life</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. C. Carmack</name>
</json:item>
<json:item>
<name>R. W. MacDonald</name>
</json:item>
<json:item>
<name>S. Jasper</name>
</json:item>
</author>
<host>
<volume>277</volume>
<pages>
<last>50</last>
<first>37</first>
</pages>
<author></author>
<title>Mar. Ecol. Prog. Ser.</title>
</host>
<title>Phytoplankton productivity on the Canadian Shelf of the Beaufort Sea</title>
</json:item>
<json:item>
<host>
<author></author>
<title>DMSP SSMI/I daily polar gridded sea ice concentrations</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>D. J. Cavalieri</name>
</json:item>
<json:item>
<name>C. L. Parkinson</name>
</json:item>
<json:item>
<name>K. Y. Vinnikov</name>
</json:item>
</author>
<host>
<volume>30</volume>
<issue>18</issue>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>Thirty‐year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. C. Comiso</name>
</json:item>
<json:item>
<name>J. Yang</name>
</json:item>
<json:item>
<name>H. Susumo</name>
</json:item>
<json:item>
<name>R. A. Krishfield</name>
</json:item>
</author>
<host>
<volume>108</volume>
<issue>C12</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Detection change in the Arctic using satellite and in situ data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Del Vecchio</name>
</json:item>
<json:item>
<name>N. V. Blough</name>
</json:item>
</author>
<host>
<volume>78</volume>
<pages>
<last>253</last>
<first>231</first>
</pages>
<author></author>
<title>Mar. Chem.</title>
</host>
<title>Photobleaching of chromophoric dissolved organic matter in natural waters: Kinetics and modelling</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Dittmar</name>
</json:item>
</author>
<host>
<volume>49</volume>
<pages>
<last>156</last>
<first>148</first>
</pages>
<author></author>
<title>Limnol. Oceanogr.</title>
</host>
<title>Evidence for terrigenous dissolved organic nitrogen in the Arctic deep sea</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Dittmar</name>
</json:item>
<json:item>
<name>G. Kattner</name>
</json:item>
</author>
<host>
<volume>83</volume>
<pages>
<last>120</last>
<first>105</first>
</pages>
<author></author>
<title>Mar. Chem.</title>
</host>
<title>The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: A review</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. C. Dugdale</name>
</json:item>
<json:item>
<name>J. J. Goering</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>206</last>
<first>196</first>
</pages>
<author></author>
<title>Limnol. Oceanogr.</title>
</host>
<title>Uptake of new and regenerated forms of nitrogen in primary production</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V. E. Fioletov</name>
</json:item>
<json:item>
<name>M. G. Kimlin</name>
</json:item>
<json:item>
<name>N. Krotkov</name>
</json:item>
<json:item>
<name>L. J. B. McArthur</name>
</json:item>
<json:item>
<name>J. B. Kerr</name>
</json:item>
<json:item>
<name>D. I. Wardle</name>
</json:item>
<json:item>
<name>J. R. Herman</name>
</json:item>
<json:item>
<name>R. Meltzer</name>
</json:item>
<json:item>
<name>T. W. Mathews</name>
</json:item>
<json:item>
<name>J. Kaurola</name>
</json:item>
</author>
<host>
<volume>109</volume>
<issue>D22</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>UV index climatology over the United States and Canada from ground‐based and satellite estimates</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. E. Frey</name>
</json:item>
<json:item>
<name>L. C. Smith</name>
</json:item>
</author>
<host>
<volume>32</volume>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>Amplified carbon release from vast West Siberian peatlands by 2100</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.‐È. Garneau</name>
</json:item>
<json:item>
<name>W. F. Vincent</name>
</json:item>
<json:item>
<name>L. Alonso‐Saez</name>
</json:item>
<json:item>
<name>Y. Gratton</name>
</json:item>
<json:item>
<name>C. Lovejoy</name>
</json:item>
</author>
<host>
<volume>42</volume>
<pages>
<last>40</last>
<first>27</first>
</pages>
<author></author>
<title>Aquat. Microb. Ecol.</title>
</host>
<title>Prokaryotic community structure and hetereotrophic production in a river‐influenced coastal arctic ecosystem</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. K. Guay</name>
</json:item>
<json:item>
<name>G. P. Klinkhammer</name>
</json:item>
<json:item>
<name>K. K. Falkner</name>
</json:item>
<json:item>
<name>R. Benner</name>
</json:item>
<json:item>
<name>P. G. Coble</name>
</json:item>
<json:item>
<name>T. E. Whitledge</name>
</json:item>
<json:item>
<name>B. Black</name>
</json:item>
<json:item>
<name>F. J. Bussell</name>
</json:item>
<json:item>
<name>T. A. Wagner</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>1010</last>
<first>1007</first>
</pages>
<issue>8</issue>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>High‐resolution measurements of dissolved organic carbon in the Arctic Ocean by in situ fiber‐optic spectrometry</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Guéguen</name>
</json:item>
<json:item>
<name>L. Guo</name>
</json:item>
<json:item>
<name>N. Tanaka</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<last>1207</last>
<first>1195</first>
</pages>
<author></author>
<title>Cont. Shelf Res.</title>
</host>
<title>Distributions and characteristics of colored dissolved organic matter in the western Arctic Ocean</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. A. Hansell</name>
</json:item>
<json:item>
<name>D. Kadko</name>
</json:item>
<json:item>
<name>N. R. Bates</name>
</json:item>
</author>
<host>
<volume>304</volume>
<pages>
<last>861</last>
<first>858</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Degradation of terrigenous dissolved organic carbon in the western Arctic Ocean</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. R. Herman</name>
</json:item>
<json:item>
<name>E. A. Celarier</name>
</json:item>
</author>
<host>
<volume>102</volume>
<pages>
<last>28,011</last>
<first>28,003</first>
</pages>
<issue>D23</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Earth surface reflectivity climatology at 340–380 nm from TOMS data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. R. Herman</name>
</json:item>
<json:item>
<name>N. Krotkov</name>
