La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Role of Glial Reaction and Inflammation in Parkinson's Disease

Identifieur interne : 001F05 ( Istex/Corpus ); précédent : 001F04; suivant : 001F06

The Role of Glial Reaction and Inflammation in Parkinson's Disease

Auteurs : E. C. Hirsch ; T. Breidert ; E. Rousselet ; S. Hunot ; A. Hartmann ; P. P. Michel

Source :

RBID : ISTEX:7EC790141B211503BA4D587100832AD9E681C8B0

English descriptors

Abstract

Abstract: The glial reaction is generally considered to be a consequence of neuronal death in neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, and Parkinson's disease. In Parkinson's disease, postmortem examination reveals a loss of dopaminergic neurons in the substantia nigra associated with a massive astrogliosis and the presence of activated microglial cells. Recent evidence suggests that the disease may progress even when the initial cause of neuronal degeneration has disappeared, suggesting that toxic substances released by the glial cells may be involved in the propagation and perpetuation of neuronal degeneration. Glial cells can release deleterious compounds such as proinflammatory cytokines (TNF‐α, Il‐1β, IFN‐γ), which may act by stimulating nitric oxide production in glial cells, or which may exert a more direct deleterious effect on dopaminergic neurons by activating receptors that contain intracytoplasmic death domains involved in apoptosis. In line with this possibility, an activation of proteases such as caspase‐3 and caspase‐8, which are known effectors of apoptosis, has been reported in Parkinson's disease. Yet, caspase inhibitors or invalidation of TNF‐α receptors does not protect dopaminergic neurons against degeneration in experimental models of the disease, suggesting that manipulation of a single signaling pathway may not be sufficient to protect dopaminergic neurons. In contrast, the antiinflammatory drugs pioglitazone, a PPAR‐γ agonist, and the tetracycline derivative minocycline have been shown to reduce glial activation and protect the substantia nigra in an animal model of the disease. Inhibition of the glial reaction and the inflammatory processes may thus represent a therapeutic target to reduce neuronal degeneration in Parkinson's disease.

Url:
DOI: 10.1111/j.1749-6632.2003.tb07478.x

Links to Exploration step

ISTEX:7EC790141B211503BA4D587100832AD9E681C8B0

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Role of Glial Reaction and Inflammation in Parkinson's Disease</title>
<author>
<name sortKey="Hirsch, E C" sort="Hirsch, E C" uniqKey="Hirsch E" first="E. C." last="Hirsch">E. C. Hirsch</name>
<affiliation>
<mods:affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: hirsch@ccr.jussieu.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Breidert, T" sort="Breidert, T" uniqKey="Breidert T" first="T." last="Breidert">T. Breidert</name>
<affiliation>
<mods:affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rousselet, E" sort="Rousselet, E" uniqKey="Rousselet E" first="E." last="Rousselet">E. Rousselet</name>
<affiliation>
<mods:affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hunot, S" sort="Hunot, S" uniqKey="Hunot S" first="S." last="Hunot">S. Hunot</name>
<affiliation>
<mods:affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hartmann, A" sort="Hartmann, A" uniqKey="Hartmann A" first="A." last="Hartmann">A. Hartmann</name>
<affiliation>
<mods:affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Michel, P P" sort="Michel, P P" uniqKey="Michel P" first="P. P." last="Michel">P. P. Michel</name>
<affiliation>
<mods:affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7EC790141B211503BA4D587100832AD9E681C8B0</idno>
<date when="2003" year="2003">2003</date>
<idno type="doi">10.1111/j.1749-6632.2003.tb07478.x</idno>
<idno type="url">https://api.istex.fr/document/7EC790141B211503BA4D587100832AD9E681C8B0/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001F05</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001F05</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">The Role of Glial Reaction and Inflammation in Parkinson's Disease</title>
<author>
<name sortKey="Hirsch, E C" sort="Hirsch, E C" uniqKey="Hirsch E" first="E. C." last="Hirsch">E. C. Hirsch</name>
<affiliation>
<mods:affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: hirsch@ccr.jussieu.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Breidert, T" sort="Breidert, T" uniqKey="Breidert T" first="T." last="Breidert">T. Breidert</name>
<affiliation>
<mods:affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rousselet, E" sort="Rousselet, E" uniqKey="Rousselet E" first="E." last="Rousselet">E. Rousselet</name>
<affiliation>
<mods:affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hunot, S" sort="Hunot, S" uniqKey="Hunot S" first="S." last="Hunot">S. Hunot</name>
<affiliation>
<mods:affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hartmann, A" sort="Hartmann, A" uniqKey="Hartmann A" first="A." last="Hartmann">A. Hartmann</name>
<affiliation>
<mods:affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Michel, P P" sort="Michel, P P" uniqKey="Michel P" first="P. P." last="Michel">P. P. Michel</name>
<affiliation>
<mods:affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Annals of the New York Academy of Sciences</title>
<idno type="ISSN">0077-8923</idno>
<idno type="eISSN">1749-6632</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2003-06">2003-06</date>
<biblScope unit="volume">991</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="214">214</biblScope>
<biblScope unit="page" to="228">228</biblScope>
</imprint>
<idno type="ISSN">0077-8923</idno>
</series>
