La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Foraminiferal evidence for Cenomanian sequence stratigraphy and palaeoceanography of the Boulonnais (Paris Basin, northern France)

Identifieur interne : 001F09 ( Istex/Corpus ); précédent : 001F08; suivant : 001F10

Foraminiferal evidence for Cenomanian sequence stratigraphy and palaeoceanography of the Boulonnais (Paris Basin, northern France)

Auteurs : Kai-Uwe Gr Fe

Source :

RBID : ISTEX:8E30D91F060704308F2F23D374A89A3E000207BE

Abstract

A middle to upper Cenomanian chalk succession in the northwestern European Paris Basin (Escalles section) was investigated with respect to its sediment composition, biofacies, and foraminiferal content. Most planktic foraminifers exhibit a high-frequency cyclicity in their distribution pattern and show little relationship to the sequence stratigraphic subdivision. A few characteristic species of benthic foraminifers (Tritaxia pyramidata, Ataxophragmium compactum, Dorothia levis, and Gavelinella cenomana) are related in their frequency distribution to certain systems tracts. Other benthic foraminiferal species are more evenly distributed through the systems tracts. Cluster analysis and factor analysis allow the separation of three benthic foraminiferal biofacies domains, which exhibit a characteristic frequency distribution pattern with respect to sequence stratigraphy. Biofacies 1 is dominant in the highstand systems tract (HST), and biofacies 3 is characteristic for the transgressive systems tract (TST). Biofacies 2 is most abundant around the maximum flooding–downlap surface (mfs) and less abundant around the sequence boundary. Factor analysis shows that most of the variance in the data set is explained by variables related to plankton productivity. Variables related to changes in water depth and changes in sea-level have minor influence on the variance of the whole data set, but have some influence on the variance of the benthic foraminiferal data set. The different reaction of benthic and planktic foraminifers to relative sea-level changes is also recorded in the total number of foraminifers per gram sediment (foraminiferal number) and in the ratio between planktic and benthic foraminifers (p/b-ratio). The foraminiferal number is highest at the mfs and lowest at the sequence boundaries of the investigated depositional sequences. The p/b-ratio has no correlation with the sequence stratigraphic subdivision, but shows a high-frequency cyclicity. The abundance pattern of planktic foraminifers is controlled by changes in the productivity of calcareous plankton. The regular variation in calcareous plankton productivity leads to marl (low productivity)–chalk (high productivity) cycles that form conspicuous couplets in the section. The productivity cycles are also recorded in gamma-ray logs in the environmental setting of the Escalles section. In contrast, the abundance patterns of benthic foraminifers are more influenced by relative sea-level changes, changes in water depth, and variations in substrate composition. The stacking of probably precession-controlled development of couplets lead to a distinct 100,000-year cyclicity that does not match very well with published sequence stratigraphic subdivisions.

Url:
DOI: 10.1016/S0031-0182(99)00080-2

Links to Exploration step

ISTEX:8E30D91F060704308F2F23D374A89A3E000207BE

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Foraminiferal evidence for Cenomanian sequence stratigraphy and palaeoceanography of the Boulonnais (Paris Basin, northern France)</title>
<author>
<name sortKey="Gr Fe, Kai Uwe" sort="Gr Fe, Kai Uwe" uniqKey="Gr Fe K" first="Kai-Uwe" last="Gr Fe">Kai-Uwe Gr Fe</name>
<affiliation>
<mods:affiliation>Department of Geosciences, University of Bremen, P.O. Box 33 04 40, D-28334 Bremen, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:8E30D91F060704308F2F23D374A89A3E000207BE</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1016/S0031-0182(99)00080-2</idno>
<idno type="url">https://api.istex.fr/document/8E30D91F060704308F2F23D374A89A3E000207BE/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001F09</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001F09</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Foraminiferal evidence for Cenomanian sequence stratigraphy and palaeoceanography of the Boulonnais (Paris Basin, northern France)</title>
<author>
<name sortKey="Gr Fe, Kai Uwe" sort="Gr Fe, Kai Uwe" uniqKey="Gr Fe K" first="Kai-Uwe" last="Gr Fe">Kai-Uwe Gr Fe</name>
<affiliation>
<mods:affiliation>Department of Geosciences, University of Bremen, P.O. Box 33 04 40, D-28334 Bremen, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Palaeogeography, Palaeoclimatology, Palaeoecology</title>
<title level="j" type="abbrev">PALAEO</title>
<idno type="ISSN">0031-0182</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999">1999</date>
<biblScope unit="volume">153</biblScope>
<biblScope unit="issue">1–4</biblScope>
<biblScope unit="page" from="41">41</biblScope>
<biblScope unit="page" to="70">70</biblScope>
</imprint>
<idno type="ISSN">0031-0182</idno>
</series>
<idno type="istex">8E30D91F060704308F2F23D374A89A3E000207BE</idno>
<idno type="DOI">10.1016/S0031-0182(99)00080-2</idno>
<idno type="PII">S0031-0182(99)00080-2</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0031-0182</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A middle to upper Cenomanian chalk succession in the northwestern European Paris Basin (Escalles section) was investigated with respect to its sediment composition, biofacies, and foraminiferal content. Most planktic foraminifers exhibit a high-frequency cyclicity in their distribution pattern and show little relationship to the sequence stratigraphic subdivision. A few characteristic species of benthic foraminifers (Tritaxia pyramidata, Ataxophragmium compactum, Dorothia levis, and Gavelinella cenomana) are related in their frequency distribution to certain systems tracts. Other benthic foraminiferal species are more evenly distributed through the systems tracts. Cluster analysis and factor analysis allow the separation of three benthic foraminiferal biofacies domains, which exhibit a characteristic frequency distribution pattern with respect to sequence stratigraphy. Biofacies 1 is dominant in the highstand systems tract (HST), and biofacies 3 is characteristic for the transgressive systems tract (TST). Biofacies 2 is most abundant around the maximum flooding–downlap surface (mfs) and less abundant around the sequence boundary. Factor analysis shows that most of the variance in the data set is explained by variables related to plankton productivity. Variables related to changes in water depth and changes in sea-level have minor influence on the variance of the whole data set, but have some influence on the variance of the benthic foraminiferal data set. The different reaction of benthic and planktic foraminifers to relative sea-level changes is also recorded in the total number of foraminifers per gram sediment (foraminiferal number) and in the ratio between planktic and benthic foraminifers (p/b-ratio). The foraminiferal number is highest at the mfs and lowest at the sequence boundaries of the investigated depositional sequences. The p/b-ratio has no correlation with the sequence stratigraphic subdivision, but shows a high-frequency cyclicity. The abundance pattern of planktic foraminifers is controlled by changes in the productivity of calcareous plankton. The regular variation in calcareous plankton productivity leads to marl (low productivity)–chalk (high productivity) cycles that form conspicuous couplets in the section. The productivity cycles are also recorded in gamma-ray logs in the environmental setting of the Escalles section. In contrast, the abundance patterns of benthic foraminifers are more influenced by relative sea-level changes, changes in water depth, and variations in substrate composition. The stacking of probably precession-controlled development of couplets lead to a distinct 100,000-year cyclicity that does not match very well with published sequence stratigraphic subdivisions.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Kai-Uwe Gräfe</name>
<affiliations>
