La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Complementarity of seismological and electromagnetic sounding methods for constraining the structure of the Martian mantle

Identifieur interne : 001E63 ( Istex/Corpus ); précédent : 001E62; suivant : 001E64

Complementarity of seismological and electromagnetic sounding methods for constraining the structure of the Martian mantle

Auteurs : Antoine Mocquet ; Michel Menvielle

Source :

RBID : ISTEX:386FF392C2AFA497B54796562FD7ECDB608297F9

Abstract

The complementarity of seismological and electromagnetic sounding methods for the thermodynamical characterization of the Martian mantle is discussed by illustrating the observational constraints and limitations of both methods. The increase of temperature within a few hundreds of kilometers thick Martian outer lid with conductive heat transfer should induce the presence of a seismic low-velocity zone, due to the relatively small increase of pressure within Mars. The depth of minimum velocity will help to constrain the thickness and mean thermal gradient of the lid. These parameters will be strongly constrained by electromagnetic sounding methods. At greater depths, temperature variations of the order of 400K will be detectable if seismic velocities can be determined with an accuracy better than 2%. An extrapolation of presently available laboratory data to the pressure range of Mars’ mantle predicts that the deep mantle electrical conductivity will be accessible if Mars’ mantle is cold, and mineralogically similar to the Earth's. On the other hand, the high temperature and/or the high conductivity of garnet might impede an interpretation of electromagnetic sounding data at depths greater than 300km for a nominal duration of the NetLander mission of the order of one Martian year. If the mantle is olivine-rich, the phase transitions of olivine should translate into first-order seismic and electromagnetic discontinuities, eventually smoothed if the iron content of Mars’ mantle is about twice the Earth's one. The depth of occurrence of the exothermic olivine to waldsleyite and ringwoodite transitions will provide information on the temperature of the mantle. A pyroxene-rich mantle should instead be characterized by a constant increase of seismic velocities in the depth range 800–1200km. This seismic gradient would be generated by the progressive increase of the garnet content at the expense of pyroxenes in solid solutions of non-olivine minerals.

Url:
DOI: 10.1016/S0032-0633(00)00107-0

Links to Exploration step

ISTEX:386FF392C2AFA497B54796562FD7ECDB608297F9

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Complementarity of seismological and electromagnetic sounding methods for constraining the structure of the Martian mantle</title>
<author>
<name sortKey="Mocquet, Antoine" sort="Mocquet, Antoine" uniqKey="Mocquet A" first="Antoine" last="Mocquet">Antoine Mocquet</name>
<affiliation>
<mods:affiliation>E-mail: antoine.mocquet@chimie.univ-nantes.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>UMR-CNRS 6112 Laboratoire de Planétologie et Géodynamique, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Menvielle, Michel" sort="Menvielle, Michel" uniqKey="Menvielle M" first="Michel" last="Menvielle">Michel Menvielle</name>
<affiliation>
<mods:affiliation>E-mail: antoine.mocquet@chimie.univ-nantes.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>CETP, UMR CNRS/UVSQ 8639-Observatoire de Saint-Maur, 4 Avenue de Neptune, 94107 Saint-Maur-des-Fossés, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:386FF392C2AFA497B54796562FD7ECDB608297F9</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1016/S0032-0633(00)00107-0</idno>
<idno type="url">https://api.istex.fr/document/386FF392C2AFA497B54796562FD7ECDB608297F9/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001E63</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001E63</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Complementarity of seismological and electromagnetic sounding methods for constraining the structure of the Martian mantle</title>
<author>
<name sortKey="Mocquet, Antoine" sort="Mocquet, Antoine" uniqKey="Mocquet A" first="Antoine" last="Mocquet">Antoine Mocquet</name>