<idno type="istex">7EC790141B211503BA4D587100832AD9E681C8B0</idno>
<idno type="DOI">10.1111/j.1749-6632.2003.tb07478.x</idno>
<idno type="ArticleID">NYAS214</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0077-8923</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>apoptosis</term>
<term>cytokines</term>
<term>dopamine neuron</term>
<term>neuroprotection</term>
<term>substantia nigra</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Abstract: The glial reaction is generally considered to be a consequence of neuronal death in neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, and Parkinson's disease. In Parkinson's disease, postmortem examination reveals a loss of dopaminergic neurons in the substantia nigra associated with a massive astrogliosis and the presence of activated microglial cells. Recent evidence suggests that the disease may progress even when the initial cause of neuronal degeneration has disappeared, suggesting that toxic substances released by the glial cells may be involved in the propagation and perpetuation of neuronal degeneration. Glial cells can release deleterious compounds such as proinflammatory cytokines (TNF‐α, Il‐1β, IFN‐γ), which may act by stimulating nitric oxide production in glial cells, or which may exert a more direct deleterious effect on dopaminergic neurons by activating receptors that contain intracytoplasmic death domains involved in apoptosis. In line with this possibility, an activation of proteases such as caspase‐3 and caspase‐8, which are known effectors of apoptosis, has been reported in Parkinson's disease. Yet, caspase inhibitors or invalidation of TNF‐α receptors does not protect dopaminergic neurons against degeneration in experimental models of the disease, suggesting that manipulation of a single signaling pathway may not be sufficient to protect dopaminergic neurons. In contrast, the antiinflammatory drugs pioglitazone, a PPAR‐γ agonist, and the tetracycline derivative minocycline have been shown to reduce glial activation and protect the substantia nigra in an animal model of the disease. Inhibition of the glial reaction and the inflammatory processes may thus represent a therapeutic target to reduce neuronal degeneration in Parkinson's disease.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>E. C. HIRSCH</name>
<affiliations>
<json:string>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</json:string>
<json:string>E-mail: hirsch@ccr.jussieu.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>T. BREIDERT</name>
<affiliations>
<json:string>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>E. ROUSSELET</name>
<affiliations>
<json:string>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>S. HUNOT</name>
<affiliations>
<json:string>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>A. HARTMANN</name>
<affiliations>
<json:string>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>P. P. MICHEL</name>
<affiliations>
<json:string>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>cytokines</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>neuroprotection</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>apoptosis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>dopamine neuron</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>substantia nigra</value>
</json:item>
</subject>
<articleId>
<json:string>NYAS214</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Abstract: The glial reaction is generally considered to be a consequence of neuronal death in neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, and Parkinson's disease. In Parkinson's disease, postmortem examination reveals a loss of dopaminergic neurons in the substantia nigra associated with a massive astrogliosis and the presence of activated microglial cells. Recent evidence suggests that the disease may progress even when the initial cause of neuronal degeneration has disappeared, suggesting that toxic substances released by the glial cells may be involved in the propagation and perpetuation of neuronal degeneration. Glial cells can release deleterious compounds such as proinflammatory cytokines (TNF‐α, Il‐1β, IFN‐γ), which may act by stimulating nitric oxide production in glial cells, or which may exert a more direct deleterious effect on dopaminergic neurons by activating receptors that contain intracytoplasmic death domains involved in apoptosis. In line with this possibility, an activation of proteases such as caspase‐3 and caspase‐8, which are known effectors of apoptosis, has been reported in Parkinson's disease. Yet, caspase inhibitors or invalidation of TNF‐α receptors does not protect dopaminergic neurons against degeneration in experimental models of the disease, suggesting that manipulation of a single signaling pathway may not be sufficient to protect dopaminergic neurons. In contrast, the antiinflammatory drugs pioglitazone, a PPAR‐γ agonist, and the tetracycline derivative minocycline have been shown to reduce glial activation and protect the substantia nigra in an animal model of the disease. Inhibition of the glial reaction and the inflammatory processes may thus represent a therapeutic target to reduce neuronal degeneration in Parkinson's disease.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1827</abstractCharCount>
<pdfWordCount>5995</pdfWordCount>
<pdfCharCount>39161</pdfCharCount>
<pdfPageCount>16</pdfPageCount>
<abstractWordCount>256</abstractWordCount>
</qualityIndicators>
<title>The Role of Glial Reaction and Inflammation in Parkinson's Disease</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>E.C. Hirsch</name>
</json:item>
</author>
<host>
<volume>334</volume>