<json:string>Department of Geosciences, University of Bremen, P.O. Box 33 04 40, D-28334 Bremen, Germany</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Cretaceous</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Cenomanian</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>sequence stratigraphy</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>palaeoceanography</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>foraminifers</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Paris Basin</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>A middle to upper Cenomanian chalk succession in the northwestern European Paris Basin (Escalles section) was investigated with respect to its sediment composition, biofacies, and foraminiferal content. Most planktic foraminifers exhibit a high-frequency cyclicity in their distribution pattern and show little relationship to the sequence stratigraphic subdivision. A few characteristic species of benthic foraminifers (Tritaxia pyramidata, Ataxophragmium compactum, Dorothia levis, and Gavelinella cenomana) are related in their frequency distribution to certain systems tracts. Other benthic foraminiferal species are more evenly distributed through the systems tracts. Cluster analysis and factor analysis allow the separation of three benthic foraminiferal biofacies domains, which exhibit a characteristic frequency distribution pattern with respect to sequence stratigraphy. Biofacies 1 is dominant in the highstand systems tract (HST), and biofacies 3 is characteristic for the transgressive systems tract (TST). Biofacies 2 is most abundant around the maximum flooding–downlap surface (mfs) and less abundant around the sequence boundary. Factor analysis shows that most of the variance in the data set is explained by variables related to plankton productivity. Variables related to changes in water depth and changes in sea-level have minor influence on the variance of the whole data set, but have some influence on the variance of the benthic foraminiferal data set. The different reaction of benthic and planktic foraminifers to relative sea-level changes is also recorded in the total number of foraminifers per gram sediment (foraminiferal number) and in the ratio between planktic and benthic foraminifers (p/b-ratio). The foraminiferal number is highest at the mfs and lowest at the sequence boundaries of the investigated depositional sequences. The p/b-ratio has no correlation with the sequence stratigraphic subdivision, but shows a high-frequency cyclicity. The abundance pattern of planktic foraminifers is controlled by changes in the productivity of calcareous plankton. The regular variation in calcareous plankton productivity leads to marl (low productivity)–chalk (high productivity) cycles that form conspicuous couplets in the section. The productivity cycles are also recorded in gamma-ray logs in the environmental setting of the Escalles section. In contrast, the abundance patterns of benthic foraminifers are more influenced by relative sea-level changes, changes in water depth, and variations in substrate composition. The stacking of probably precession-controlled development of couplets lead to a distinct 100,000-year cyclicity that does not match very well with published sequence stratigraphic subdivisions.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>546 x 746 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>6</keywordCount>
<abstractCharCount>2752</abstractCharCount>
<pdfWordCount>12613</pdfWordCount>
<pdfCharCount>91878</pdfCharCount>
<pdfPageCount>30</pdfPageCount>
<abstractWordCount>379</abstractWordCount>
</qualityIndicators>
<title>Foraminiferal evidence for Cenomanian sequence stratigraphy and palaeoceanography of the Boulonnais (Paris Basin, northern France)</title>
<pii>
<json:string>S0031-0182(99)00080-2</json:string>
</pii>
<refBibs>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>M.A. Arthur</name>
</json:item>
<json:item>
<name>D.J. Bottjer</name>
</json:item>
<json:item>
<name>W.E. Dean</name>
</json:item>
<json:item>
<name>A.G. Fischer</name>
</json:item>
<json:item>
<name>D.E. Hattin</name>
</json:item>
<json:item>
<name>E.G. Kauffman</name>
</json:item>
<json:item>
<name>L.M. Pratt</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>156</last>
<first>153</first>
</pages>
<author></author>
<title>Geology</title>
</host>
<title>Rhythmic bedding in Upper Cretaceous pelagic carbonate sequences: varying sedimentary response to climatic forcing</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>M.A. Arthur</name>
</json:item>
<json:item>
<name>W.E. Dean</name>
</json:item>
<json:item>
<name>L.M. Pratt</name>
</json:item>
</author>
<host>
<volume>335</volume>
<pages>
<last>717</last>
<first>714</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.J. Barron</name>
</json:item>
<json:item>
<name>P.J. Fawcett</name>
</json:item>
<json:item>
<name>W.H. Peterson</name>
</json:item>
<json:item>
<name>D. Pollard</name>
</json:item>
<json:item>
<name>S.L. Thompson</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>962</last>
<first>953</first>
</pages>
<issue>5</issue>
<author></author>
<title>Paleoceanography</title>
</host>
<title>A `simulation' of mid-Cretaceous climate</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Beutler</name>
</json:item>
<json:item>
<name>C. Heunisch</name>
</json:item>
<json:item>
<name>F.W. Luppold</name>
</json:item>
<json:item>
<name>B. Rettig</name>
</json:item>
<json:item>
<name>H.-G. Röhling</name>
</json:item>
</author>
<host>
<volume>145</volume>
<pages>
<last>197</last>
<first>67</first>
</pages>
<author></author>
<title>Geol. Jahrb. A</title>
</host>
<title>Muschelkalk, Keuper und Lias am Mittellandkanal bei Sehnde (Niedersachsen) und die regionale Stellung des Keupers</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>T.J. Bralower</name>
</json:item>
<json:item>
<name>H.R. Thierstein</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>618</last>
<first>614</first>
</pages>
<author></author>
<title>Geology</title>
</host>
<title>Low productivity and slow deep-water circulation in mid- Cretaceous oceans</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F. Brotzen</name>
</json:item>
</author>
<host>
<volume>30</volume>
<pages>
<last>206</last>
<first>1</first>
</pages>
<issue>396</issue>
<author></author>
<title>Sver. Geol. Unders. Ser. C</title>
</host>
<title>Foraminiferen aus dem schwedischen untersten Senon von Eriksdal in Schonen</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Caron</name>
</json:item>
<json:item>
<name>P. Homewood</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>462</last>
<first>453</first>
</pages>
<author></author>
<title>Mar. Micropaleontol.</title>
</host>
<title>Evolution of early planktic foraminifers</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.J. Carter</name>
</json:item>
<json:item>
<name>M.B. Hart</name>
</json:item>
</author>
<host>
<volume>29</volume>
<pages>
<last>135</last>
<first>1</first>
</pages>
<issue>1</issue>
<author></author>
<title>Bull. Br. Mus. Nat. Hist. (Geol.)</title>
</host>
<title>Aspects of mid-Cretaceous stratigraphical micropalaeontology</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R.A. Cottle</name>
</json:item>
</author>
<host>
<volume>1</volume>
<pages>
<last>431</last>
<first>426</first>
</pages>
<author></author>
<title>Terra Nova</title>
</host>
<title>Orbitally mediated cycles from the Turonian of southern England: their potential for high-resolution stratigraphic correlation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.A. Cushman</name>
</json:item>
</author>
<host>
<volume>8</volume>
<pages>
<last>210</last>
<first>1</first>
</pages>
<author></author>
<title>Cushman Found. Foraminiferal Res., Spec. Publ.</title>
</host>
<title>A monograph of the foraminiferal family Valvulinidae</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.A. Cushman</name>
</json:item>
</author>
<host>
<volume>206</volume>
<pages>
<last>241</last>
<first>1</first>
</pages>
<author></author>
<title>U.S. Geol. Surv. Prof. Pap.</title>
</host>
<title>Upper Cretaceous foraminifera of the Gulf Coastal Region of the United States and adjacent areas</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J.-F. Deconinck</name>
</json:item>
<json:item>
<name>Th. Holtzapffel</name>
</json:item>
<json:item>
<name>F. Robaszynski</name>
</json:item>
<json:item>
<name>F. Amédro</name>
</json:item>
</author>
<host>
<volume>11</volume>
<pages>
<last>188</last>
<first>179</first>
</pages>
<author></author>
<title>Geobios, Mém. Spéc.</title>
</host>
<title>Données minéralogiques, géochimiques et biologiques comparées dans les craies cénomaniennes à santoniennes du Boulonnais</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>K.-U. Gräfe</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>418</last>
<first>1</first>
</pages>
<author></author>
<title>Tübinger Geowiss. Arb. A</title>
</host>
<title>Sequence Stratigraphy in the Cretaceous and Paleogene (Aptian to Eocene) of the Basco–Cantabrian Basin (N. Spain)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K.-U. Gräfe</name>
</json:item>
</author>
<host>
<volume>77</volume>
<pages>
<last>270</last>
<first>243</first>
</pages>
<author></author>
<title>Mitt. Geol. Paläontol. Inst. Univ. Hamburg</title>
</host>
<title>Sedimentary cycles in the Upper Cretaceous of the Basco–Cantabrian Basin (N. Spain) — an application of sequence stratigraphy</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K.-U. Gräfe</name>