</json:item>
<json:item>
<name>E. Celarier</name>
</json:item>
<json:item>
<name>D. Larko</name>
</json:item>
<json:item>
<name>G. Labow</name>
</json:item>
</author>
<host>
<volume>104</volume>
<pages>
<last>12,076</last>
<first>12,059</first>
</pages>
<issue>D10</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Distribution of UV radiation at the Earth's surface from TOMS‐measured UV‐backscattered radiances</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. J. Hernes</name>
</json:item>
<json:item>
<name>R. Benner</name>
</json:item>
</author>
<host>
<volume>108</volume>
<issue>C9</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Photochemical and microbial degradation of dissolved lignin phenols: Implications for the fate of terrigenous dissolved organic matter in marine environments</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Hu</name>
</json:item>
<json:item>
<name>F. E. Muller‐Karger</name>
</json:item>
<json:item>
<name>R. G. Zepp</name>
</json:item>
</author>
<host>
<volume>47</volume>
<pages>
<last>1267</last>
<first>1261</first>
</pages>
<author></author>
<title>Limnol. Oceanogr.</title>
</host>
<title>Absorbance, absorption coefficient, and apparent quantum yield: A comment on common ambiguity in the use of these optical concepts</title>
</json:item>
<json:item>
<host>
<author></author>
<title>A photochemical sink for dissolved organic carbon in the ocean</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>S. C. Johannessen</name>
</json:item>
<json:item>
<name>W. L. Miller</name>
</json:item>
</author>
<host>
<volume>76</volume>
<pages>
<last>283</last>
<first>271</first>
</pages>
<author></author>
<title>Mar. Chem.</title>
</host>
<title>Quantum yield for the photochemical production of dissolved inorganic carbon in seawater</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. J. Kieber</name>
</json:item>
<json:item>
<name>J. McDaniel</name>
</json:item>
<json:item>
<name>K. Mopper</name>
</json:item>
</author>
<host>
<volume>341</volume>
<pages>
<last>639</last>
<first>637</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Photochemical source of biological substrates in sea water: Implications for carbon cycling</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. J. Kieber</name>
</json:item>
<json:item>
<name>X. Zhou</name>
</json:item>
<json:item>
<name>K. Mopper</name>
</json:item>
</author>
<host>
<volume>35</volume>
<pages>
<last>1515</last>
<first>1503</first>
</pages>
<author></author>
<title>Limnol. Oceanogr.</title>
</host>
<title>Formation of carbonyl compounds from UV‐induced photodegradation of humic substances in natural waters: Fate of riverine carbon in the sea</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N. A. Krotkov</name>
</json:item>
<json:item>
<name>P. K. Bhartia</name>
</json:item>
<json:item>
<name>J. R. Herman</name>
</json:item>
<json:item>
<name>V. Fioletov</name>
</json:item>
<json:item>
<name>J. Kerr</name>
</json:item>
</author>
<host>
<volume>103</volume>
<pages>
<last>8793</last>
<first>8779</first>
</pages>
<issue>D8</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Satellite estimation of spectral surface UV irradiance in the presence of tropospheric aerosols: 1. Cloud‐free case</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N. A. Krotkov</name>
</json:item>
<json:item>
<name>J. R. Herman</name>
</json:item>
<json:item>
<name>P. K. Bhartia</name>
</json:item>
<json:item>
<name>V. Fioletov</name>
</json:item>
<json:item>
<name>Z. Ahmad</name>
</json:item>
</author>
<host>
<volume>106</volume>
<pages>
<last>11,759</last>
<first>11,743</first>
</pages>
<issue>D11</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Satellite estimation of spectral surface UV irradiance: 2. Effects of homogeneous clouds and snow</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N. Krotkov</name>
</json:item>
<json:item>
<name>J. Herman</name>
</json:item>
<json:item>
<name>P. K. Bhartia</name>
</json:item>
<json:item>
<name>C. Seftor</name>
</json:item>
<json:item>
<name>A. Arola</name>
</json:item>
<json:item>
<name>S. Kalliskota</name>
</json:item>
<json:item>
<name>P. Taalas</name>
</json:item>
<json:item>
<name>I. V. Geogdzhaev</name>
</json:item>
</author>
<host>
<volume>41</volume>
<pages>
<last>3039</last>
<first>3028</first>
</pages>
<author></author>
<title>Opt. Eng.</title>
</host>
<title>Version 2 total ozone mapping spectrometer ultraviolet algorithm: Problems and enhancements</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. H. Lee</name>
</json:item>
<json:item>
<name>T. R. Whitledge</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<last>197</last>
<first>190</first>
</pages>
<author></author>
<title>Polar Biol.</title>
</host>
<title>Primary and new production in the deep Canada Basin during summer 2002</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. W. Macdonald</name>
</json:item>
<json:item>
<name>D. W. Paton</name>
</json:item>
<json:item>
<name>E. C. Carmack</name>
</json:item>
<json:item>
<name>A. Omstedt</name>
</json:item>
</author>
<host>
<volume>100</volume>
<pages>
<last>919</last>
<first>895</first>
</pages>
<issue>C1</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>The freshwater budget and under‐ice spreading of Mackenzie River water in the Canadian Beaufort Sea based on salinity and 18O/16O measurements in water and ice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. W. Macdonald</name>
</json:item>
<json:item>
<name>F. A. McLaughlin</name>
</json:item>
<json:item>
<name>E. C. Carmack</name>
</json:item>
</author>
<host>
<volume>49</volume>
<pages>
<last>1785</last>
<first>1769</first>
</pages>
<author></author>
<title>Deep Sea Res., Part I</title>
</host>
<title>Fresh water and its sources during the SHEBA drift in the Canada Basin of the Arctic Ocean</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Madronich</name>
</json:item>
<json:item>
<name>S. Flocke</name>
</json:item>
</author>
<host>
<pages>
<last>26</last>
<first>1</first>
</pages>
<author></author>
<title>Handbook of Environmental Chemistry</title>
</host>
<title>The role of solar radiation in atmospheric chemistry</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Meon</name>
</json:item>
<json:item>
<name>R. M. W. Amon</name>
</json:item>
</author>