<pages>
<last>348</last>
<first>345</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Hassler</name>
</json:item>
</author>
<host>
<volume>48</volume>
<pages>
<last>476</last>
<first>387</first>
</pages>
<author></author>
<title>J. Psychol. Neurol.</title>
</host>
<title>Zur Pathologie der Paralysis agitans und des postenzephalitischen Parkinsonismus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.M. Fearnley</name>
</json:item>
</author>
<host>
<volume>114</volume>
<pages>
<last>2301</last>
<first>2283</first>
</pages>
<author></author>
<title>Brain</title>
</host>
<title>Ageing and Parkinson's disease: substantia nigra regional selectivity</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Damier</name>
</json:item>
</author>
<host>
<volume>122</volume>
<pages>
<last>1448</last>
<first>1437</first>
</pages>
<author></author>
<title>II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain</title>
</host>
<title>The substantia nigra of the human brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.H. Polymeropoulos</name>
</json:item>
</author>
<host>
<volume>276</volume>
<pages>
<last>2047</last>
<first>2045</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Mutation in the alpha‐synuclein gene identified in families with Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Kitada</name>
</json:item>
</author>
<host>
<volume>392</volume>
<pages>
<last>608</last>
<first>605</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Anglade</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>31</last>
<first>25</first>
</pages>
<author></author>
<title>Histol. Histopathol.</title>
</host>
<title>Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Hartmann</name>
</json:item>
</author>
<host>
<volume>21</volume>
<pages>
<last>2255</last>
<first>2247</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Caspase‐8 is an effector in apoptotic death of dopaminergic neurons in Parkinson's disease, but pathway inhibition results in neuronal necrosis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L.S. Forno</name>
</json:item>
</author>
<host>
<volume>55</volume>
<pages>
<last>272</last>
<first>259</first>
</pages>
<author></author>
<title>J. Neuropathol. Exp. Neurol.</title>
</host>
<title>Neuropathology of Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Jenner</name>
</json:item>
</author>
<host>
<volume>44</volume>
<pages>
<last>84</last>
<first>72</first>
</pages>
<author></author>
<title>Ann. Neurol.</title>
</host>
<title>Understanding cell death in Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.W. Olanow</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>144</last>
<first>123</first>
</pages>
<author></author>
<title>Annu. Rev. Neurosci.</title>
</host>
<title>Etiology and pathogenesis of Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.C. Hirsch</name>
</json:item>
</author>
<host>
<volume>50</volume>
<pages>
<last>88</last>
<first>79</first>
</pages>
<author></author>
<title>J. Neural Transm. Suppl.</title>
</host>
<title>Neuronal vulnerability in Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Mochizuki</name>
</json:item>
</author>
<host>
<volume>137</volume>
<pages>
<last>123</last>
<first>120</first>
</pages>
<author></author>
<title>J. Neurol. Sci.</title>
</host>
<title>Histochemical detection of apoptosis in Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N.A. Tatton</name>
</json:item>
</author>
<host>
<volume>44</volume>
<pages>
<last>148</last>
<first>142</first>
</pages>
<author></author>
<title>Ann. Neurol.</title>
</host>
<title>A fluorescent double‐labeling method to detect and confirm apoptotic nuclei in Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.L. McGeer</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<last>1291</last>
<first>1285</first>
</pages>
<author></author>
<title>Neurology</title>
</host>
<title>Reactive microglia are positive for HLA‐DR in the substantia nigra of Parkinson's and Alzheimer's disease brains</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.L. McGeer</name>
</json:item>
</author>
<host>
<volume>54</volume>
<pages>
<last>166</last>
<first>159</first>
</pages>
<author></author>
<title>J. Neural Transm. Suppl.</title>
</host>
<title>Mechanisms of cell death in Alzheimer disease‐immunopathology</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Hunot</name>
</json:item>
</author>
<host>
<volume>1</volume>
<pages>
<last>443</last>
<first>434</first>
</pages>
<author></author>
<title>Clin. Neurosci. Res.</title>
</host>
<title>The inflammatory response in the Parkinson brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Vila</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>55</last>
<first>49</first>
</pages>
<author></author>
<title>Trends Neurosci.</title>
</host>
<title>Engineered modeling and the secrets of Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.W. Langston</name>
</json:item>
</author>
<host>
<volume>219</volume>
<pages>
<last>980</last>
<first>979</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Chronic parkinsonism in humans due to a product of meperidine‐analog synthesis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.W. Langston</name>
</json:item>
</author>
<host>
<volume>46</volume>
<pages>
<last>605</last>
<first>598</first>
</pages>
<author></author>
<title>Ann. Neurol.</title>
</host>
<title>Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine exposure</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.M. Bronstein</name>
</json:item>
</author>
<host>
<volume>704</volume>
<pages>
<last>116</last>
<first>112</first>
</pages>
<author></author>
<title>Brain Res.</title>
</host>