</json:item>
</author>
<host>
<volume>212</volume>
<pages>
<last>130</last>
<first>85</first>
</pages>
<issue>1, 2, 3</issue>
<author></author>
<title>Neues Jahrb. Geol. Paläontol., Abh.</title>
</host>
<title>Sedimentary cycles, burial history and foraminiferal indicators for systems tracts and sequence boundaries in the Cretaceous of the Basco–Cantabrian Basin (Northern Spain)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K.-U. Gräfe</name>
</json:item>
<json:item>
<name>J. Wiedmann</name>
</json:item>
</author>
<host>
<volume>82</volume>
<pages>
<last>361</last>
<first>327</first>
</pages>
<author></author>
<title>Geol. Rundsch.</title>
</host>
<title>Sequence stratigraphy in the Upper Cretaceous of the Basco–Cantabrian Basin (Northern Spain)</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J.M. Hancock</name>
</json:item>
</author>
<host>
<volume>86</volume>
<pages>
<last>535</last>
<first>499</first>
</pages>
<issue>4</issue>
<author></author>
<title>Proc. Geol. Assoc.</title>
</host>
<title>The petrology of the chalk</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>M.B. Hart</name>
</json:item>
</author>
<host>
<volume>1</volume>
<pages>
<last>297</last>
<first>289</first>
</pages>
<author></author>
<title>Cretaceous Res.</title>
</host>
<title>The recognition of Mid-Cretaceous sea-level changes by means of foraminifera</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.B. Hart</name>
</json:item>
</author>
<host>
<volume>286</volume>
<pages>
<last>254</last>
<first>252</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>A water depth model for the evolution of planktonic foraminifera</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>M.B. Hart</name>
</json:item>
<json:item>
<name>P.N. Leary</name>
</json:item>
</author>
<host>
<volume>3</volume>
<pages>
<last>147</last>
<first>142</first>
</pages>
<author></author>
<title>Terra Nova</title>
</host>
<title>Stepwise mass extinction: the case for the Late Cenomanian event</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>W.W. Hay</name>
</json:item>
<json:item>
<name>R.M. DeConto</name>
</json:item>
<json:item>
<name>C.N. Wold</name>
</json:item>
</author>
<host>
<volume>86</volume>
<pages>
<last>491</last>
<first>471</first>
</pages>
<issue>2</issue>
<author></author>
<title>Geol. Rundsch.</title>
</host>
<title>Climate: is the past the key to the future?</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Hilbrecht</name>
</json:item>
<json:item>
<name>H.-W. Hubberten</name>
</json:item>
<json:item>
<name>H. Oberhänsli</name>
</json:item>
</author>
<host>
<volume>92</volume>
<pages>
<last>421</last>
<first>407</first>
</pages>
<issue>3/4</issue>
<author></author>
<title>Palaeogeogr., Palaeoclimatol., Palaeoecol.</title>
</host>
<title>Biogeography of planktonic foraminifera and regional carbon isotope variations, productivity and water masses in the late Cretaceous Europe</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Hilbrecht</name>
</json:item>
<json:item>
<name>C. Frieg</name>
</json:item>
<json:item>
<name>K.-A. Tröger</name>
</json:item>
<json:item>
<name>S. Voigt</name>
</json:item>
<json:item>
<name>T. Voigt</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<last>253</last>
<first>229</first>
</pages>
<author></author>
<title>Cretaceous Res.</title>
</host>
<title>Shallow water facies during the Cenomanian–Turonian anoxic event: bio-events, isotopes, and sea level in southern Germany</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Hofker</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>464</last>
<first>1</first>
</pages>
<author></author>
<title>Beih. Geol. Jahrb.</title>
</host>
<title>Foraminiferen der Oberkreide von Nordwestdeutschland und Holland</title>
</json:item>
<json:item>
<author>
<json:item>
<name>I. Jarvis</name>
</json:item>
<json:item>
<name>G.A. Carson</name>
</json:item>
<json:item>
<name>M.K.E. Cooper</name>
</json:item>
<json:item>
<name>M.B. Hart</name>
</json:item>
<json:item>
<name>P.N. Leary</name>
</json:item>
<json:item>
<name>B.A. Tocher</name>
</json:item>
<json:item>
<name>D. Horne</name>
</json:item>
<json:item>
<name>A. Rosenfeld</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>103</last>
<first>3</first>
</pages>
<author></author>
<title>Cretaceous Res.</title>
</host>
<title>Microfossil assemblages and the Cenomanian–Turonian (Late Cretaceous) Oceanic Anoxic Event</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.V. Jeans</name>
</json:item>
</author>
<host>
<volume>43</volume>
<pages>
<last>157</last>
<first>81</first>
</pages>
<issue>2, 3, 4, 5, 6</issue>
<author></author>
<title>Proc. Yorkshire Geol. Soc.</title>
</host>
<title>Early submarine lithification in the Red Chalk and Lower Chalk of Eastern England: a bacterial control model and its implications</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.V. Jeans</name>
</json:item>
<json:item>
<name>D. Long</name>
</json:item>
<json:item>
<name>M.A. Hall</name>
</json:item>
<json:item>
<name>D.J. Bland</name>
</json:item>
<json:item>
<name>C. Cornford</name>
</json:item>
</author>
<host>
<volume>128</volume>
<pages>
<last>632</last>
<first>603</first>
</pages>
<issue>6</issue>
<author></author>
<title>Geol. Mag.</title>
</host>
<title>The geochemistry of the Plenus Marls at Dover, England: evidence of fluctuating oceanographic conditions and of glacial control during the development of the Cenomanian–Turonian δ13C anomaly</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R.P.S. Jefferies</name>
</json:item>
</author>
<host>
<volume>4</volume>
<pages>
<last>647</last>
<first>609</first>
</pages>
<issue>4</issue>
<author></author>
<title>Palaeontology</title>
</host>
<title>The palaeoecology of the Actinocamax plenus subzone (Lowest Turonian) in the Anglo–Paris Basin</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H.C. Jenkyns</name>
</json:item>
<json:item>
<name>A.S. Gale</name>
</json:item>
<json:item>
<name>R.M. Corfield</name>
</json:item>
</author>
<host>
<volume>131</volume>
<pages>
<last>34</last>
<first>1</first>
</pages>
<issue>1</issue>
<author></author>
<title>Geol. Mag.</title>
</host>
<title>Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Juignet</name>
</json:item>
<json:item>
<name>G. Breton</name>
</json:item>
</author>
<host>
<volume>91</volume>
<pages>
<last>218</last>
<first>197</first>
</pages>
<author></author>
<title>Palaeogeogr., Palaeoclimatol., Palaeoecol.</title>
</host>
<title>Mid-Cretaceous sequence stratigraphy and sedimentary cyclicity in the western Paris Basin</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>W.J. Kennedy</name>
</json:item>
<json:item>
<name>R.E. Garrison</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>386</last>
<first>311</first>
</pages>
<author></author>
<title>Sedimentology</title>
</host>
<title>Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Keupp</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>190</last>
<first>1</first>
</pages>
<author></author>
<title>Facies</title>
</host>
<title>Die kalkigen Dinoflagellaten-Zysten der borealen Unter-Kreide (Unter-Hauterivium bis Unter-Albium)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Keupp</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>21</last>
<first>6</first>
</pages>
<author></author>
<title>Facies</title>
</host>
<title>Die kalkigen Dinoflagellatenzysten des Mittelalb bis Untercenoman von Escalles/Boulonnais (N-Frankreich)</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>W. Koch</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<last>123</last>
<first>11</first>
</pages>
<author></author>
<title>Geol. Jahrb. A</title>
</host>
<title>Biostratigraphie in der Oberkreide und Taxonomie von Foraminiferen</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.A.M. Koutsoukos</name>
</json:item>
<json:item>
<name>M.B. Hart</name>
</json:item>
</author>
<host>
<volume>81</volume>
<pages>
<last>246</last>
<first>221</first>
</pages>
<author></author>
<title>Trans. R. Soc. Edinburgh (Earth Sci.)</title>
</host>
<title>Cretaceous foraminiferal morphogroup distribution patterns, palaeocommunities and trophic structures: a case study from the Sergipe Basin, Brazil</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>P.N. Leary</name>
</json:item>
<json:item>
<name>M.B. Hart</name>
</json:item>
</author>
<host>
<volume>11</volume>
<pages>
<last>111</last>
<first>107</first>
</pages>
<issue>2</issue>
<author></author>
<title>J. Micropalaeontol.</title>
</host>
<title>The benthonic foraminiferal response to changing substrate in Cenomanian (Cretaceous) rhythms induced by orbitally-forced surface water productivity</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.N. Leary</name>
</json:item>
<json:item>