<host>
<volume>37</volume>
<pages>
<last>135</last>
<first>121</first>
</pages>
<author></author>
<title>Aquat. Microb. Ecol.</title>
</host>
<title>Heterotrophic bacterial activity and fluxes of dissolved free amino acids and glucose in the Arctic rivers Ob, Yenisei and the adjacent Kara Sea</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. L. Miller</name>
</json:item>
<json:item>
<name>R. G. Zepp</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>420</last>
<first>417</first>
</pages>
<issue>4</issue>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>Photochemical production of dissolved inorganic carbon from terrestrial organic matter: Significance to the oceanic carbon cycle</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Mopper</name>
</json:item>
<json:item>
<name>D. J. Keiber</name>
</json:item>
</author>
<host>
<pages>
<last>507</last>
<first>455</first>
</pages>
<author></author>
<title>Biogeochemistry of Marine Dissolved Organic Matter</title>
</host>
<title>Photochemistry and the cycling of carbon, sulfur, nitrogen and phosphorus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Mopper</name>
</json:item>
<json:item>
<name>X. Zhou</name>
</json:item>
<json:item>
<name>R. J. Keiber</name>
</json:item>
<json:item>
<name>D. J. Keiber</name>
</json:item>
<json:item>
<name>R. J. Sikorski</name>
</json:item>
<json:item>
<name>R. D. Jones</name>
</json:item>
</author>
<host>
<volume>353</volume>
<pages>
<last>62</last>
<first>60</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. E. Overland</name>
</json:item>
<json:item>
<name>M. C. Spillane</name>
</json:item>
<json:item>
<name>N. N. Soreide</name>
</json:item>
</author>
<host>
<volume>63</volume>
<pages>
<last>322</last>
<first>291</first>
</pages>
<author></author>
<title>Clim. Change</title>
</host>
<title>Integrated analysis of physical and biological Pan‐Arctic change</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. J. Peterson</name>
</json:item>
<json:item>
<name>R. M. Holmes</name>
</json:item>
<json:item>
<name>J. W. McClelland</name>
</json:item>
<json:item>
<name>C. J. Vorosmarty</name>
</json:item>
<json:item>
<name>R. B. Lammers</name>
</json:item>
<json:item>
<name>A. I. Shiklomanov</name>
</json:item>
<json:item>
<name>S. Rahmstorf</name>
</json:item>
</author>
<host>
<volume>298</volume>
<pages>
<last>2173</last>
<first>2171</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Increasing river discharge to the Arctic Ocean</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V. Rachold</name>
</json:item>
<json:item>
<name>H. Eicken</name>
</json:item>
<json:item>
<name>V. V. Gordeev</name>
</json:item>
<json:item>
<name>M. N. Grigoriev</name>
</json:item>
<json:item>
<name>H.‐W. Hubberten</name>
</json:item>
<json:item>
<name>A. P. Lisitzin</name>
</json:item>
<json:item>
<name>V. P. Shevchenko</name>
</json:item>
<json:item>
<name>L. Schirrmeister</name>
</json:item>
</author>
<host>
<pages>
<last>41</last>
<first>33</first>
</pages>
<author></author>
<title>The Organic Carbon Cycle in the Arctic Ocean</title>
</host>
<title>Modern terrigenous organic carbon input to the Arctic Ocean</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Rex</name>
</json:item>
<json:item>
<name>R. J. Salawitch</name>
</json:item>
<json:item>
<name>P. von der Gathen</name>
</json:item>
<json:item>
<name>N. R. P. Harris</name>
</json:item>
<json:item>
<name>M. P. Chipperfield</name>
</json:item>
<json:item>
<name>B. Naujokat</name>
</json:item>
</author>
<host>
<volume>31</volume>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>Arctic ozone loss and climate change</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. A. Rothrock</name>
</json:item>
<json:item>
<name>J. Zhang</name>
</json:item>
</author>
<host>
<volume>110</volume>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Arctic Ocean sea ice volume: What explains its recent depletion?</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. C. Serreze</name>
</json:item>
<json:item>
<name>J. E. Walsh</name>
</json:item>
<json:item>
<name>F. S. Chapin</name>
</json:item>
<json:item>
<name>T. Osterkamp</name>
</json:item>
<json:item>
<name>M. Dyurgerov</name>
</json:item>
<json:item>
<name>V. Romanovsky</name>
</json:item>
<json:item>
<name>W. C. Oechel</name>
</json:item>
<json:item>
<name>J. Morison</name>
</json:item>
<json:item>
<name>T. Zhang</name>
</json:item>
<json:item>
<name>R. G. Barry</name>
</json:item>
</author>
<host>
<volume>46</volume>
<pages>
<last>207</last>
<first>159</first>
</pages>
<author></author>
<title>Clim. Change</title>
</host>
<title>Observational evidence of recent change in the northern high‐latitude environment</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. C. Smith</name>
</json:item>
<json:item>
<name>G. M. MacDonald</name>
</json:item>
<json:item>
<name>A. A. Velichko</name>
</json:item>
<json:item>
<name>D. W. Beilman</name>
</json:item>
<json:item>
<name>O. K. Borisova</name>
</json:item>
<json:item>
<name>K. E. Frey</name>
</json:item>
<json:item>
<name>K. V. Kremenetski</name>
</json:item>
<json:item>
<name>Y. Sheng</name>
</json:item>
</author>
<host>
<volume>303</volume>
<pages>
<last>356</last>
<first>353</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Siberian peatlands a net carbon sink and global methane source since the early Holocene</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Stein</name>
</json:item>
<json:item>
<name>R. W. Macdonald</name>
</json:item>
</author>
<host>
<pages>
<last>322</last>
<first>315</first>
</pages>
<author></author>
<title>The Organic Carbon Cycle in the Arctic Ocean</title>
</host>
<title>Organic carbon budget: Arctic Ocean vs. Global Ocean</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Tassan</name>
</json:item>
<json:item>
<name>G. M. Ferrari</name>
</json:item>
</author>
<host>
<volume>40</volume>
<pages>
<last>1368</last>
<first>1358</first>
</pages>
<author></author>
<title>Limnol. Oceanogr.</title>
</host>
<title>An alternative approach to absorption measurements of aquatic particles retained on filters</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Tassan</name>
</json:item>
<json:item>
<name>G. M. Ferrari</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>776</last>
<first>757</first>
</pages>