<title>Glia‐dependant neurotoxicity and neuroprotection in mesencephalic cultures</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K.S. McNaught</name>
</json:item>
</author>
<host>
<volume>73</volume>
<pages>
<last>2476</last>
<first>2469</first>
</pages>
<author></author>
<title>J. Neurochem.</title>
</host>
<title>Altered glial function causes neuronal death and increases neuronal susceptibility to 1‐methyl‐4‐phenylpyridinium‐ and 6‐hydroxydopamine‐induced toxicity in astrocytic/ventral mesencephalic co‐cultures</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A.J. Herrera</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>447</last>
<first>429</first>
</pages>
<author></author>
<title>Neurobiol. Dis.</title>
</host>
<title>The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H.M. Gao</name>
</json:item>
</author>
<host>
<volume>81</volume>
<pages>
<last>1297</last>
<first>1285</first>
</pages>
<author></author>
<title>J. Neurochem.</title>
</host>
<title>Microglial activation‐mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Castano</name>
</json:item>
</author>
<host>
<volume>81</volume>
<pages>
<last>157</last>
<first>150</first>
</pages>
<author></author>
<title>J. Neurochem.</title>
</host>
<title>The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh‐TNF‐alpha, IL‐1beta and IFN‐gamma</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Nagatsu</name>
</json:item>
</author>
<host>
<volume>58</volume>
<pages>
<last>151</last>
<first>143</first>
</pages>
<author></author>
<title>J. Neural Transm. Suppl.</title>
</host>
<title>Cytokines in Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Boka</name>
</json:item>
</author>
<host>
<volume>172</volume>
<pages>
<last>154</last>
<first>151</first>
</pages>
<author></author>
<title>Neurosci. Lett.</title>
</host>
<title>Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Hunot</name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<last>3447</last>
<first>3440</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Fc(epsilon)RII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor‐α in glial cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Vila</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>489</last>
<first>483</first>
</pages>
<author></author>
<title>Curr. Opin. Neurol.</title>
</host>
<title>The role of glial cells in Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Hunot</name>
</json:item>
</author>
<host>
<volume>72</volume>
<pages>
<last>363</last>
<first>355</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>Nitric oxide synthase and neuronal vulnerability in Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.A. Qureshi</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>1644</last>
<first>1642</first>
</pages>
<author></author>
<title>NeuroReport</title>
</host>
<title>Increased cerebrospinal fluid concentration of nitrite in Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.F. Good</name>
</json:item>
</author>
<host>
<volume>57</volume>
<pages>
<last>342</last>
<first>338</first>
</pages>
<author></author>
<title>J. Neuropathol. Exp. Neurol.</title>
</host>
<title>Protein nitration in Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V. Baud</name>
</json:item>
</author>
<host>
<volume>11</volume>
<pages>
<last>377</last>
<first>372</first>
</pages>
<author></author>
<title>Trends Cell Biol.</title>
</host>
<title>Signal transduction by tumor necrosis factor and its relatives</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Krajcsi</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>358</last>
<first>351</first>
</pages>
<author></author>
<title>Semin. Cell Dev. Biol.</title>
</host>
<title>Inhibition of tumor necrosis factor and interferon triggered responses by DNA viruses</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F. Mackay</name>
</json:item>
</author>
<host>
<volume>153</volume>
<pages>
<last>5284</last>
<first>5274</first>
</pages>
<author></author>
<title>J. Immunol.</title>
</host>
<title>Differential responses of fibroblasts from wild‐type and TNF‐R55‐deficient mice to mouse and human TNF‐alpha activation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Grell</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<last>263</last>
<first>257</first>
</pages>
<author></author>
<title>Eur. J. Immunol.</title>
</host>
<title>TNF receptor type 2 mediates thymocyte proliferation independently of TNF receptor type 1</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L.A. Tartaglia</name>
</json:item>
</author>
<host>
<volume>151</volume>
<pages>
<last>4641</last>
<first>4637</first>
</pages>
<author></author>
<title>J. Immunol.</title>
</host>
<title>Stimulation of human T‐cell proliferation by specific activation of the 75‐kDa tumor necrosis factor receptor</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. Declercq</name>
</json:item>
</author>
<host>
<volume>161</volume>
<pages>
<last>399</last>
<first>390</first>
</pages>
<author></author>
<title>J. Immunol.</title>
</host>
<title>Cooperation of both TNF receptors in inducing apoptosis: involvement of the TNF receptor‐associated factor binding domain of the TNF receptor 75</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Lucas</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<last>3586</last>
<first>3577</first>
</pages>
<author></author>
<title>Eur. J. Immunol.</title>
</host>
<title>Both TNF receptors are required for direct TNF‐mediated cytotoxicity in microvascular endothelial cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Hartmann</name>
</json:item>
</author>
<host>
<volume>58</volume>
<pages>
<last>310</last>
<first>308</first>
</pages>
<author></author>
<title>Neurology</title>