<name>R.A. Cottle</name>
</json:item>
<json:item>
<name>P. Ditchfield</name>
</json:item>
</author>
<host>
<volume>1</volume>
<pages>
<last>419</last>
<first>416</first>
</pages>
<author></author>
<title>Terra Nova</title>
</host>
<title>Milankovitch control of foraminiferal assemblages from the Cenomanian of southern England</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>F. Magniez-Jannin</name>
</json:item>
</author>
<host>
<volume>1975</volume>
<pages>
<last>360</last>
<first>1</first>
</pages>
<author></author>
<title>Cah. Paléontol.</title>
</host>
<title>Les foraminifères de l'Albien de l'Aube: paléontologie, stratigraphie, écologie</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.A. Mancini</name>
</json:item>
<json:item>
<name>T.M. Puckett</name>
</json:item>
<json:item>
<name>B.H. Tew</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<last>669</last>
<first>645</first>
</pages>
<issue>6</issue>
<author></author>
<title>Cretaceous Res.</title>
</host>
<title>Integrated biostratigraphic and sequence stratigraphic framework for Upper Cretaceous strata of the eastern gulf coastal plain, USA</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.H. McNeil</name>
</json:item>
<json:item>
<name>W.G.E. Caldwell</name>
</json:item>
</author>
<host>
<volume>21</volume>
<pages>
<last>439</last>
<first>1</first>
</pages>
<author></author>
<title>Geol. Assoc. Can., Spec. Pap.</title>
</host>
<title>Cretaceous rocks and their foraminifera in the Manitoba Escarpment</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Meyn</name>
</json:item>
<json:item>
<name>J. Vespermann</name>
</json:item>
</author>
<host>
<volume>74</volume>
<pages>
<last>272</last>
<first>49</first>
</pages>
<issue>1/2</issue>
<author></author>
<title>Senckenbergiana Lethaea</title>
</host>
<title>Taxonomische Revision von Foraminiferen der Unterkreide SE-Niedersachsens nach ROEMER (1839, 1841, 1842), KOCH (1851) und REUSS (1863)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S.F. Mitchell</name>
</json:item>
<json:item>
<name>I.T. Carr</name>
</json:item>
</author>
<host>
<volume>137</volume>
<pages>
<last>125</last>
<first>103</first>
</pages>
<author></author>
<title>Palaeogeogr., Palaeoclimatol., Palaeoecol.</title>
</host>
<title>Foraminiferal response to mid-Cenomanian (Upper Cretaceous) palaeoceanographic events in the Anglo–Paris Basin (northwest Europe)</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>R.K. Olsson</name>
</json:item>
</author>
<host>
<volume>70</volume>
<pages>
<last>208</last>
<first>195</first>
</pages>
<author></author>
<title>Sediment. Geol.</title>
</host>
<title>Cretaceous to Eocene sea-level fluctuations on the New Jersey margin</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>C.R.C. Paul</name>
</json:item>
</author>
<host>
<volume>11</volume>
<pages>
<last>105</last>
<first>95</first>
</pages>
<issue>1</issue>
<author></author>
<title>J. Micropalaeontol.</title>
</host>
<title>Milankovitch cycles and microfossils: principles and practice of palaeoecological analysis illustrated by Cenomanian chalk–marl rhythms</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.R.C. Paul</name>
</json:item>
<json:item>
<name>S.F. Mitchell</name>
</json:item>
<json:item>
<name>J.D. Marshall</name>
</json:item>
<json:item>
<name>P.N. Leary</name>
</json:item>
<json:item>
<name>A.S. Gale</name>
</json:item>
<json:item>
<name>A.M. Duane</name>
</json:item>
<json:item>
<name>P.W. Ditchfield</name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<last>738</last>
<first>707</first>
</pages>
<author></author>
<title>Cretaceous Res.</title>
</host>
<title>Palaeoceanographic events in the Middle Cenomanian of Northwest Europe</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Rey</name>
</json:item>
<json:item>
<name>L. Bonnet</name>
</json:item>
<json:item>
<name>R. Cubaynes</name>
</json:item>
<json:item>
<name>A. Qajoun</name>
</json:item>
<json:item>
<name>C. Ruget</name>
</json:item>
</author>
<host>
<volume>111</volume>
<pages>
<last>171</last>
<first>149</first>
</pages>
<author></author>
<title>Palaeogeogr., Palaeoclimatol., Palaeoecol.</title>
</host>
<title>Sequence stratigraphy and biological signals: statistical studies of benthic foraminifera from Liassic series</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. Ricken</name>
</json:item>
</author>
<host>
<volume>51</volume>
<pages>
<last>211</last>
<first>1</first>
</pages>
<author></author>
<title>Lecture Notes Earth Sci.</title>
</host>
<title>Sedimentation as a three-component system</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>F. Robaszynski</name>
</json:item>
<json:item>
<name>F. Amédro</name>
</json:item>
</author>
<host>
<volume>97</volume>
<pages>
<last>208</last>
<first>171</first>
</pages>
<issue>2</issue>
<author></author>
<title>Proc. Geol. Assoc.</title>
</host>
<title>The Cretaceous of the Boulonnais (France) and a comparison with the Cretaceous of Kent (United Kingdom)</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Sahagian</name>
</json:item>
<json:item>
<name>O. Pinous</name>
</json:item>
<json:item>
<name>A. Olferiev</name>
</json:item>
<json:item>
<name>V. Zakharov</name>
</json:item>
</author>
<host>
<volume>80</volume>
<pages>
<last>1458</last>
<first>1433</first>
</pages>
<author></author>
<title>Am. Assoc. Pet. Geol. Bull.</title>
</host>
<title>Eustatic curve for the Middle Jurassic–Cretaceous based on Russian Platform and Siberian stratigraphy: zonal resolution</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Schijfsma</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>167</last>
<first>1</first>
</pages>
<issue>7</issue>
<author></author>
<title>Meded. Geol. Sticht C</title>
</host>
<title>The foraminifera from the Hervian (Campanian) of Southern Limburg</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>P.A. Scholle</name>
</json:item>
<json:item>
<name>M.A. Arthur</name>
</json:item>
</author>
<host>
<volume>64</volume>
<pages>
<last>87</last>
<first>67</first>
</pages>
<issue>1</issue>
<author></author>
<title>Am. Assoc. Pet. Geol. Bull.</title>
</host>
<title>Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.J. Sikora</name>
</json:item>
<json:item>
<name>R.K. Olsson</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>72</last>
<first>25</first>
</pages>
<author></author>
<title>Mar. Micropaleontol.</title>
</host>
<title>A paleoslope model of late Albian to early Turonian foraminifera of the western Atlantic margin and North Atlantic basin</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Stein</name>
</json:item>
</author>
<host>
<volume>72</volume>
<pages>
<last>209</last>
<first>199</first>
</pages>
<author></author>
<title>Mar. Geol.</title>
</host>
<title>Organic carbon and sedimentation rate — further evidence for anoxic deep-water conditions in the Cenomanian/Turonian Atlantic Ocean</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Stein</name>
</json:item>
<json:item>
<name>J. Rullkötter</name>
</json:item>
<json:item>
<name>D. Welte</name>
</json:item>
</author>
<host>
<volume>78</volume>
<pages>
<last>901</last>
<first>883</first>
</pages>
<issue>3</issue>
<author></author>
<title>Geol. Rundsch.</title>
</host>
<title>Changes in paleoenvironments in the Atlantic Ocean during Cretaceous times: results from black shales studies</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>W. Weiss</name>
</json:item>
</author>
<host>
<volume>178</volume>
<pages>
<last>108</last>
<first>49</first>
</pages>
<issue>1, 2, 3</issue>
<author></author>
<title>Palaeontographica A</title>
</host>
<title>Planktonische Foraminiferen aus dem Cenoman und Turon von Nordwest- und Süddeutschland</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W.J. Zachariasse</name>
</json:item>
<json:item>
<name>W.R. Riedel</name>
</json:item>
<json:item>
<name>A. Sanfilippo</name>
</json:item>
<json:item>
<name>R.R. Schmidt</name>
</json:item>
<json:item>
<name>M.J. Brolsma</name>
</json:item>
<json:item>
<name>H.J. Schrader</name>
</json:item>
<json:item>
<name>R. Gersonde</name>
</json:item>
<json:item>
<name>M.M. Drooger</name>
</json:item>
<json:item>
<name>J.A. Broekman</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<last>265</last>
<first>1</first>
</pages>
<author></author>
<title>Utrecht Micropalaeontol. Bull.</title>
</host>
<title>Micropaleontological counting methods and techniques. An exercise on an eight metres section of the Lower Pliocene of Capo Rossello, Italy</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.A. Ziegler</name>
</json:item>
</author>
<host>
<volume>43</volume>
<pages>
<last>198</last>
<first>1</first>
</pages>
<author></author>
<title>Am. Assoc. Pet. Geol., Mem.</title>
</host>
<title>Evolution of the Arctic–North Atlantic and the Western Tethys</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