<author></author>
<title>J. Plankton Res.</title>
</host>
<title>A sensitivity analysis of the ‘transmittance‐reflectance’ method for measuring light absorption by aquatic particles</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. A. Telang</name>
</json:item>
<json:item>
<name>R. Pocklington</name>
</json:item>
<json:item>
<name>A. S. Naidu</name>
</json:item>
<json:item>
<name>E. A. Romankevich</name>
</json:item>
<json:item>
<name>I. I. Gitelson</name>
</json:item>
<json:item>
<name>M. I. Gladyshev</name>
</json:item>
</author>
<host>
<pages>
<last>104</last>
<first>74</first>
</pages>
<author></author>
<title>Biogeochemistry of Major World Rivers: SCOPE 42</title>
</host>
<title>Carbon and mineral transport in major North American, Russian Arctic, and Siberian rivers: The St Lawrence, the Mackenzie, the Yukon, the Arctic Alaskan rivers, the Arctic Basin rivers in the Soviet Union, and the Yenisei</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. V. Vähätalo</name>
</json:item>
<json:item>
<name>R. G. Wetzel</name>
</json:item>
</author>
<host>
<volume>89</volume>
<pages>
<last>326</last>
<first>313</first>
</pages>
<author></author>
<title>Mar. Chem.</title>
</host>
<title>Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months‐years) exposures</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. V. Vähätalo</name>
</json:item>
<json:item>
<name>M. Salkinoja‐Salonen</name>
</json:item>
<json:item>
<name>P. Taalas</name>
</json:item>
<json:item>
<name>K. Salonen</name>
</json:item>
</author>
<host>
<volume>45</volume>
<pages>
<last>676</last>
<first>664</first>
</pages>
<author></author>
<title>Limnol. Oceanogr.</title>
</host>
<title>Spectrum of the quantum yield for the photochemical mineralization of dissolved organic carbon in a humic lake</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. F. Vincent</name>
</json:item>
<json:item>
<name>C. Belzile</name>
</json:item>
</author>
<host>
<pages>
<last>181</last>
<first>176</first>
</pages>
<author></author>
<title>Antarctic Biology in a Global Context</title>
</host>
<title>Biological UV exposure in the polar oceans: Arctic‐Antarctic comparisons</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Wadhams</name>
</json:item>
<json:item>
<name>N. R. Davis</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>3975</last>
<first>3973</first>
</pages>
<issue>24</issue>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>Further evidence of ice thinning in the Arctic Ocean</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Xie</name>
</json:item>
<json:item>
<name>M. Gosselin</name>
</json:item>
</author>
<host>
<volume>32</volume>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>Photoproduction of carbon monoxide in first‐year sea ice in Franklin Bay, southeastern Beaufort Sea</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Xie</name>
</json:item>
<json:item>
<name>O. C. Zafiriou</name>
</json:item>
<json:item>
<name>W.‐J. Cai</name>
</json:item>
<json:item>
<name>R. G. Zepp</name>
</json:item>
<json:item>
<name>Y. Wang</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<last>4119</last>
<first>4113</first>
</pages>
<issue>15</issue>
<author></author>
<title>Environ. Sci. Technol.</title>
</host>
<title>Photooxidation and its effects on the carboxyl content of dissolved organic matter in two coastal rivers in the southeastern United States</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>20</volume>
<publisherId>
<json:string>GBC</json:string>
</publisherId>
<pages>
<total>13</total>
<last>n/a</last>
<first>n/a</first>
</pages>
<issn>
<json:string>0886-6236</json:string>
</issn>
<issue>4</issue>
<subject>
<json:item>
<value>BIOGEOSCIENCES</value>
</json:item>
<json:item>
<value>Carbon cycling</value>
</json:item>
<json:item>
<value>Biogeochemical cycles, processes, and modeling</value>
</json:item>
<json:item>
<value>Estuarine and nearshore processes</value>
</json:item>
<json:item>
<value>Remote sensing</value>
</json:item>
<json:item>
<value>Biogeochemical kinetics and reaction modeling</value>
</json:item>
<json:item>
<value>CRYOSPHERE</value>
</json:item>
<json:item>
<value>Biogeochemistry</value>
</json:item>
<json:item>
<value>GLOBAL CHANGE</value>
</json:item>
<json:item>
<value>Biogeochemical cycles, processes, and modeling</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: GENERAL</value>
</json:item>
<json:item>
<value>Estuarine processes</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</value>
</json:item>
<json:item>
<value>Carbon cycling</value>
</json:item>
<json:item>
<value>Biogeochemical cycles, processes, and modeling</value>
</json:item>
<json:item>
<value>PALEOCEANOGRAPHY</value>
</json:item>
<json:item>
<value>Biogeochemical cycles, processes, and modeling</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1944-9224</json:string>
</eissn>
<title>Global Biogeochemical Cycles</title>
<doi>
<json:string>10.1002/(ISSN)1944-9224</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
<json:string>geosciences, multidisciplinary</json:string>
<json:string>environmental sciences</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>2006</publicationDate>
<copyrightDate>2006</copyrightDate>
<doi>
<json:string>10.1029/2006GB002708</json:string>
</doi>
<id>DCED973B91EA6779865092101D977F52CDEF6192</id>
<score>0.13456908</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/DCED973B91EA6779865092101D977F52CDEF6192/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/DCED973B91EA6779865092101D977F52CDEF6192/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/DCED973B91EA6779865092101D977F52CDEF6192/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>Copyright 2006 by the American Geophysical Union.</p>
</availability>
<date>2006</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change</title>
<author xml:id="author-1">
<persName>
<forename type="first">Simon</forename>
<surname>Bélanger</surname>
</persName>
<email>sbe@obs-vlfr.fr</email>
<affiliation>Laboratoire d'océanographie de Villefranche, Université Pierre et Marie Curie‐Paris, Villefranche‐sur‐Mer, France</affiliation>
<affiliation>Also at Laboratoire d'océanographie de Villefranche, CNRS, Villefranche‐sur‐Mer, France.</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Huixiang</forename>