<affiliation>
<mods:affiliation>E-mail: antoine.mocquet@chimie.univ-nantes.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>UMR-CNRS 6112 Laboratoire de Planétologie et Géodynamique, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Menvielle, Michel" sort="Menvielle, Michel" uniqKey="Menvielle M" first="Michel" last="Menvielle">Michel Menvielle</name>
<affiliation>
<mods:affiliation>E-mail: antoine.mocquet@chimie.univ-nantes.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>CETP, UMR CNRS/UVSQ 8639-Observatoire de Saint-Maur, 4 Avenue de Neptune, 94107 Saint-Maur-des-Fossés, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Planetary and Space Science</title>
<title level="j" type="abbrev">PSS</title>
<idno type="ISSN">0032-0633</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">48</biblScope>
<biblScope unit="issue">12–14</biblScope>
<biblScope unit="page" from="1249">1249</biblScope>
<biblScope unit="page" to="1260">1260</biblScope>
</imprint>
<idno type="ISSN">0032-0633</idno>
</series>
<idno type="istex">386FF392C2AFA497B54796562FD7ECDB608297F9</idno>
<idno type="DOI">10.1016/S0032-0633(00)00107-0</idno>
<idno type="PII">S0032-0633(00)00107-0</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0032-0633</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The complementarity of seismological and electromagnetic sounding methods for the thermodynamical characterization of the Martian mantle is discussed by illustrating the observational constraints and limitations of both methods. The increase of temperature within a few hundreds of kilometers thick Martian outer lid with conductive heat transfer should induce the presence of a seismic low-velocity zone, due to the relatively small increase of pressure within Mars. The depth of minimum velocity will help to constrain the thickness and mean thermal gradient of the lid. These parameters will be strongly constrained by electromagnetic sounding methods. At greater depths, temperature variations of the order of 400K will be detectable if seismic velocities can be determined with an accuracy better than 2%. An extrapolation of presently available laboratory data to the pressure range of Mars’ mantle predicts that the deep mantle electrical conductivity will be accessible if Mars’ mantle is cold, and mineralogically similar to the Earth's. On the other hand, the high temperature and/or the high conductivity of garnet might impede an interpretation of electromagnetic sounding data at depths greater than 300km for a nominal duration of the NetLander mission of the order of one Martian year. If the mantle is olivine-rich, the phase transitions of olivine should translate into first-order seismic and electromagnetic discontinuities, eventually smoothed if the iron content of Mars’ mantle is about twice the Earth's one. The depth of occurrence of the exothermic olivine to waldsleyite and ringwoodite transitions will provide information on the temperature of the mantle. A pyroxene-rich mantle should instead be characterized by a constant increase of seismic velocities in the depth range 800–1200km. This seismic gradient would be generated by the progressive increase of the garnet content at the expense of pyroxenes in solid solutions of non-olivine minerals.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Antoine Mocquet</name>
<affiliations>
<json:string>E-mail: antoine.mocquet@chimie.univ-nantes.fr</json:string>
<json:string>UMR-CNRS 6112 Laboratoire de Planétologie et Géodynamique, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Michel Menvielle</name>
<affiliations>
<json:string>E-mail: antoine.mocquet@chimie.univ-nantes.fr</json:string>