</refBibs>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>153</volume>
<pii>
<json:string>S0031-0182(00)X0065-X</json:string>
</pii>
<pages>
<last>70</last>
<first>41</first>
</pages>
<issn>
<json:string>0031-0182</json:string>
</issn>
<issue>1–4</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Palaeogeography, Palaeoclimatology, Palaeoecology</title>
<publicationDate>1999</publicationDate>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>paleontology</json:string>
<json:string>geosciences, multidisciplinary</json:string>
<json:string>geography, physical</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>paleontology</json:string>
</scienceMetrix>
</categories>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1016/S0031-0182(99)00080-2</json:string>
</doi>
<id>8E30D91F060704308F2F23D374A89A3E000207BE</id>
<score>0.42455107</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/8E30D91F060704308F2F23D374A89A3E000207BE/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/8E30D91F060704308F2F23D374A89A3E000207BE/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/8E30D91F060704308F2F23D374A89A3E000207BE/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Foraminiferal evidence for Cenomanian sequence stratigraphy and palaeoceanography of the Boulonnais (Paris Basin, northern France)</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©1999 Elsevier Science B.V.</p>
</availability>
<date>1999</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Four major components that affect stratigraphic cycles in a basin. The component sediment supply is composed of three independent variables: siliciclastic supply, carbonate supply, and organic matter supply. Modified after Vail et al. (1987).</note>
<note type="content">Fig. 2: Sediment flux in a three-component system of carbonate (C), siliciclastics (S), and organic matter (OM) in Cenomanian chalks. The carbonate flux from calcareous plankton is the most important component (rectangle). Not to scale, ΔRSL = change in relative sea-level. Modified after Ricken (1993).</note>
<note type="content">Fig. 3: Palaeogeographic map of the Cenomanian to Turonian period of western Europe and North Africa. Modified after Ziegler (1988)and Philip et al. (1993). Abbreviations: AB = Alboran Basin; AKB = Alboran–Kabylian Block; AM = Armorican Massif; APF = Apulian Platform; BR = Briançonnais; CSH = Corsica–Sardinia High; EH = Ebro High; FC = Flemish Cap; GB = Grand Banks; IBM = Iberian Meseta; IM = Irish Massif; ISB = Ionian Sea Basin; J. = Julia Platform; LAT = Latium–Abruzzi Block; Luc.–Cam Lucania–Campania; MC = Massif Central; MM = Morocco Meseta; NFB = East Newfoundland Basin; OK = Orphan Knoll; PT = Porcupine Trough; RHB = Rockall–Hatton Bank; RM = Rhenish Massif; T = Trento Platform; TAB = Tagus Abyssal Plain; UGFZ = Ungawa Fracture Zone.</note>
<note type="content">Fig. 4: (a) Location plan of the investigated profile. (b) Outcrop sketch of the coastal cliff around Cap Blanc Nez with the location of the profiles that compose the Escalles section. The sections c.2 to c.7 were investigated by Robaszynski and Amédro (1980), the section CB was newly measured for this work. Section CB covers 42.2 to 76.7 m of the Escalles section (Fig. 5). CF = Crupes Formation (unit K, see Fig. 5). View from the coastline towards the land in the SE.</note>
<note type="content">Fig. 5: The Cenomanian part of the Escalles section, northern France. Biostratigraphic zonation and lithostratigraphy after Robaszynski and Amédro (1993). For comparison, two sequence stratigraphic interpretations are shown. The one of Robaszynski and Amédro (1993) is from the Escalles section, the one of Owen (1996)is from the nearby Folkestone/Dover section. Correlation of both sections after Robaszynski and Amédro (1986, fig. 16). Sub-Member 23 is the correlative equivalent of Jukes-Browne Bed 7 (Robaszynski and Amédro, 1986; Owen, 1996). Lithofacies, logging of the section, and ranges of planktic foraminifers between 0 and 42 m after Robaszynski and Amédro (1993), between 42 m and 81 m, this work. Abbreviations: A. = Albian; Tur. = Turonian; gesl. = geslinianum; Hvglt. = Helvetoglobotruncana; SF = Strouanne Formation; CF = Crupes Formation; GBN F. = Grand Blanc Nez Formation; SMW = Shelf Margin Wedge; TST = transgressive systems tract; HST = highstand systems tract; mfs = maximum flooding–downlap surface. For location of the section see Fig. 4.</note>
<note type="content">Fig. 6: The middle Cenomanian to upper Cenomanian part of the Escalles section (section CB, see Fig. 4b). The profile corresponds to 42.2 to 76.7 m of the section of Fig. 5. Stratigraphic subdivision after Robaszynski and Amédro (1993). Stratigraphic columns from left to right: division in substages; sequence stratigraphy after Robaszynski and Amédro (1993); formations; members; sub-members; couplets interpreted as precession cycles. Owen (1996)interpreted the top SMW-surface (arrow) as sequence boundary and the SMW below as part of the HST in the Folkestone–Dover section. Sub-Member 23 is the correlative equivalent of Jukes-Browne Bed 7 (Robaszynski and Amédro, 1986; Owen, 1996). Legend and abbreviations see Fig. 5. Location of the section see Fig. 4.</note>
<note type="content">Fig. 7: Foraminiferal number, some diversity parameters, and triangular plot after Stehli (1966)in the Escalles section (part CB, 42.2 to 76.7 m). Sequence stratigraphy after Robaszynski and Amédro (1993). Black arrow in Fig. 7a,b,d: top-SMW surface interpreted by Owen (1996)as sequence boundary and the SMW below as part of the HST in the Folkestone–Dover section. Legend and abbreviations for Fig. 7 see Fig. 5. (a) Total number of unfragmented foraminifers per gram sediment, 125 to 425 μm fraction. Meters of section see Figs. 5 and 6. (b) Number of benthic and planktic foraminiferal species, 125 to 425 μm fraction (Fig. 6). (c) Triangular plot of calcareous and agglutinated benthic foraminifers and of planktic foraminifers after Stehli (1966). (d) Shannon–Weaver diversity of foraminiferal samples; pi: percent of i-th species/100 (Murray, 1991).</note>
<note type="content">Fig. 8: Frequency distribution of five selected species and one genus of planktic foraminifers in the Escalles section (42.2 to 76.7 m). Percentage values are percents of total foraminiferal fauna based on census counts per gram sediment (Table 1). Meters refer to the section of Figs. 5 and 6, sequence stratigraphy after Robaszynski and Amédro (1993). Black arrow: top-SMW surface interpreted by Owen (1996)as sequence boundary and the SMW below as part of the HST in the Folkestone–Dover section. Legend and abbreviations see Fig. 5.</note>
<note type="content">Fig. 9: Water depth model and absolute sea-level model for the middle to upper Cenomanian of the Escalles section. The water depth model was calculated as average from two models: model WD1 was calculated with WD1=exp(3.58718+(0.03534×P)); P = number of planktic foraminifers in %, after Van Der Zwaan et al. (1990). Model WD2 was calculated as average of the water depth models of Lenticulina muensteri, Gavelinella cenomana, Gyroidinoides nitidus, and Praebulimina reussi (see Table 2). Absolute limit values for water depth of these species after Sikora and Olsson (1991). For the calculation of the absolute sea-level model see text. Sequence boundary (sb) and maximum flooding–downlap surface (mfs) after Robaszynski and Amédro (1993).</note>
<note type="content">Fig. 10: Frequency distribution of 10 species of benthic foraminifers in the Escalles section (42.2 to 76.7 m). Percentage values are percents of total foraminiferal fauna based on census counts per gram sediment (Table 1). Meters refer to the section of Figs. 5 and 6, sequence stratigraphy after Robaszynski and Amédro (1993). Black arrow: top-SMW surface interpreted by Owen (1996)as sequence boundary and the SMW below as part of the HST in the Folkestone–Dover section. Legend and abbreviations see Fig. 5.</note>
<note type="content">Fig. 11: (a) R-mode cluster analysis of the benthic foraminiferal fauna of the Escalles section (part CB, Fig. 6), complete linkage, distance measure: 1-Pearson-r. For explanation see text. Abbreviations: nitid = Gyroidinoides nitidus; gavce = Gavelinella cenomana; praeb = Praebulimina reussi and P. nannina; troc = Dorothia trochus; gaudry = Gaudryina (all species); ordi = Lenticulina ordinaris; cret = Pseudotextulariella cretosa; angl = Arenobulimina anglica; Lingu = Lingulogavelinella globosa; lag lageniids; plec Plectina mariae and P. cenomana; epo = Eponides cf. beisseli; vmuens = Verneuilina muensteri; gavba = Gavelinella gr. baltica; marg = Marginulinopsis; psi = Psilocitharella; muen = Lenticulina muensteri; nod = nodosariids; cym = Cymbalopora; fron = frondiculariids; lev = Dorothia levis; grad = Dorothia gradata; adv = Arenobulimina advena; pyr = Tritaxia pyramidata; comp = Ataxophragmium compactum; sara = Saracenaria jarvisi; anceps = Spiroplectammina anceps. The benthic foraminiferal fauna was grouped in eight clusters (stippled) and three biofacies domains, for discussion see text. (b) Varimax rotated factor analysis (principal axis factoring) of 27 input variables composed of benthic foraminiferal frequencies in the Escalles section (part CB, Fig. 6, Table 1). The calculation was done on five factors. For explanation see text. Abbreviations of input variables, see (a).</note>