<surname>Xie</surname>
</persName>
<affiliation>Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Quebec, Canada</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Nickolay</forename>
<surname>Krotkov</surname>
</persName>
<affiliation>Goddard Earth Sciences and Technology Center, University of Maryland Baltimore County, Maryland, Baltimore, USA</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Pierre</forename>
<surname>Larouche</surname>
</persName>
<affiliation>Institut Maurice‐Lamontagne, Pêches et Océans Canada, Mont‐Joli, Quebec, Canada</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Warwick F.</forename>
<surname>Vincent</surname>
</persName>
<affiliation>Département de Biologie and Centre d'Études Nordiques, Université Laval, Quebec City, Quebec, Canada</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">Marcel</forename>
<surname>Babin</surname>
</persName>
<affiliation>Laboratoire d'océanographie de Villefranche, Université Pierre et Marie Curie‐Paris, Villefranche‐sur‐Mer, France</affiliation>
<affiliation>Also at Laboratoire d'océanographie de Villefranche, CNRS, Villefranche‐sur‐Mer, France.</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Global Biogeochemical Cycles</title>
<title level="j" type="abbrev">Global Biogeochem. Cycles</title>
<idno type="pISSN">0886-6236</idno>
<idno type="eISSN">1944-9224</idno>
<idno type="DOI">10.1002/(ISSN)1944-9224</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2006-12"></date>
<biblScope unit="volume">20</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
</monogr>
<idno type="istex">DCED973B91EA6779865092101D977F52CDEF6192</idno>
<idno type="DOI">10.1029/2006GB002708</idno>
<idno type="ArticleID">2006GB002708</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2006</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Photomineralization of terrigenous dissolved organic matter (tDOM) in the Arctic Ocean is limited by persistent sea ice cover that reduces the amount of ultraviolet (UV) radiation reaching the underlying water column. UV‐dependent processes are likely to accelerate as a result of shrinking sea ice extent and decreasing ice thickness caused by climatic warming over this region. In this study, we made the first quantitative estimates of photomineralization of tDOM in a coastal Arctic ecosystem under current and future sea ice regimes. We used an optical‐photochemical coupled model incorporating water column optics and experimental measurements of photoproduction of dissolved inorganic carbon (DIC), the main carbon product of DOM photochemistry. Apparent quantum yields of DIC photoproduction were determined on water samples from the Mackenzie River estuary, the Mackenzie Shelf, and Amundsen Gulf. UV irradiances just below the sea surface were estimated by combining satellite backscattered and passive microwave radiance measurements with a radiative transfer model. The mean annual DIC photoproduction between 1979 and 2003 was estimated as 66.5 ± 18.5 Gg carbon in the surface waters of the southeastern Beaufort Sea, where UV absorption is dominated by chromophoric dissolved organic matter discharged by the Mackenzie River. This value is equivalent to 10% of bacterial respiration rates, 8% of new primary production rates and 2.8 ± 0.6% of the 1.3 Tg of dissolved organic carbon (DOC) discharged annually by the Mackenzie River into the area. During periods of reduced ice cover such as 1998, the latter value could rise to 5.1% of the annual riverine DOC discharge. Under an ice‐free scenario, the model predicted that 150.5 Gg of DIC would be photochemically produced, mineralizing 6.2% of the DOC input from the Mackenzie River. These results show that the predicted trend of ongoing contraction of sea ice cover will greatly accelerate the photomineralization of tDOM in Arctic surface waters.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>Beaufort Sea</term>
</item>
<item>
<term>CDOM photooxidation</term>
</item>
<item>
<term>global warming</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>BIOGEOSCIENCES</term>
</item>
<item>
<term>Carbon cycling</term>
</item>
<item>
<term>Biogeochemical cycles, processes, and modeling</term>
</item>
<item>
<term>Estuarine and nearshore processes</term>
</item>
<item>
<term>Remote sensing</term>
</item>
<item>
<term>Biogeochemical kinetics and reaction modeling</term>
</item>
<item>
<term>CRYOSPHERE</term>
</item>
<item>
<term>Biogeochemistry</term>
</item>
<item>
<term>GLOBAL CHANGE</term>
</item>
<item>
<term>Biogeochemical cycles, processes, and modeling</term>
</item>
<item>
<term>OCEANOGRAPHY: GENERAL</term>
</item>
<item>
<term>Estuarine processes</term>
</item>
<item>
<term>OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</term>
</item>
<item>
<term>Carbon cycling</term>
</item>
<item>
<term>Biogeochemical cycles, processes, and modeling</term>
</item>
<item>
<term>PALEOCEANOGRAPHY</term>
</item>
<item>
<term>Biogeochemical cycles, processes, and modeling</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2006-02-16">Received</change>
<change when="2006-06-28">Registration</change>
<change when="2006-12">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/DCED973B91EA6779865092101D977F52CDEF6192/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="gbc1316">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)1944-9224</doi>
<issn type="print">0886-6236</issn>
<issn type="electronic">1944-9224</issn>
<idGroup>
<id type="product" value="GBC"></id>
<id type="coden" value="GBCYEP"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="GLOBAL BIOGEOCHEMICAL CYCLES">Global Biogeochemical Cycles</title>
<title type="short">Global Biogeochem. Cycles</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="40">
<doi>10.1002/gbc.v20.4</doi>
<numberingGroup>
<numbering type="journalVolume" number="20">20</numbering>
<numbering type="journalIssue">4</numbering>
</numberingGroup>
<coverDate startDate="2006-12">December 2006</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="180" type="article" status="forIssue">
<doi>10.1029/2006GB002708</doi>
<idGroup>
<id type="editorialOffice" value="2006GB002708"></id>
<id type="society" value="GB4005"></id>
<id type="unit" value="GBC1316"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="13"></count>