<json:string>CETP, UMR CNRS/UVSQ 8639-Observatoire de Saint-Maur, 4 Avenue de Neptune, 94107 Saint-Maur-des-Fossés, France</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>The complementarity of seismological and electromagnetic sounding methods for the thermodynamical characterization of the Martian mantle is discussed by illustrating the observational constraints and limitations of both methods. The increase of temperature within a few hundreds of kilometers thick Martian outer lid with conductive heat transfer should induce the presence of a seismic low-velocity zone, due to the relatively small increase of pressure within Mars. The depth of minimum velocity will help to constrain the thickness and mean thermal gradient of the lid. These parameters will be strongly constrained by electromagnetic sounding methods. At greater depths, temperature variations of the order of 400K will be detectable if seismic velocities can be determined with an accuracy better than 2%. An extrapolation of presently available laboratory data to the pressure range of Mars’ mantle predicts that the deep mantle electrical conductivity will be accessible if Mars’ mantle is cold, and mineralogically similar to the Earth's. On the other hand, the high temperature and/or the high conductivity of garnet might impede an interpretation of electromagnetic sounding data at depths greater than 300km for a nominal duration of the NetLander mission of the order of one Martian year. If the mantle is olivine-rich, the phase transitions of olivine should translate into first-order seismic and electromagnetic discontinuities, eventually smoothed if the iron content of Mars’ mantle is about twice the Earth's one. The depth of occurrence of the exothermic olivine to waldsleyite and ringwoodite transitions will provide information on the temperature of the mantle. A pyroxene-rich mantle should instead be characterized by a constant increase of seismic velocities in the depth range 800–1200km. This seismic gradient would be generated by the progressive increase of the garnet content at the expense of pyroxenes in solid solutions of non-olivine minerals.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>596 x 792 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>1977</abstractCharCount>
<pdfWordCount>8165</pdfWordCount>
<pdfCharCount>48325</pdfCharCount>
<pdfPageCount>12</pdfPageCount>
<abstractWordCount>293</abstractWordCount>
</qualityIndicators>
<title>Complementarity of seismological and electromagnetic sounding methods for constraining the structure of the Martian mantle</title>
<pii>
<json:string>S0032-0633(00)00107-0</json:string>
</pii>
<refBibs>
<json:item>
<author>
<json:item>
<name>M.H Acuña</name>
</json:item>
<json:item>
<name>J.E.P Connerney</name>
</json:item>
<json:item>
<name>N.F Ness</name>
</json:item>
<json:item>
<name>R.P Lin</name>
</json:item>
<json:item>
<name>D Mitchell</name>
</json:item>
<json:item>
<name>C.W Carlson</name>
</json:item>
<json:item>
<name>J McFadden</name>
</json:item>
<json:item>
<name>K.A Anderson</name>
</json:item>
<json:item>
<name>H Rème</name>
</json:item>
<json:item>
<name>C Mazelle</name>
</json:item>
<json:item>
<name>D Vignes</name>
</json:item>
<json:item>
<name>P Wasilewski</name>
</json:item>
<json:item>
<name>P Cloutier</name>
</json:item>
</author>
<host>
<volume>284</volume>
<pages>
<last>793</last>
<first>790</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H Berckhemer</name>
</json:item>
<json:item>
<name>W Kampfmann</name>
</json:item>
<json:item>
<name>E Aulbach</name>
</json:item>
<json:item>
<name>H Schmeling</name>
</json:item>
</author>
<host>
<volume>29</volume>
<pages>
<last>41</last>
<first>30</first>
</pages>
<author></author>
<title>Phys. Earth Planet. Inter.</title>
</host>
<title>Shear modulus and Q of forsterite and dunite near partial melting from forced oscillation experiments</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.M Bertka</name>
</json:item>
<json:item>
<name>Y Fei</name>
</json:item>
</author>
<host>
<volume>102</volume>
<pages>
<last>5264</last>
<first>5251</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Mineralogy of the Martian interior up to core-mantle boundary pressures</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.R Bina</name>
</json:item>
<json:item>
<name>G Hellfrich</name>
</json:item>
</author>
<host>
<volume>99</volume>
<pages>
<last>15,860</last>
<first>15,853</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Phase transition Clapeyron slopes and transition zone seismic discontinuity topography</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D Breuer</name>
</json:item>
<json:item>
<name>T Spohn</name>
</json:item>
<json:item>
<name>U Wüllner</name>
</json:item>
</author>
<host>
<volume>41</volume>
<pages>