<note type="content">Fig. 12: Frequency distribution of three biofacies domains of benthic foraminifers in the Escalles section (42.2 to 76.7 m). The biofacies domains are composed of clusters defined by the cluster analysis shown in Fig. 11a. Meters refer to the section of Figs. 5 and 6, sequence stratigraphy after Robaszynski and Amédro (1993). Black arrow: top-SMW surface interpreted by Owen (1996)as sequence boundary and the SMW below as part of the HST in the Folkestone–Dover section. Legend and abbreviations see Fig. 5.</note>
<note type="content">Fig. 13: Varimax rotated factor analysis (principal axis factoring) of 23 input variables from the Escalles section (part CB, Fig. 6). The calculation was done on six factors, explanation see text. Abbreviations of input variables: abssea = absolute sea-level model (Fig. 9); carb = carbonate content (Fig. 6); clay = clay content (Fig. 6); cocs = nannoplankton-proxy (Fig. 6); fortot = total number of foraminifers per gram sediment (Fig. 7a, Table 1); gamma = gamma-ray log (Fig. 6); meter = meters in section Escalles where samples were investigated; litho = lithofacies (Fig. 6), p/b = p/b-ratio (Fig. 6, Table 1); seqstr = sequence stratigraphic interpretation (Fig. 6); totpl = total number of planktic foraminifers per gram sediment (Table 1); wd = absolute values of water depth model (Fig. 9); bf1 to bf3 = benthic foraminiferal biofacies 1 to 3 (Fig. 12). (a) Plot of factor loadings of factor axes 1 and 2. For discussion see text. (b) Plot of factor loadings of factor axes 2 and 3. For discussion see text.</note>
<note type="content">Table 1: Census counts of foraminifers in the Escalles section (42.3 to 75.5 m) calculated per gram sediment and expressed as percentage of the whole, unfragmented foraminiferal fauna of the 125 to 425 μm fraction</note>
<note type="content">Table 2: Regression equations for each water depth model of the benthic foraminiferal species used in model WD2</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Foraminiferal evidence for Cenomanian sequence stratigraphy and palaeoceanography of the Boulonnais (Paris Basin, northern France)</title>
<author xml:id="author-1">
<persName>
<forename type="first">Kai-Uwe</forename>
<surname>Gräfe</surname>
</persName>
<note type="biography">Fax: +49 421 218 4451; E-mail: ugraefe@micropal.uni-bremen.de</note>
<affiliation>Department of Geosciences, University of Bremen, P.O. Box 33 04 40, D-28334 Bremen, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Palaeogeography, Palaeoclimatology, Palaeoecology</title>
<title level="j" type="abbrev">PALAEO</title>
<idno type="pISSN">0031-0182</idno>
<idno type="PII">S0031-0182(00)X0065-X</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999"></date>
<biblScope unit="volume">153</biblScope>
<biblScope unit="issue">1–4</biblScope>
<biblScope unit="page" from="41">41</biblScope>
<biblScope unit="page" to="70">70</biblScope>
</imprint>
</monogr>
<idno type="istex">8E30D91F060704308F2F23D374A89A3E000207BE</idno>
<idno type="DOI">10.1016/S0031-0182(99)00080-2</idno>
<idno type="PII">S0031-0182(99)00080-2</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>A middle to upper Cenomanian chalk succession in the northwestern European Paris Basin (Escalles section) was investigated with respect to its sediment composition, biofacies, and foraminiferal content. Most planktic foraminifers exhibit a high-frequency cyclicity in their distribution pattern and show little relationship to the sequence stratigraphic subdivision. A few characteristic species of benthic foraminifers (Tritaxia pyramidata, Ataxophragmium compactum, Dorothia levis, and Gavelinella cenomana) are related in their frequency distribution to certain systems tracts. Other benthic foraminiferal species are more evenly distributed through the systems tracts. Cluster analysis and factor analysis allow the separation of three benthic foraminiferal biofacies domains, which exhibit a characteristic frequency distribution pattern with respect to sequence stratigraphy. Biofacies 1 is dominant in the highstand systems tract (HST), and biofacies 3 is characteristic for the transgressive systems tract (TST). Biofacies 2 is most abundant around the maximum flooding–downlap surface (mfs) and less abundant around the sequence boundary. Factor analysis shows that most of the variance in the data set is explained by variables related to plankton productivity. Variables related to changes in water depth and changes in sea-level have minor influence on the variance of the whole data set, but have some influence on the variance of the benthic foraminiferal data set. The different reaction of benthic and planktic foraminifers to relative sea-level changes is also recorded in the total number of foraminifers per gram sediment (foraminiferal number) and in the ratio between planktic and benthic foraminifers (p/b-ratio). The foraminiferal number is highest at the mfs and lowest at the sequence boundaries of the investigated depositional sequences. The p/b-ratio has no correlation with the sequence stratigraphic subdivision, but shows a high-frequency cyclicity. The abundance pattern of planktic foraminifers is controlled by changes in the productivity of calcareous plankton. The regular variation in calcareous plankton productivity leads to marl (low productivity)–chalk (high productivity) cycles that form conspicuous couplets in the section. The productivity cycles are also recorded in gamma-ray logs in the environmental setting of the Escalles section. In contrast, the abundance patterns of benthic foraminifers are more influenced by relative sea-level changes, changes in water depth, and variations in substrate composition. The stacking of probably precession-controlled development of couplets lead to a distinct 100,000-year cyclicity that does not match very well with published sequence stratigraphic subdivisions.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Cretaceous</term>
</item>
<item>
<term>Cenomanian</term>
</item>
<item>
<term>sequence stratigraphy</term>
</item>
<item>
<term>palaeoceanography</term>
</item>
<item>
<term>foraminifers</term>
</item>
<item>
<term>Paris Basin</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1999">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/8E30D91F060704308F2F23D374A89A3E000207BE/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="gr10"></istex:entity>
<istex:entity SYSTEM="gr11" NDATA="IMAGE" name="gr11"></istex:entity>
<istex:entity SYSTEM="gr12" NDATA="IMAGE" name="gr12"></istex:entity>
<istex:entity SYSTEM="gr13" NDATA="IMAGE" name="gr13"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>PALAEO</jid>
<aid>2272</aid>
<ce:pii>S0031-0182(99)00080-2</ce:pii>
<ce:doi>10.1016/S0031-0182(99)00080-2</ce:doi>
<ce:copyright year="1999" type="full-transfer">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:title>Foraminiferal evidence for Cenomanian sequence stratigraphy and palaeoceanography of the Boulonnais (Paris Basin, northern France)</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Kai-Uwe</ce:given-name>
<ce:surname>Gräfe</ce:surname>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
</ce:author>
<ce:affiliation>
<ce:textfn>Department of Geosciences, University of Bremen, P.O. Box 33 04 40, D-28334 Bremen, Germany</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Fax: +49 421 218 4451; E-mail: ugraefe@micropal.uni-bremen.de</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="3" month="2" year="1998"></ce:date-received>
<ce:date-accepted day="20" month="4" year="1999"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>A middle to upper Cenomanian chalk succession in the northwestern European Paris Basin (Escalles section) was investigated with respect to its sediment composition, biofacies, and foraminiferal content. Most planktic foraminifers exhibit a high-frequency cyclicity in their distribution pattern and show little relationship to the sequence stratigraphic subdivision. A few characteristic species of benthic foraminifers (
<ce:italic>Tritaxia pyramidata</ce:italic>
,
<ce:italic>Ataxophragmium compactum</ce:italic>
,
<ce:italic>Dorothia levis</ce:italic>
, and
<ce:italic>Gavelinella cenomana</ce:italic>