</countGroup>
<copyright ownership="thirdParty">Copyright 2006 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2006-02-16"></event>
<event type="manuscriptRevised" date="2006-06-07"></event>
<event type="manuscriptAccepted" date="2006-06-28"></event>
<event type="firstOnline" date="2006-11-07"></event>
<event type="publishedOnlineFinalForm" date="2006-11-07"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.44_TO_WileyML3Gv1.0.3 version:1.3; AGU2WileyML3G Final Clean Up v1.0; WileyML 3G Packaging Tool v1.0" date="2012-12-15"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-25"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0428">Carbon cycling</subject>
<subject href="http://psi.agu.org/taxonomy5/0414">Biogeochemical cycles, processes, and modeling</subject>
<subject href="http://psi.agu.org/taxonomy5/0442">Estuarine and nearshore processes</subject>
<subject href="http://psi.agu.org/taxonomy5/0480">Remote sensing</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0412">Biogeochemical kinetics and reaction modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0793">Biogeochemistry</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1615">Biogeochemical cycles, processes, and modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4200">OCEANOGRAPHY: GENERAL</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4235">Estuarine processes</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4806">Carbon cycling</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4805">Biogeochemical cycles, processes, and modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4900">PALEOCEANOGRAPHY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4912">Biogeochemical cycles, processes, and modeling</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="gbc1316-cit-0000" type="self">
<author>
<familyName>Bélanger</familyName>
,
<givenNames>S.</givenNames>
</author>
,
<author>
<givenNames>H.</givenNames>
<familyName>Xie</familyName>
</author>
,
<author>
<givenNames>N.</givenNames>
<familyName>Krotkov</familyName>
</author>
,
<author>
<givenNames>P.</givenNames>
<familyName>Larouche</familyName>
</author>
,
<author>
<givenNames>W. F.</givenNames>
<familyName>Vincent</familyName>
</author>
, and
<author>
<givenNames>M.</givenNames>
<familyName>Babin</familyName>
</author>
(
<pubYear year="2006">2006</pubYear>
),
<articleTitle>Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change</articleTitle>
,
<journalTitle>Global Biogeochem. Cycles</journalTitle>
,
<vol>20</vol>
, GB4005, doi:
<accessionId ref="info:doi/10.1029/2006GB002708">10.1029/2006GB002708</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:GBC.GBC1316.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="9"></count>
<count type="tableTotal" number="4"></count>
</countGroup>
<titleGroup>
<title type="main">Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change</title>
<title type="short">ARCTIC CDOM PHOTOOXIDATION</title>
<title type="shortAuthors">Bélanger
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="gbc1316-cr-0001" affiliationRef="#gbc1316-aff-0001 #gbc1316-aff-0006">
<personName>
<givenNames>Simon</givenNames>
<familyName>Bélanger</familyName>
</personName>
<contactDetails>
<email normalForm="sbe@obs-vlfr.fr">sbe@obs-vlfr.fr</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="gbc1316-cr-0002" affiliationRef="#gbc1316-aff-0002">
<personName>
<givenNames>Huixiang</givenNames>
<familyName>Xie</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="gbc1316-cr-0003" affiliationRef="#gbc1316-aff-0003">
<personName>
<givenNames>Nickolay</givenNames>
<familyName>Krotkov</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="gbc1316-cr-0004" affiliationRef="#gbc1316-aff-0004">
<personName>
<givenNames>Pierre</givenNames>
<familyName>Larouche</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="gbc1316-cr-0005" affiliationRef="#gbc1316-aff-0005">
<personName>
<givenNames>Warwick F.</givenNames>
<familyName>Vincent</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="gbc1316-cr-0006" affiliationRef="#gbc1316-aff-0001 #gbc1316-aff-0006">
<personName>
<givenNames>Marcel</givenNames>
<familyName>Babin</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="FR" type="organization" xml:id="gbc1316-aff-0001">
<orgDiv>Laboratoire d'océanographie de Villefranche</orgDiv>
<orgName>Université Pierre et Marie Curie‐Paris</orgName>
<address>
<city>Villefranche‐sur‐Mer</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="CA" type="organization" xml:id="gbc1316-aff-0002">
<orgDiv>Institut des Sciences de la Mer de Rimouski</orgDiv>
<orgName>Université du Québec à Rimouski</orgName>
<address>
<city>Rimouski, Quebec</city>
<country>Canada</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="gbc1316-aff-0003">
<orgDiv>Goddard Earth Sciences and Technology Center</orgDiv>
<orgName>University of Maryland Baltimore County</orgName>
<address>
<city>Baltimore</city>
<countryPart>Maryland</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="CA" type="organization" xml:id="gbc1316-aff-0004">
<orgDiv>Institut Maurice‐Lamontagne</orgDiv>
<orgName>Pêches et Océans Canada</orgName>
<address>
<city>Mont‐Joli, Quebec</city>
<country>Canada</country>
</address>
</affiliation>
<affiliation countryCode="CA" type="organization" xml:id="gbc1316-aff-0005">
<orgDiv>Département de Biologie and Centre d'Études Nordiques</orgDiv>
<orgName>Université Laval</orgName>
<address>
<city>Quebec City, Quebec</city>
<country>Canada</country>
</address>
</affiliation>
<affiliation type="organization" xml:id="gbc1316-aff-0006">
<unparsedAffiliation>Also at Laboratoire d'océanographie de Villefranche, CNRS, Villefranche‐sur‐Mer, France.</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="gbc1316-kwd-0001">Beaufort Sea</keyword>
<keyword xml:id="gbc1316-kwd-0002">CDOM photooxidation</keyword>
<keyword xml:id="gbc1316-kwd-0003">global warming</keyword>
</keywordGroup>
<supportingInformation xml:id="gbc1316-sup-0000">
<p xml:id="gbc1316-para-0001">Auxiliary material for this article contains additional text, a table, and two figures.</p>
<p xml:id="gbc1316-para-0002">Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac).</p>
<p xml:id="gbc1316-para-0003">See
<url href="/pubs/plugins.html">Plugins</url>