<last>283</last>
<first>269</first>
</pages>
<author></author>
<title>Planet. Space Sci.</title>
</host>
<title>Mantle differentiation and the crustal dichotomy of Mars</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.E.P Connerney</name>
</json:item>
<json:item>
<name>M.H Acuña</name>
</json:item>
<json:item>
<name>P.J Wasilewski</name>
</json:item>
<json:item>
<name>N.F Ness</name>
</json:item>
<json:item>
<name>H Rème</name>
</json:item>
<json:item>
<name>C Mazelle</name>
</json:item>
<json:item>
<name>D Vignes</name>
</json:item>
<json:item>
<name>R.P Lin</name>
</json:item>
<json:item>
<name>D Mitchell</name>
</json:item>
<json:item>
<name>P Cloutier</name>
</json:item>
</author>
<host>
<volume>284</volume>
<pages>
<last>798</last>
<first>794</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Magnetic lineations in the ancient crust of Mars</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A Davaille</name>
</json:item>
<json:item>
<name>C Jaupart</name>
</json:item>
</author>
<host>
<volume>253</volume>
<pages>
<last>166</last>
<first>141</first>
</pages>
<author></author>
<title>J. Fluid Mech.</title>
</host>
<title>Transient high Rayleigh number thermal convection with large viscosity variations</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G Dreibus</name>
</json:item>
<json:item>
<name>H Wänke</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>382</last>
<first>367</first>
</pages>
<author></author>
<title>Meteoritics</title>
</host>
<title>Mars: a volatile-rich planet</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A Duba</name>
</json:item>
<json:item>
<name>H.C Heard</name>
</json:item>
<json:item>
<name>R.N Schnock</name>
</json:item>
</author>
<host>
<volume>79</volume>
<pages>
<last>1673</last>
<first>1667</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Electrical conductivity of olivine at high pressure and under controlled oxygen fugacity</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T.S Duffy</name>
</json:item>
<json:item>
<name>C.S Zha</name>
</json:item>
<json:item>
<name>R.T Downs</name>
</json:item>
<json:item>
<name>H.K Mao</name>
</json:item>
<json:item>
<name>R.J Hemley</name>
</json:item>
</author>
<host>
<volume>378</volume>
<pages>
<last>173</last>
<first>170</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Elasticity of forsterite to 16 GPa and the composition of the upper mantle</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A.M Dziewonski</name>
</json:item>
<json:item>
<name>D.L Anderson</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<last>356</last>
<first>297</first>
</pages>
<author></author>
<title>Inter.</title>
</host>
<title>Preliminary reference Earth model. Phys. Earth Planet</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P Gillet</name>
</json:item>
</author>
<host>
<volume>320</volume>
<pages>
<last>356</last>
<first>341</first>
</pages>
<author></author>
<title>C. R. Acad. Sci. Paris</title>
</host>
<title>Mineral physics, mantle mineralogy and mantle dynamics</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.P Golombek</name>
</json:item>
<json:item>
<name>W.B Banerdt</name>
</json:item>
<json:item>
<name>K.L Tanaka</name>
</json:item>
<json:item>
<name>D.M Tralli</name>
</json:item>
</author>
<host>
<volume>258</volume>
<pages>
<last>981</last>
<first>979</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>A prediction of Mars seismicity from surface faulting</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>O Grasset</name>
</json:item>
<json:item>
<name>E.M Parmentier</name>
</json:item>
</author>
<host>
<volume>103</volume>
<pages>
<last>18,181</last>
<first>18,171</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: implications for planetary thermal evolution</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y Gueguen</name>
</json:item>
<json:item>
<name>M Darot</name>
</json:item>
<json:item>
<name>P Mazot</name>
</json:item>
<json:item>
<name>J Woirgard</name>
</json:item>
</author>
<host>
<volume>55</volume>
<pages>
<last>258</last>
<first>254</first>
</pages>
<author></author>
<title>Phys. Earth Planet. Inter.</title>
</host>
<title>Q−1 of forsterite single crystals</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>E Hinze</name>