</host>
<title>FADD: a link between TNF family receptors and caspases in Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.R. Green</name>
</json:item>
</author>
<host>
<volume>94</volume>
<pages>
<last>698</last>
<first>695</first>
</pages>
<author></author>
<title>Cell</title>
</host>
<title>Apoptotic pathways: the roads to ruin</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.J. Granville</name>
</json:item>
</author>
<host>
<volume>437</volume>
<pages>
<last>10</last>
<first>5</first>
</pages>
<author></author>
<title>FEBS Lett.</title>
</host>
<title>Rapid cytochrome c release, activation of caspases 3, 6, 7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.A. Slee</name>
</json:item>
</author>
<host>
<volume>144</volume>
<pages>
<last>292</last>
<first>281</first>
</pages>
<author></author>
<title>J. Cell Biol.</title>
</host>
<title>Ordering the cytochrome c‐initiated caspase cascade: hierarchical activation of caspases‐2, ‐3, ‐6, ‐7, ‐8, and ‐10 in a caspase‐9‐dependent manner</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Hartmann</name>
</json:item>
</author>
<host>
<volume>97</volume>
<pages>
<last>2880</last>
<first>2875</first>
</pages>
<author></author>
<title>Proc. Natl. Acad. Sci. USA</title>
</host>
<title>Caspase‐3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Turmel</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>189</last>
<first>185</first>
</pages>
<author></author>
<title>Mov. Disord.</title>
</host>
<title>Caspase‐3 activation in 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐treated mice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Hartmann</name>
</json:item>
</author>
<host>
<volume>86</volume>
<pages>
<last>153</last>
<first>143</first>
</pages>
<author></author>
<title>Adv. Neurol.</title>
</host>
<title>Parkinson's disease: The apoptosis hypothesis revisited</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Rousselet</name>
</json:item>
</author>
<host>
<volume>177</volume>
<pages>
<last>192</last>
<first>183</first>
</pages>
<author></author>
<title>Exp. Neurol.</title>
</host>
<title>Role of TNT‐alpha receptors in mice intoxicated with the parkinsonian toxin MPTP</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Jiang</name>
</json:item>
</author>
<host>
<volume>391</volume>
<pages>
<last>86</last>
<first>82</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>PPAR‐gamma agonists inhibit production of monocyte inflammatory cytokines</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Ricote</name>
</json:item>
</author>
<host>
<volume>391</volume>
<pages>
<last>82</last>
<first>79</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>The peroxisome proliferator‐activated receptor‐gamma is a negative regulator of macrophage activation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.K. Combs</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>567</last>
<first>558</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Inflammatory mechanisms in Alzheimer's disease: inhibition of beta‐amyloid‐stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.T. Heneka</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>6867</last>
<first>6862</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Peroxisome proliferator‐activated receptor‐gamma ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Breidert</name>
</json:item>
</author>
<host>
<volume>82</volume>
<pages>
<last>624</last>
<first>615</first>
</pages>
<author></author>
<title>J. Neurochem.</title>
</host>
<title>Protective action of the peroxisome proliferator‐activated receptor‐gamma agonist pioglitazone in a mouse model of Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.T. Liberatore</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>1409</last>
<first>1403</first>
</pages>
<author></author>
<title>Nat. Med.</title>
</host>
<title>Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Dehmer</name>
</json:item>
</author>
<host>
<volume>74</volume>
<pages>
<last>2216</last>
<first>2213</first>
</pages>
<author></author>
<title>J. Neurochem.</title>
</host>
<title>Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Du</name>
</json:item>
</author>
<host>
<volume>98</volume>
<pages>
<last>14674</last>
<first>14669</first>
</pages>
<author></author>
<title>Proc. Natl. Acad. Sci. USA</title>
</host>
<title>Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.C. Wu</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>1771</last>
<first>1763</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Blockade of microglial activation is neuroprotective in the 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine mouse model of Parkinson disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. He</name>
</json:item>
</author>
<host>
<volume>909</volume>
<pages>
<last>193</last>
<first>187</first>
</pages>
<author></author>
<title>Brain Res.</title>
</host>
<title>Minocycline inhibits microglial activation and protects nigral cells after 6‐hydroxydopamine injection into mouse striatum</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N. Aubin</name>
</json:item>
</author>
<host>
<volume>74</volume>
<pages>
<last>1642</last>
<first>1635</first>
</pages>
<author></author>
<title>J. Neurochem.</title>
</host>
<title>Aspirin and salicylate protect against MPTP‐induced dopamine depletion in mice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K.P. Mohanakumar</name>
</json:item>
</author>
<host>
<volume>864</volume>
<pages>
<last>290</last>
<first>281</first>
</pages>
<author></author>
<title>Brain Res.</title>
</host>