for a list of applications and supported file formats.</p>
<p xml:id="gbc1316-para-0004">Additional file information is provided in the readme.txt.</p>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:08866236:media:gbc1316:gbc1316-sup-0001-readme"></mediaResource>
<caption>readme.txt</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:08866236:media:gbc1316:gbc1316-sup-0002-txts01"></mediaResource>
<caption>Text S1. On the determination of the Apparent Quantum Yield for DIC photoproduction.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:08866236:media:gbc1316:gbc1316-sup-0003-txts02"></mediaResource>
<caption>Text S2. Figure captions.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:08866236:media:gbc1316:gbc1316-sup-0004-ts01"></mediaResource>
<caption>Table S1. Comparison of statistical results between the single exponential and quasi‐exponential functional forms.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="application/postscript" href="urn-x:wiley:08866236:media:gbc1316:gbc1316-sup-0005-fs01"></mediaResource>
<caption>Figure S1. Absorption spectra of CDOM for before (black line) and after the irradiation for the sample under WG280 cutoff filter (red line).</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" rendition="webOriginal" mimeType="image/tiff" href="urn-x:wiley:08866236:media:gbc1316:gbc1316-sup-0006-fs02"></mediaResource>
<caption>Figure S2. Modeled versus measured DIC photoproduction rates for the Single exponential (squares) and Quasi‐exponential (circles) functional forms.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:08866236:media:gbc1316:gbc1316-sup-0007-t01"></mediaResource>
<caption>Tab‐delimited Table 1.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:08866236:media:gbc1316:gbc1316-sup-0008-t02"></mediaResource>
<caption>Tab‐delimited Table 2.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:08866236:media:gbc1316:gbc1316-sup-0009-t03"></mediaResource>
<caption>Tab‐delimited Table 3.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:08866236:media:gbc1316:gbc1316-sup-0010-t04"></mediaResource>
<caption>Tab‐delimited Table 4.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="gbc1316-para-0005" label="1">Photomineralization of terrigenous dissolved organic matter (tDOM) in the Arctic Ocean is limited by persistent sea ice cover that reduces the amount of ultraviolet (UV) radiation reaching the underlying water column. UV‐dependent processes are likely to accelerate as a result of shrinking sea ice extent and decreasing ice thickness caused by climatic warming over this region. In this study, we made the first quantitative estimates of photomineralization of tDOM in a coastal Arctic ecosystem under current and future sea ice regimes. We used an optical‐photochemical coupled model incorporating water column optics and experimental measurements of photoproduction of dissolved inorganic carbon (DIC), the main carbon product of DOM photochemistry. Apparent quantum yields of DIC photoproduction were determined on water samples from the Mackenzie River estuary, the Mackenzie Shelf, and Amundsen Gulf. UV irradiances just below the sea surface were estimated by combining satellite backscattered and passive microwave radiance measurements with a radiative transfer model. The mean annual DIC photoproduction between 1979 and 2003 was estimated as 66.5 ± 18.5 Gg carbon in the surface waters of the southeastern Beaufort Sea, where UV absorption is dominated by chromophoric dissolved organic matter discharged by the Mackenzie River. This value is equivalent to 10% of bacterial respiration rates, 8% of new primary production rates and 2.8 ± 0.6% of the 1.3 Tg of dissolved organic carbon (DOC) discharged annually by the Mackenzie River into the area. During periods of reduced ice cover such as 1998, the latter value could rise to 5.1% of the annual riverine DOC discharge. Under an ice‐free scenario, the model predicted that 150.5 Gg of DIC would be photochemically produced, mineralizing 6.2% of the DOC input from the Mackenzie River. These results show that the predicted trend of ongoing contraction of sea ice cover will greatly accelerate the photomineralization of tDOM in Arctic surface waters.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>ARCTIC CDOM PHOTOOXIDATION</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Bélanger</namePart>
<affiliation>Laboratoire d'océanographie de Villefranche, Université Pierre et Marie Curie‐Paris, Villefranche‐sur‐Mer, France</affiliation>
<affiliation>Also at Laboratoire d'océanographie de Villefranche, CNRS, Villefranche‐sur‐Mer, France.</affiliation>
<affiliation>E-mail: sbe@obs-vlfr.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huixiang</namePart>
<namePart type="family">Xie</namePart>
<affiliation>Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Quebec, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nickolay</namePart>
<namePart type="family">Krotkov</namePart>
<affiliation>Goddard Earth Sciences and Technology Center, University of Maryland Baltimore County, Maryland, Baltimore, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Larouche</namePart>
<affiliation>Institut Maurice‐Lamontagne, Pêches et Océans Canada, Mont‐Joli, Quebec, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Warwick F.</namePart>
<namePart type="family">Vincent</namePart>
<affiliation>Département de Biologie and Centre d'Études Nordiques, Université Laval, Quebec City, Quebec, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcel</namePart>
<namePart type="family">Babin</namePart>
<affiliation>Laboratoire d'océanographie de Villefranche, Université Pierre et Marie Curie‐Paris, Villefranche‐sur‐Mer, France</affiliation>
<affiliation>Also at Laboratoire d'océanographie de Villefranche, CNRS, Villefranche‐sur‐Mer, France.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2006-12</dateIssued>
<dateCaptured encoding="w3cdtf">2006-02-16</dateCaptured>
<dateValid encoding="w3cdtf">2006-06-28</dateValid>
<edition>Bélanger, S., H. Xie, N. Krotkov, P. Larouche, W. F. Vincent, and M. Babin (2006), Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change, Global Biogeochem. Cycles, 20, GB4005, doi:10.1029/2006GB002708.</edition>
<copyrightDate encoding="w3cdtf">2006</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">9</extent>