</json:item>
<json:item>
<name>G Will</name>
</json:item>
<json:item>
<name>L Cemic</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<last>254</last>
<first>245</first>
</pages>
<author></author>
<title>Phys. Earth Planet. Inter.</title>
</host>
<title>Electrical conductivity measurements on synthetic olivines and on olivine, enstatite and diopside from Dreiser Weiher, Eifel (Germany) under defined thermodynamic activities as a function of temperature and pressure</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.S Huebner</name>
</json:item>
<json:item>
<name>A Duba</name>
</json:item>
<json:item>
<name>L.B Wiggins</name>
</json:item>
</author>
<host>
<volume>84</volume>
<pages>
<last>4656</last>
<first>4652</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Electrical conductivity of pyroxene which contains trivalent cations: laboratory measurements and the lunar temperature profile</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>T Inoue</name>
</json:item>
<json:item>
<name>H Yurimoto</name>
</json:item>
<json:item>
<name>Y Kudoh</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>120</last>
<first>117</first>
</pages>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>Hydrous modified spinel, Mg1.75SiH0.5O4: a new water reservoir in the mantle transition region</title>
</json:item>
<json:item>
<author>
<json:item>
<name>I Jackson</name>
</json:item>
<json:item>
<name>M.S Patterson</name>
</json:item>
<json:item>
<name>J.D Fitz Gerald</name>
</json:item>
</author>
<host>
<volume>108</volume>
<pages>
<last>534</last>
<first>517</first>
</pages>
<author></author>
<title>J. Int.</title>
</host>
<title>Seismic wave dispersion and attenuation in Aheim dunite: an experimental study. Geophys</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E Jagoutz</name>
</json:item>
</author>
<host>
<volume>56</volume>
<pages>
<last>22</last>
<first>13</first>
</pages>
<author></author>
<title>Space Sci. Rev.</title>
</host>
<title>Chronology of SNC meteorites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S Karato</name>
</json:item>
<json:item>
<name>H Jung</name>
</json:item>
</author>
<host>
<volume>157</volume>
<pages>
<last>207</last>
<first>193</first>
</pages>
<author></author>
<title>Earth Planet. Sci. Lett.</title>
</host>
<title>Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A Kavner</name>
</json:item>
<json:item>
<name>X Li</name>
</json:item>
<json:item>
<name>R Jeanloz</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>3106</last>
<first>3103</first>
</pages>
<author></author>
<title>Geophys. Res. Lett.</title>
</host>
<title>Electrical conductivity of a natural (Mg, Fe)SiO3 majorite garnet</title>
</json:item>
<json:item>
<author>
<json:item>
<name>X Li</name>
</json:item>
<json:item>
<name>R Jeanloz</name>
</json:item>
</author>
<host>
<volume>96</volume>
<pages>
<last>6120</last>
<first>6113</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Effect of iron content on the electrical conductivity of perovskite and magnesiowüstite assemblages at lower mantle conditions</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J Longhi</name>
</json:item>
<json:item>
<name>E Knittle</name>
</json:item>
<json:item>
<name>J.R Holloway</name>
</json:item>
</author>
<host>
<pages>
<last>208</last>
<first>184</first>
</pages>
<author></author>
</host>
<title>The bulk composition, mineralogy and internal structure of Mars.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H.Y McSween, Jr.</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>416</last>
<first>391</first>
</pages>
<author></author>
<title>Rev. Geophys. Space Phys.</title>
</host>
<title>SNC meteorites: clues to Martian petrologic-evolution?</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>A Mocquet</name>
</json:item>
</author>
<host>
<volume>47</volume>
<pages>
<last>409</last>
<first>397</first>
</pages>
<author></author>
<title>Planet. Space Sci.</title>
</host>
<title>A search for the minimum number of stations needed for seismic networking on Mars</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A Mocquet</name>
</json:item>
<json:item>
<name>P Vacher</name>
</json:item>
<json:item>
<name>O Grasset</name>
</json:item>
<json:item>