<title>Neuroprotection by sodium salicylate against 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐induced neurotoxicity</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Teismann</name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>174</last>
<first>167</first>
</pages>
<author></author>
<title>Synapse</title>
</host>
<title>Inhibition of the cyclooxygenase isoenzymes COX‐1 and COX‐2 provide neuroprotection in the MPTP‐mouse model of Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>I. Kurkowska‐Jastrzebska</name>
</json:item>
</author>
<host>
<volume>2</volume>
<pages>
<last>1218</last>
<first>1213</first>
</pages>
<author></author>
<title>Int. Immunopharmacol.</title>
</host>
<title>Indomethacin protects against neurodegeneration caused by MPTP intoxication in mice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>I. Kurkowska‐Jastrzebska</name>
</json:item>
</author>
<host>
<volume>156</volume>
<pages>
<last>61</last>
<first>50</first>
</pages>
<author></author>
<title>Exp. Neurol.</title>
</host>
<title>The inflammatory reaction following 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine intoxication in mouse</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Matsuura</name>
</json:item>
</author>
<host>
<volume>230</volume>
<pages>
<last>194</last>
<first>191</first>
</pages>
<author></author>
<title>Neurosci. Lett.</title>
</host>
<title>Initial cyclosporin A but not glucocorticoid treatment promotes recovery of striatal dopamine concentration in 6‐hydroxydopamine lesioned mice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Kitamura</name>
</json:item>
</author>
<host>
<volume>50</volume>
<pages>
<last>224</last>
<first>221</first>
</pages>
<author></author>
<title>J. Neuroimmunol.</title>
</host>
<title>Suppressive effect of FK‐506, a novel immunosuppressant, against MPTP‐induced dopamine depletion in the striatum of young C57BL/6 mice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.E. Emborg</name>
</json:item>
</author>
<host>
<volume>168</volume>
<pages>
<last>182</last>
<first>171</first>
</pages>
<author></author>
<title>Exp. Neurol.</title>
</host>
<title>Systemic administration of the immunophilin ligand GPI 1046 in MPTP‐treated monkeys</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Boireau</name>
</json:item>
</author>
<host>
<volume>234</volume>
<pages>
<last>126</last>
<first>123</first>
</pages>
<author></author>
<title>Neurosci. Lett.</title>
</host>
<title>Thalidomide reduces MPTP‐induced decrease in striatal dopamine levels in mice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Hulley</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>2440</last>
<first>2431</first>
</pages>
<author></author>
<title>Eur. J. Neurosci.</title>
</host>
<title>Inhibitors of type IV phosphodiesterases reduce the toxicity of MPTP in substantia nigra neurons in vivo</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Z. Feng</name>
</json:item>
</author>
<host>
<volume>329</volume>
<pages>
<first>354</first>
</pages>
<author></author>
<title>Neurosci. Lett.</title>
</host>
<title>Cyclooxygenase‐2‐deficient mice are resistant to 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐induced damage of dopaminergic neurons in the substantia nigra</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Klivenyi</name>
</json:item>
</author>
<host>
<volume>71</volume>
<pages>
<last>2637</last>
<first>2634</first>
</pages>
<author></author>
<title>J. Neurochem.</title>
</host>
<title>Mice deficient in group IV cytosolic phospholipase A2 are resistant to MPTP neurotoxicity</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Sriram</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>1476</last>
<first>1474</first>
</pages>
<author></author>
<title>FASEB J.</title>
</host>
<title>Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L.M. Bolin</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<first>194</first>
</pages>
<author></author>
<title>Soc. Neurosci. Abstr.</title>
</host>
<title>Increased vulnerability of dopaminergic neurons in MPTP‐lesioned IL‐6 K.O. mice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Teismann</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>1053</last>
<first>1049</first>
</pages>
<author></author>
<title>NeuroReport</title>
</host>
<title>Nuclear factor‐kappaB activation is not involved in a MPTP model of Parkinson's disease</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>991</volume>
<publisherId>
<json:string>NYAS</json:string>
</publisherId>
<pages>
<total>15</total>
<last>228</last>
<first>214</first>
</pages>
<issn>
<json:string>0077-8923</json:string>
</issn>
<issue>1</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1749-6632</json:string>
</eissn>
<title>Annals of the New York Academy of Sciences</title>
<doi>
<json:string>10.1111/(ISSN)1749-6632</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>multidisciplinary sciences</json:string>
</wos>
<scienceMetrix>
<json:string>general</json:string>
<json:string>general science & technology</json:string>
<json:string>general science & technology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2003</publicationDate>
<copyrightDate>2003</copyrightDate>
<doi>
<json:string>10.1111/j.1749-6632.2003.tb07478.x</json:string>
</doi>
<id>7EC790141B211503BA4D587100832AD9E681C8B0</id>
<score>0.17385237</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/7EC790141B211503BA4D587100832AD9E681C8B0/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/7EC790141B211503BA4D587100832AD9E681C8B0/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/7EC790141B211503BA4D587100832AD9E681C8B0/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">The Role of Glial Reaction and Inflammation in Parkinson's Disease</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2003</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">The Role of Glial Reaction and Inflammation in Parkinson's Disease</title>