<extent unit="tables">4</extent>
</physicalDescription>
<abstract>Photomineralization of terrigenous dissolved organic matter (tDOM) in the Arctic Ocean is limited by persistent sea ice cover that reduces the amount of ultraviolet (UV) radiation reaching the underlying water column. UV‐dependent processes are likely to accelerate as a result of shrinking sea ice extent and decreasing ice thickness caused by climatic warming over this region. In this study, we made the first quantitative estimates of photomineralization of tDOM in a coastal Arctic ecosystem under current and future sea ice regimes. We used an optical‐photochemical coupled model incorporating water column optics and experimental measurements of photoproduction of dissolved inorganic carbon (DIC), the main carbon product of DOM photochemistry. Apparent quantum yields of DIC photoproduction were determined on water samples from the Mackenzie River estuary, the Mackenzie Shelf, and Amundsen Gulf. UV irradiances just below the sea surface were estimated by combining satellite backscattered and passive microwave radiance measurements with a radiative transfer model. The mean annual DIC photoproduction between 1979 and 2003 was estimated as 66.5 ± 18.5 Gg carbon in the surface waters of the southeastern Beaufort Sea, where UV absorption is dominated by chromophoric dissolved organic matter discharged by the Mackenzie River. This value is equivalent to 10% of bacterial respiration rates, 8% of new primary production rates and 2.8 ± 0.6% of the 1.3 Tg of dissolved organic carbon (DOC) discharged annually by the Mackenzie River into the area. During periods of reduced ice cover such as 1998, the latter value could rise to 5.1% of the annual riverine DOC discharge. Under an ice‐free scenario, the model predicted that 150.5 Gg of DIC would be photochemically produced, mineralizing 6.2% of the DOC input from the Mackenzie River. These results show that the predicted trend of ongoing contraction of sea ice cover will greatly accelerate the photomineralization of tDOM in Arctic surface waters.</abstract>
<subject>
<genre>keywords</genre>
<topic>Beaufort Sea</topic>
<topic>CDOM photooxidation</topic>
<topic>global warming</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Global Biogeochemical Cycles</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Global Biogeochem. Cycles</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content"> Auxiliary material for this article contains additional text, a table, and two figures. Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac). See Plugins for a list of applications and supported file formats. Additional file information is provided in the readme.txt. Auxiliary material for this article contains additional text, a table, and two figures. Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac). See Plugins for a list of applications and supported file formats. Additional file information is provided in the readme.txt. Auxiliary material for this article contains additional text, a table, and two figures. Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac). See Plugins for a list of applications and supported file formats. Additional file information is provided in the readme.txt. Auxiliary material for this article contains additional text, a table, and two figures. Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac). See Plugins for a list of applications and supported file formats. Additional file information is provided in the readme.txt.Supporting Info Item: readme.txt - Text S1. On the determination of the Apparent Quantum Yield for DIC photoproduction. - Text S2. Figure captions. - Table S1. Comparison of statistical results between the single exponential and quasi‐exponential functional forms. - Figure S1. Absorption spectra of CDOM for before (black line) and after the irradiation for the sample under WG280 cutoff filter (red line). - Figure S2. Modeled versus measured DIC photoproduction rates for the Single exponential (squares) and Quasi‐exponential (circles) functional forms. - Tab‐delimited Table 1. - Tab‐delimited Table 2. - Tab‐delimited Table 3. - Tab‐delimited Table 4. - </note>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0428">Carbon cycling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0414">Biogeochemical cycles, processes, and modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0442">Estuarine and nearshore processes</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0480">Remote sensing</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0412">Biogeochemical kinetics and reaction modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0793">Biogeochemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1615">Biogeochemical cycles, processes, and modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4200">OCEANOGRAPHY: GENERAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4235">Estuarine processes</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4806">Carbon cycling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4805">Biogeochemical cycles, processes, and modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4900">PALEOCEANOGRAPHY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4912">Biogeochemical cycles, processes, and modeling</topic>
</subject>
<identifier type="ISSN">0886-6236</identifier>
<identifier type="eISSN">1944-9224</identifier>
<identifier type="DOI">10.1002/(ISSN)1944-9224</identifier>
<identifier type="CODEN">GBCYEP</identifier>
<identifier type="PublisherID">GBC</identifier>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>20</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>13</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">DCED973B91EA6779865092101D977F52CDEF6192</identifier>
<identifier type="DOI">10.1029/2006GB002708</identifier>
<identifier type="ArticleID">2006GB002708</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2006 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002141 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002141 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:DCED973B91EA6779865092101D977F52CDEF6192
   |texte=   Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024