) are related in their frequency distribution to certain systems tracts. Other benthic foraminiferal species are more evenly distributed through the systems tracts. Cluster analysis and factor analysis allow the separation of three benthic foraminiferal biofacies domains, which exhibit a characteristic frequency distribution pattern with respect to sequence stratigraphy. Biofacies 1 is dominant in the highstand systems tract (HST), and biofacies 3 is characteristic for the transgressive systems tract (TST). Biofacies 2 is most abundant around the maximum flooding–downlap surface (mfs) and less abundant around the sequence boundary. Factor analysis shows that most of the variance in the data set is explained by variables related to plankton productivity. Variables related to changes in water depth and changes in sea-level have minor influence on the variance of the whole data set, but have some influence on the variance of the benthic foraminiferal data set. The different reaction of benthic and planktic foraminifers to relative sea-level changes is also recorded in the total number of foraminifers per gram sediment (foraminiferal number) and in the ratio between planktic and benthic foraminifers (p/b-ratio). The foraminiferal number is highest at the mfs and lowest at the sequence boundaries of the investigated depositional sequences. The p/b-ratio has no correlation with the sequence stratigraphic subdivision, but shows a high-frequency cyclicity. The abundance pattern of planktic foraminifers is controlled by changes in the productivity of calcareous plankton. The regular variation in calcareous plankton productivity leads to marl (low productivity)–chalk (high productivity) cycles that form conspicuous couplets in the section. The productivity cycles are also recorded in gamma-ray logs in the environmental setting of the Escalles section. In contrast, the abundance patterns of benthic foraminifers are more influenced by relative sea-level changes, changes in water depth, and variations in substrate composition. The stacking of probably precession-controlled development of couplets lead to a distinct 100,000-year cyclicity that does not match very well with published sequence stratigraphic subdivisions.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Cretaceous</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Cenomanian</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>sequence stratigraphy</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>palaeoceanography</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>foraminifers</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Paris Basin</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Foraminiferal evidence for Cenomanian sequence stratigraphy and palaeoceanography of the Boulonnais (Paris Basin, northern France)</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Foraminiferal evidence for Cenomanian sequence stratigraphy and palaeoceanography of the Boulonnais (Paris Basin, northern France)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kai-Uwe</namePart>
<namePart type="family">Gräfe</namePart>
<affiliation>Department of Geosciences, University of Bremen, P.O. Box 33 04 40, D-28334 Bremen, Germany</affiliation>
<description>Fax: +49 421 218 4451; E-mail: ugraefe@micropal.uni-bremen.de</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1999</dateIssued>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">A middle to upper Cenomanian chalk succession in the northwestern European Paris Basin (Escalles section) was investigated with respect to its sediment composition, biofacies, and foraminiferal content. Most planktic foraminifers exhibit a high-frequency cyclicity in their distribution pattern and show little relationship to the sequence stratigraphic subdivision. A few characteristic species of benthic foraminifers (Tritaxia pyramidata, Ataxophragmium compactum, Dorothia levis, and Gavelinella cenomana) are related in their frequency distribution to certain systems tracts. Other benthic foraminiferal species are more evenly distributed through the systems tracts. Cluster analysis and factor analysis allow the separation of three benthic foraminiferal biofacies domains, which exhibit a characteristic frequency distribution pattern with respect to sequence stratigraphy. Biofacies 1 is dominant in the highstand systems tract (HST), and biofacies 3 is characteristic for the transgressive systems tract (TST). Biofacies 2 is most abundant around the maximum flooding–downlap surface (mfs) and less abundant around the sequence boundary. Factor analysis shows that most of the variance in the data set is explained by variables related to plankton productivity. Variables related to changes in water depth and changes in sea-level have minor influence on the variance of the whole data set, but have some influence on the variance of the benthic foraminiferal data set. The different reaction of benthic and planktic foraminifers to relative sea-level changes is also recorded in the total number of foraminifers per gram sediment (foraminiferal number) and in the ratio between planktic and benthic foraminifers (p/b-ratio). The foraminiferal number is highest at the mfs and lowest at the sequence boundaries of the investigated depositional sequences. The p/b-ratio has no correlation with the sequence stratigraphic subdivision, but shows a high-frequency cyclicity. The abundance pattern of planktic foraminifers is controlled by changes in the productivity of calcareous plankton. The regular variation in calcareous plankton productivity leads to marl (low productivity)–chalk (high productivity) cycles that form conspicuous couplets in the section. The productivity cycles are also recorded in gamma-ray logs in the environmental setting of the Escalles section. In contrast, the abundance patterns of benthic foraminifers are more influenced by relative sea-level changes, changes in water depth, and variations in substrate composition. The stacking of probably precession-controlled development of couplets lead to a distinct 100,000-year cyclicity that does not match very well with published sequence stratigraphic subdivisions.</abstract>
<note type="content">Fig. 1: Four major components that affect stratigraphic cycles in a basin. The component sediment supply is composed of three independent variables: siliciclastic supply, carbonate supply, and organic matter supply. Modified after Vail et al. (1987).</note>
<note type="content">Fig. 2: Sediment flux in a three-component system of carbonate (C), siliciclastics (S), and organic matter (OM) in Cenomanian chalks. The carbonate flux from calcareous plankton is the most important component (rectangle). Not to scale, ΔRSL = change in relative sea-level. Modified after Ricken (1993).</note>
<note type="content">Fig. 3: Palaeogeographic map of the Cenomanian to Turonian period of western Europe and North Africa. Modified after Ziegler (1988)and Philip et al. (1993). Abbreviations: AB = Alboran Basin; AKB = Alboran–Kabylian Block; AM = Armorican Massif; APF = Apulian Platform; BR = Briançonnais; CSH = Corsica–Sardinia High; EH = Ebro High; FC = Flemish Cap; GB = Grand Banks; IBM = Iberian Meseta; IM = Irish Massif; ISB = Ionian Sea Basin; J. = Julia Platform; LAT = Latium–Abruzzi Block; Luc.–Cam Lucania–Campania; MC = Massif Central; MM = Morocco Meseta; NFB = East Newfoundland Basin; OK = Orphan Knoll; PT = Porcupine Trough; RHB = Rockall–Hatton Bank; RM = Rhenish Massif; T = Trento Platform; TAB = Tagus Abyssal Plain; UGFZ = Ungawa Fracture Zone.</note>
<note type="content">Fig. 4: (a) Location plan of the investigated profile. (b) Outcrop sketch of the coastal cliff around Cap Blanc Nez with the location of the profiles that compose the Escalles section. The sections c.2 to c.7 were investigated by Robaszynski and Amédro (1980), the section CB was newly measured for this work. Section CB covers 42.2 to 76.7 m of the Escalles section (Fig. 5). CF = Crupes Formation (unit K, see Fig. 5). View from the coastline towards the land in the SE.</note>
<note type="content">Fig. 5: The Cenomanian part of the Escalles section, northern France. Biostratigraphic zonation and lithostratigraphy after Robaszynski and Amédro (1993). For comparison, two sequence stratigraphic interpretations are shown. The one of Robaszynski and Amédro (1993) is from the Escalles section, the one of Owen (1996)is from the nearby Folkestone/Dover section. Correlation of both sections after Robaszynski and Amédro (1986, fig. 16). Sub-Member 23 is the correlative equivalent of Jukes-Browne Bed 7 (Robaszynski and Amédro, 1986; Owen, 1996). Lithofacies, logging of the section, and ranges of planktic foraminifers between 0 and 42 m after Robaszynski and Amédro (1993), between 42 m and 81 m, this work. Abbreviations: A. = Albian; Tur. = Turonian; gesl. = geslinianum; Hvglt. = Helvetoglobotruncana; SF = Strouanne Formation; CF = Crupes Formation; GBN F. = Grand Blanc Nez Formation; SMW = Shelf Margin Wedge; TST = transgressive systems tract; HST = highstand systems tract; mfs = maximum flooding–downlap surface. For location of the section see Fig. 4.</note>