<author xml:id="author-1">
<persName>
<forename type="first">E. C.</forename>
<surname>HIRSCH</surname>
</persName>
<email>hirsch@ccr.jussieu.fr</email>
<affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">T.</forename>
<surname>BREIDERT</surname>
</persName>
<affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">E.</forename>
<surname>ROUSSELET</surname>
</persName>
<affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">S.</forename>
<surname>HUNOT</surname>
</persName>
<affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">A.</forename>
<surname>HARTMANN</surname>
</persName>
<affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">P. P.</forename>
<surname>MICHEL</surname>
</persName>
<affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Annals of the New York Academy of Sciences</title>
<idno type="pISSN">0077-8923</idno>
<idno type="eISSN">1749-6632</idno>
<idno type="DOI">10.1111/(ISSN)1749-6632</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2003-06"></date>
<biblScope unit="volume">991</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="214">214</biblScope>
<biblScope unit="page" to="228">228</biblScope>
</imprint>
</monogr>
<idno type="istex">7EC790141B211503BA4D587100832AD9E681C8B0</idno>
<idno type="DOI">10.1111/j.1749-6632.2003.tb07478.x</idno>
<idno type="ArticleID">NYAS214</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2003</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Abstract: The glial reaction is generally considered to be a consequence of neuronal death in neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, and Parkinson's disease. In Parkinson's disease, postmortem examination reveals a loss of dopaminergic neurons in the substantia nigra associated with a massive astrogliosis and the presence of activated microglial cells. Recent evidence suggests that the disease may progress even when the initial cause of neuronal degeneration has disappeared, suggesting that toxic substances released by the glial cells may be involved in the propagation and perpetuation of neuronal degeneration. Glial cells can release deleterious compounds such as proinflammatory cytokines (TNF‐α, Il‐1β, IFN‐γ), which may act by stimulating nitric oxide production in glial cells, or which may exert a more direct deleterious effect on dopaminergic neurons by activating receptors that contain intracytoplasmic death domains involved in apoptosis. In line with this possibility, an activation of proteases such as caspase‐3 and caspase‐8, which are known effectors of apoptosis, has been reported in Parkinson's disease. Yet, caspase inhibitors or invalidation of TNF‐α receptors does not protect dopaminergic neurons against degeneration in experimental models of the disease, suggesting that manipulation of a single signaling pathway may not be sufficient to protect dopaminergic neurons. In contrast, the antiinflammatory drugs pioglitazone, a PPAR‐γ agonist, and the tetracycline derivative minocycline have been shown to reduce glial activation and protect the substantia nigra in an animal model of the disease. Inhibition of the glial reaction and the inflammatory processes may thus represent a therapeutic target to reduce neuronal degeneration in Parkinson's disease.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>cytokines</term>
</item>
<item>
<term>neuroprotection</term>
</item>
<item>
<term>apoptosis</term>
</item>
<item>
<term>dopamine neuron</term>
</item>
<item>
<term>substantia nigra</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2003-06">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/7EC790141B211503BA4D587100832AD9E681C8B0/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1749-6632</doi>
<issn type="print">0077-8923</issn>
<issn type="electronic">1749-6632</issn>
<idGroup>
<id type="product" value="NYAS"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="ANNALS OF NEW YORK ACADEMY SCIENCES">Annals of the New York Academy of Sciences</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="06001">
<doi origin="wiley">10.1111/nyas.2003.991.issue-1</doi>
<titleGroup>
<title type="main">PARKINSON'S DISEASE: The Life Cycle of the Dopamine Neuron</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="991">991</numbering>
<numbering type="journalIssue">1</numbering>
</numberingGroup>
<coverDate startDate="2003-06">June 2003</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="22" status="forIssue">
<doi origin="wiley">10.1111/j.1749-6632.2003.tb07478.x</doi>
<idGroup>
<id type="unit" value="NYAS214"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="15"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Parkinson's Disease: The Life Cycle of the Dopamine Neuron: Part V. From Molecules to Organism: The Organism</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2006-01-24"></event>
<event type="publishedOnlineFinalForm" date="2006-01-24"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.5 mode:FullText source:FullText result:FullText" date="2010-04-09"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-19"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-14"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="214">214</numbering>
<numbering type="pageLast" number="228">228</numbering>
</numberingGroup>
<correspondenceTo>Address for correspondence: E.C. Hirsch, INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 47 boulevard de l'Hôpital, 75651 Paris Cedex 13, France. Voice: +33 (0) 1 42 16 22 02; fax: + 33 (0) 1 44 24 36 58.