<name>C Sotin</name>
</json:item>
</author>
<host>
<volume>44</volume>
<pages>
<last>1268</last>
<first>1251</first>
</pages>
<author></author>
<title>Planet. Space Sci.</title>
</host>
<title>Theoretical seismic models of Mars: the importance of the iron content of the mantle</title>
</json:item>
<json:item>
<author>
<json:item>
<name>U Motschmann</name>
</json:item>
<json:item>
<name>T.I Woodward</name>
</json:item>
<json:item>
<name>K.H Glassmeier</name>
</json:item>
<json:item>
<name>D.J Southwood</name>
</json:item>
<json:item>
<name>J.L Pinçon</name>
</json:item>
</author>
<host>
<volume>101</volume>
<pages>
<last>4965</last>
<first>4961</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Wavelength and direction filtering by magnetic measurements at satellite arrays: generalized minimum variance analysis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H.C Nataf</name>
</json:item>
<json:item>
<name>Y Ricard</name>
</json:item>
</author>
<host>
<volume>95</volume>
<pages>
<last>122</last>
<first>101</first>
</pages>
<author></author>
<title>Phys. Earth Planet. Inter.</title>
</host>
<title>3SMAC: an a priori tomographic model of the upper mantle based on geophysical modeling</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H.ST O'Neill</name>
</json:item>
<json:item>
<name>H Palme</name>
</json:item>
</author>
<host>
<pages>
<last>126</last>
<first>3</first>
</pages>
<author></author>
<title>The Earth's Mantle. Composition, Structure, and Evolution</title>
</host>
<title>Composition of the silicate Earth: implications for accretion and core formation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R.L Parker</name>
</json:item>
</author>
<host>
<volume>68</volume>
<pages>
<last>170</last>
<first>163</first>
</pages>
<author></author>
<title>Geophys. J. Roy. Astr. Soc.</title>
</host>
<title>The existence of a region inaccessible to magnetotelluric sounding</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.I Parkhomenko</name>
</json:item>
</author>
<host>
<volume>29</volume>
<pages>
<last>218</last>
<first>193</first>
</pages>
<author></author>
<title>Rev. Geophys. Space Phys.</title>
</host>
<title>Electrical resistivity of minerals and rocks at high temperature and pressure</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W.D Parkinson</name>
</json:item>
<json:item>
<name>V.R.S Hutton</name>
</json:item>
</author>
<host>
<pages>
<last>321</last>
<first>261</first>
</pages>
<author></author>
<title>Geomagnetism, Vol. 3.</title>
</host>
<title>The electrical conductivity of the Earth.</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J.L Pinçon</name>
</json:item>
<json:item>
<name>F Lefeuvre</name>
</json:item>
</author>
<host>
<volume>96</volume>
<pages>
<last>1802</last>
<first>1789</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Local characterization of homogeneous turbulence in a space plasma from simultaneous measurements of field components at several points in space</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.L Pinçon</name>
</json:item>
<json:item>
<name>F Lefeuvre</name>
</json:item>
</author>
<host>
<volume>54</volume>
<pages>
<last>1247</last>
<first>1237</first>
</pages>
<author></author>
<title>J. Atmos. Terr. Phys.</title>
</host>
<title>The application of the generalized Capon method to the analysis of a turbulent field in space plasma: experimental constraints</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>C Sanloup</name>
</json:item>
<json:item>
<name>A Jambon</name>
</json:item>
<json:item>
<name>P Gillet</name>
</json:item>
</author>
<host>
<volume>112</volume>
<pages>
<last>54</last>
<first>43</first>
</pages>
<author></author>
<title>Phys. Earth Planet. Inter.</title>
</host>
<title>A simple chondritic model of Mars</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>G Schubert</name>
</json:item>
<json:item>
<name>S.C Solomon</name>
</json:item>
<json:item>
<name>D.L Turcotte</name>
</json:item>
<json:item>
<name>M.J Drake</name>
</json:item>
<json:item>
<name>N.H Sleep</name>
</json:item>
</author>
<host>
<pages>
<last>183</last>
<first>147</first>
</pages>
<author></author>
<title>Mars.</title>
</host>
<title>Origin and thermal evolution of Mars.</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>N.H Sleep</name>