<note type="content">Fig. 6: The middle Cenomanian to upper Cenomanian part of the Escalles section (section CB, see Fig. 4b). The profile corresponds to 42.2 to 76.7 m of the section of Fig. 5. Stratigraphic subdivision after Robaszynski and Amédro (1993). Stratigraphic columns from left to right: division in substages; sequence stratigraphy after Robaszynski and Amédro (1993); formations; members; sub-members; couplets interpreted as precession cycles. Owen (1996)interpreted the top SMW-surface (arrow) as sequence boundary and the SMW below as part of the HST in the Folkestone–Dover section. Sub-Member 23 is the correlative equivalent of Jukes-Browne Bed 7 (Robaszynski and Amédro, 1986; Owen, 1996). Legend and abbreviations see Fig. 5. Location of the section see Fig. 4.</note>
<note type="content">Fig. 7: Foraminiferal number, some diversity parameters, and triangular plot after Stehli (1966)in the Escalles section (part CB, 42.2 to 76.7 m). Sequence stratigraphy after Robaszynski and Amédro (1993). Black arrow in Fig. 7a,b,d: top-SMW surface interpreted by Owen (1996)as sequence boundary and the SMW below as part of the HST in the Folkestone–Dover section. Legend and abbreviations for Fig. 7 see Fig. 5. (a) Total number of unfragmented foraminifers per gram sediment, 125 to 425 μm fraction. Meters of section see Figs. 5 and 6. (b) Number of benthic and planktic foraminiferal species, 125 to 425 μm fraction (Fig. 6). (c) Triangular plot of calcareous and agglutinated benthic foraminifers and of planktic foraminifers after Stehli (1966). (d) Shannon–Weaver diversity of foraminiferal samples; pi: percent of i-th species/100 (Murray, 1991).</note>
<note type="content">Fig. 8: Frequency distribution of five selected species and one genus of planktic foraminifers in the Escalles section (42.2 to 76.7 m). Percentage values are percents of total foraminiferal fauna based on census counts per gram sediment (Table 1). Meters refer to the section of Figs. 5 and 6, sequence stratigraphy after Robaszynski and Amédro (1993). Black arrow: top-SMW surface interpreted by Owen (1996)as sequence boundary and the SMW below as part of the HST in the Folkestone–Dover section. Legend and abbreviations see Fig. 5.</note>
<note type="content">Fig. 9: Water depth model and absolute sea-level model for the middle to upper Cenomanian of the Escalles section. The water depth model was calculated as average from two models: model WD1 was calculated with WD1=exp(3.58718+(0.03534×P)); P = number of planktic foraminifers in %, after Van Der Zwaan et al. (1990). Model WD2 was calculated as average of the water depth models of Lenticulina muensteri, Gavelinella cenomana, Gyroidinoides nitidus, and Praebulimina reussi (see Table 2). Absolute limit values for water depth of these species after Sikora and Olsson (1991). For the calculation of the absolute sea-level model see text. Sequence boundary (sb) and maximum flooding–downlap surface (mfs) after Robaszynski and Amédro (1993).</note>
<note type="content">Fig. 10: Frequency distribution of 10 species of benthic foraminifers in the Escalles section (42.2 to 76.7 m). Percentage values are percents of total foraminiferal fauna based on census counts per gram sediment (Table 1). Meters refer to the section of Figs. 5 and 6, sequence stratigraphy after Robaszynski and Amédro (1993). Black arrow: top-SMW surface interpreted by Owen (1996)as sequence boundary and the SMW below as part of the HST in the Folkestone–Dover section. Legend and abbreviations see Fig. 5.</note>
<note type="content">Fig. 11: (a) R-mode cluster analysis of the benthic foraminiferal fauna of the Escalles section (part CB, Fig. 6), complete linkage, distance measure: 1-Pearson-r. For explanation see text. Abbreviations: nitid = Gyroidinoides nitidus; gavce = Gavelinella cenomana; praeb = Praebulimina reussi and P. nannina; troc = Dorothia trochus; gaudry = Gaudryina (all species); ordi = Lenticulina ordinaris; cret = Pseudotextulariella cretosa; angl = Arenobulimina anglica; Lingu = Lingulogavelinella globosa; lag lageniids; plec Plectina mariae and P. cenomana; epo = Eponides cf. beisseli; vmuens = Verneuilina muensteri; gavba = Gavelinella gr. baltica; marg = Marginulinopsis; psi = Psilocitharella; muen = Lenticulina muensteri; nod = nodosariids; cym = Cymbalopora; fron = frondiculariids; lev = Dorothia levis; grad = Dorothia gradata; adv = Arenobulimina advena; pyr = Tritaxia pyramidata; comp = Ataxophragmium compactum; sara = Saracenaria jarvisi; anceps = Spiroplectammina anceps. The benthic foraminiferal fauna was grouped in eight clusters (stippled) and three biofacies domains, for discussion see text. (b) Varimax rotated factor analysis (principal axis factoring) of 27 input variables composed of benthic foraminiferal frequencies in the Escalles section (part CB, Fig. 6, Table 1). The calculation was done on five factors. For explanation see text. Abbreviations of input variables, see (a).</note>
<note type="content">Fig. 12: Frequency distribution of three biofacies domains of benthic foraminifers in the Escalles section (42.2 to 76.7 m). The biofacies domains are composed of clusters defined by the cluster analysis shown in Fig. 11a. Meters refer to the section of Figs. 5 and 6, sequence stratigraphy after Robaszynski and Amédro (1993). Black arrow: top-SMW surface interpreted by Owen (1996)as sequence boundary and the SMW below as part of the HST in the Folkestone–Dover section. Legend and abbreviations see Fig. 5.</note>
<note type="content">Fig. 13: Varimax rotated factor analysis (principal axis factoring) of 23 input variables from the Escalles section (part CB, Fig. 6). The calculation was done on six factors, explanation see text. Abbreviations of input variables: abssea = absolute sea-level model (Fig. 9); carb = carbonate content (Fig. 6); clay = clay content (Fig. 6); cocs = nannoplankton-proxy (Fig. 6); fortot = total number of foraminifers per gram sediment (Fig. 7a, Table 1); gamma = gamma-ray log (Fig. 6); meter = meters in section Escalles where samples were investigated; litho = lithofacies (Fig. 6), p/b = p/b-ratio (Fig. 6, Table 1); seqstr = sequence stratigraphic interpretation (Fig. 6); totpl = total number of planktic foraminifers per gram sediment (Table 1); wd = absolute values of water depth model (Fig. 9); bf1 to bf3 = benthic foraminiferal biofacies 1 to 3 (Fig. 12). (a) Plot of factor loadings of factor axes 1 and 2. For discussion see text. (b) Plot of factor loadings of factor axes 2 and 3. For discussion see text.</note>
<note type="content">Table 1: Census counts of foraminifers in the Escalles section (42.3 to 75.5 m) calculated per gram sediment and expressed as percentage of the whole, unfragmented foraminiferal fauna of the 125 to 425 μm fraction</note>
<note type="content">Table 2: Regression equations for each water depth model of the benthic foraminiferal species used in model WD2</note>
<subject>
<genre>Keywords</genre>
<topic>Cretaceous</topic>
<topic>Cenomanian</topic>
<topic>sequence stratigraphy</topic>
<topic>palaeoceanography</topic>
<topic>foraminifers</topic>
<topic>Paris Basin</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Palaeogeography, Palaeoclimatology, Palaeoecology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>PALAEO</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">19990915</dateIssued>
</originInfo>
<identifier type="ISSN">0031-0182</identifier>
<identifier type="PII">S0031-0182(00)X0065-X</identifier>
<part>
<date>19990915</date>
<detail type="volume">
<number>153</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1–4</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>1</start>
<end>360</end>
</extent>
<extent unit="pages">
<start>41</start>
<end>70</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">8E30D91F060704308F2F23D374A89A3E000207BE</identifier>
<identifier type="DOI">10.1016/S0031-0182(99)00080-2</identifier>
<identifier type="PII">S0031-0182(99)00080-2</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1999 Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©1999</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F09 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001F09 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:8E30D91F060704308F2F23D374A89A3E000207BE
   |texte=   Foraminiferal evidence for Cenomanian sequence stratigraphy and palaeoceanography of the Boulonnais (Paris Basin, northern France)
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024