<email>hirsch@ccr.jussieu.fr</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:NYAS.NYAS214.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="0"></count>
<count type="tableTotal" number="2"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="72"></count>
<count type="linksCrossRef" number="60"></count>
</countGroup>
<titleGroup>
<title type="main">The Role of Glial Reaction and Inflammation in Parkinson's Disease</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1" corresponding="yes">
<personName>
<givenNames>E. C.</givenNames>
<familyName>HIRSCH</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1">
<personName>
<givenNames>T.</givenNames>
<familyName>BREIDERT</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a1">
<personName>
<givenNames>E.</givenNames>
<familyName>ROUSSELET</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a1">
<personName>
<givenNames>S.</givenNames>
<familyName>HUNOT</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a1">
<personName>
<givenNames>A.</givenNames>
<familyName>HARTMANN</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr6" affiliationRef="#a1">
<personName>
<givenNames>P. P.</givenNames>
<familyName>MICHEL</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="FR">
<unparsedAffiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">cytokines</keyword>
<keyword xml:id="k2">neuroprotection</keyword>
<keyword xml:id="k3">apoptosis</keyword>
<keyword xml:id="k4">dopamine neuron</keyword>
<keyword xml:id="k5">substantia nigra</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>
<b>A
<sc>bstract</sc>
: </b>
The glial reaction is generally considered to be a consequence of neuronal death in neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, and Parkinson's disease. In Parkinson's disease, postmortem examination reveals a loss of dopaminergic neurons in the substantia nigra associated with a massive astrogliosis and the presence of activated microglial cells. Recent evidence suggests that the disease may progress even when the initial cause of neuronal degeneration has disappeared, suggesting that toxic substances released by the glial cells may be involved in the propagation and perpetuation of neuronal degeneration. Glial cells can release deleterious compounds such as proinflammatory cytokines (TNF‐α, Il‐1β, IFN‐γ), which may act by stimulating nitric oxide production in glial cells, or which may exert a more direct deleterious effect on dopaminergic neurons by activating receptors that contain intracytoplasmic death domains involved in apoptosis. In line with this possibility, an activation of proteases such as caspase‐3 and caspase‐8, which are known effectors of apoptosis, has been reported in Parkinson's disease. Yet, caspase inhibitors or invalidation of TNF‐α receptors does not protect dopaminergic neurons against degeneration in experimental models of the disease, suggesting that manipulation of a single signaling pathway may not be sufficient to protect dopaminergic neurons. In contrast, the antiinflammatory drugs pioglitazone, a PPAR‐γ agonist, and the tetracycline derivative minocycline have been shown to reduce glial activation and protect the substantia nigra in an animal model of the disease. Inhibition of the glial reaction and the inflammatory processes may thus represent a therapeutic target to reduce neuronal degeneration in Parkinson's disease.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>The Role of Glial Reaction and Inflammation in Parkinson's Disease</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>The Role of Glial Reaction and Inflammation in Parkinson's Disease</title>
</titleInfo>
<name type="personal">
<namePart type="given">E. C.</namePart>
<namePart type="family">HIRSCH</namePart>
<affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</affiliation>
<affiliation>E-mail: hirsch@ccr.jussieu.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T.</namePart>
<namePart type="family">BREIDERT</namePart>
<affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">E.</namePart>
<namePart type="family">ROUSSELET</namePart>
<affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">HUNOT</namePart>
<affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A.</namePart>
<namePart type="family">HARTMANN</namePart>
<affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P. P.</namePart>
<namePart type="family">MICHEL</namePart>
<affiliation>INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2003-06</dateIssued>
<copyrightDate encoding="w3cdtf">2003</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="tables">2</extent>
<extent unit="references">72</extent>
</physicalDescription>
<abstract>Abstract: The glial reaction is generally considered to be a consequence of neuronal death in neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, and Parkinson's disease. In Parkinson's disease, postmortem examination reveals a loss of dopaminergic neurons in the substantia nigra associated with a massive astrogliosis and the presence of activated microglial cells. Recent evidence suggests that the disease may progress even when the initial cause of neuronal degeneration has disappeared, suggesting that toxic substances released by the glial cells may be involved in the propagation and perpetuation of neuronal degeneration. Glial cells can release deleterious compounds such as proinflammatory cytokines (TNF‐α, Il‐1β, IFN‐γ), which may act by stimulating nitric oxide production in glial cells, or which may exert a more direct deleterious effect on dopaminergic neurons by activating receptors that contain intracytoplasmic death domains involved in apoptosis. In line with this possibility, an activation of proteases such as caspase‐3 and caspase‐8, which are known effectors of apoptosis, has been reported in Parkinson's disease. Yet, caspase inhibitors or invalidation of TNF‐α receptors does not protect dopaminergic neurons against degeneration in experimental models of the disease, suggesting that manipulation of a single signaling pathway may not be sufficient to protect dopaminergic neurons. In contrast, the antiinflammatory drugs pioglitazone, a PPAR‐γ agonist, and the tetracycline derivative minocycline have been shown to reduce glial activation and protect the substantia nigra in an animal model of the disease. Inhibition of the glial reaction and the inflammatory processes may thus represent a therapeutic target to reduce neuronal degeneration in Parkinson's disease.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>cytokines</topic>
<topic>neuroprotection</topic>
<topic>apoptosis</topic>
<topic>dopamine neuron</topic>
<topic>substantia nigra</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Annals of the New York Academy of Sciences</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0077-8923</identifier>
<identifier type="eISSN">1749-6632</identifier>
<identifier type="DOI">10.1111/(ISSN)1749-6632</identifier>
<identifier type="PublisherID">NYAS</identifier>
<part>
<date>2003</date>
<detail type="title">
<title>PARKINSON'S DISEASE: The Life Cycle of the Dopamine Neuron</title>
</detail>
<detail type="volume">
<caption>vol.</caption>
<number>991</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>214</start>
<end>228</end>
<total>15</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">7EC790141B211503BA4D587100832AD9E681C8B0</identifier>
<identifier type="DOI">10.1111/j.1749-6632.2003.tb07478.x</identifier>
<identifier type="ArticleID">NYAS214</identifier>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F05 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001F05 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:7EC790141B211503BA4D587100832AD9E681C8B0
   |texte=   The Role of Glial Reaction and Inflammation in Parkinson's Disease
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024