</json:item>
</author>
<host>
<volume>99</volume>
<pages>
<last>5655</last>
<first>5639</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Martian plate tectonics</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F Sohl</name>
</json:item>
<json:item>
<name>T Spohn</name>
</json:item>
</author>
<host>
<volume>102</volume>
<pages>
<last>1636</last>
<first>1613</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>The interior structure of Mars: implications from SNC meteorites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T Spohn</name>
</json:item>
</author>
<host>
<volume>90</volume>
<pages>
<last>236</last>
<first>222</first>
</pages>
<author></author>
<title>Icarus</title>
</host>
<title>Mantle differentiation and thermal evolution of Mars, Mercury, and Venus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T Spohn</name>
</json:item>
<json:item>
<name>F Sohl</name>
</json:item>
<json:item>
<name>D Breuer</name>
</json:item>
</author>
<host>
<volume>8</volume>
<pages>
<last>236</last>
<first>181</first>
</pages>
<author></author>
<title>Astron. Astrophys. Rev.</title>
</host>
<title>Mars</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R.G Strom</name>
</json:item>
<json:item>
<name>S.T Croft</name>
</json:item>
<json:item>
<name>N.G Barlow</name>
</json:item>
</author>
<host>
<pages>
<last>423</last>
<first>383</first>
</pages>
<author></author>
<title>Mars.</title>
</host>
<title>The Martian impact cratering record.</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>H Wänke</name>
</json:item>
</author>
<host>
<volume>56</volume>
<pages>
<last>8</last>
<first>1</first>
</pages>
<author></author>
<title>Space Sci. Rev.</title>
</host>
<title>Chemistry, accretion, and evolution of Mars</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H Wänke</name>
</json:item>
<json:item>
<name>G Dreibus</name>
</json:item>
</author>
<host>
<volume>A 325</volume>
<pages>
<last>557</last>
<first>545</first>
</pages>
<author></author>
<title>Philos. Trans. Roy. Soc. London, Ser.</title>
</host>
<title>Chemical composition and accretion history of terrestrial planets</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.E Wilhelms</name>
</json:item>
<json:item>
<name>S.W Squyres</name>
</json:item>
</author>
<host>
<volume>309</volume>
<pages>
<last>140</last>
<first>138</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>The Martian hemispheric dichotomy may be due to a giant impact</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y Xu</name>
</json:item>
<json:item>
<name>B.T Poe</name>
</json:item>
<json:item>
<name>T.J Shankland</name>
</json:item>
<json:item>
<name>D.C Rubie</name>
</json:item>
</author>
<host>
<volume>280</volume>
<pages>
<last>1418</last>
<first>1415</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Electrical conductivity of olivine, waldsleyite, and ringwoodite under upper-mantle conditions</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J Zhang</name>
</json:item>
<json:item>
<name>C Herzberg</name>
</json:item>
</author>
<host>
<volume>99</volume>
<pages>
<last>17,742</last>
<first>17,729</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 Gpa.</title>
</json:item>
</refBibs>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>48</volume>
<pii>
<json:string>S0032-0633(00)X0058-X</json:string>
</pii>
<editor>
<json:item>
<name>Sotin</name>
</json:item>
</editor>
<pages>
<last>1260</last>
<first>1249</first>
</pages>
<conference>
<json:item>
<name>Mars Exploration Program Mars Exploration</name>
</json:item>
</conference>
<issn>
<json:string>0032-0633</json:string>
</issn>
<issue>12–14</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Planetary and Space Science</title>
<publicationDate>2000</publicationDate>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>astronomy & astrophysics</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>physics & astronomy</json:string>
<json:string>astronomy & astrophysics</json:string>
</scienceMetrix>
</categories>
<publicationDate>2000</publicationDate>
<copyrightDate>2000</copyrightDate>
<doi>
<json:string>10.1016/S0032-0633(00)00107-0</json:string>
</doi>
<id>386FF392C2AFA497B54796562FD7ECDB608297F9</id>
<score>0.10722017</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/386FF392C2AFA497B54796562FD7ECDB608297F9/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/386FF392C2AFA497B54796562FD7ECDB608297F9/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/386FF392C2AFA497B54796562FD7ECDB608297F9/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Complementarity of seismological and electromagnetic sounding methods for constraining the structure of the Martian mantle</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©2000 Elsevier Science Ltd</p>
</availability>
<date>2000</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: End-member Marstherms: Model 1 after Breuer et al. (1993) and Spohn et al. (1998) (broken curve), Model 2 after Grasset and Parmentier (1998) (solid curve). The liquidus (white dots) and solidus (black dots) curves of anhydrous peridotite are plotted after Zhang and Herzberg (1994). The thickness of the outermost thermally conductive lid is either set equal to 200km (light gray area), or 300km (dark gray area) in both models. The thermal adiabatic gradient is set to a value equal to 0.1Kkm−1 in the deep mantle.</note>
<note type="content">Fig. 2: P- and S-wave velocities corresponding to the temperature profiles defined in Fig. 1 and Table 1.</note>
<note type="content">Fig. 3: A posteriori distributions of the parameters for (a) Model 1a, and (b) Model 1b. In both cases, the data sets consist of apparent resistivities computed at frequencies evenly distributed on a logarithmic scale (10 points per decade) over the range 0.1–0.0001 Hz, plus 1–5cyclesday−1 (cpd) (nF=36). In each case, a 16% Gaussian noise is added. For all the models, the a priori distribution and the marginal a posteriori distributions are digitized over a set of 71 possible resistivities evenly distributed on a logarithmic scale as 10 values per decade over the 0.001 to 10000Ωm interval. The level of grey of the (m,l) pixels corresponds to the value of the marginal a posteriori distribution of the parameter Xl for Xl=ρm: the darker the pixel, the higher the marginal a posteriori probability. On each image, the expected values (dashed curves) of the resistivities, and the resistivity profile of the model used to compute the apparent resistivities (solid curves), are also plotted.</note>
<note type="content">Fig. 4: Same as Fig. 3 for (a) Model 2a, and (b) Model 2b.</note>
<note type="content">Fig. 5: Minimum (white symbols) and maximum (black symbols) values of electrical conductivity of major mantle minerals. The values are extrapolated at high temperature after the experimental data of Duba et al. (1974), Huebner et al. (1979), Hinze et al. (1981), Li and Jeanloz (1991), Kavner et al. (1995), and Xu et al. (1998) using Eq. (6). The generic term ‘spinelle’ is used for both waldsleyite and ringwoodite, since these phases display similar values of electrical conductivity (Xu et al., 1998).</note>
<note type="content">Fig. 6: Examples of candidate electrical conductivity profiles for the Martian mantle. The minimum (white symbols) and maximum (black symbols) values are computed using Eq. (7), and the individual values of electrical conductivity displayed in Fig. 5.</note>
<note type="content">Fig. 7: Same as Fig. 3 for a ‘cold’ (Model 1a) and pure olivine mantle, and for two different values of the smoothing parameter α (Eq. (9). (a) α=5; (b) α=1.</note>
<note type="content">Table 1: End-member models of mantle temperature for Marsa</note>
<note type="content">Table 2: Physical parameters transposed from 3SMAC (Nataf and Ricard, 1996) to the pressure range of Mars’ mantlea</note>
<note type="content">Table 3: Range of experimental determination of pre-exponential factor σ0 and activation energy E∗ values for olivine, waldsleyite and ringwoodite, pyroxenes and garnetsa</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Complementarity of seismological and electromagnetic sounding methods for constraining the structure of the Martian mantle</title>
<author xml:id="author-1">
<persName>
<forename type="first">Antoine</forename>
<surname>Mocquet</surname>
</persName>
<email>antoine.mocquet@chimie.univ-nantes.fr</email>
<note type="correspondence">
<p>Corresponding author. Tel.: +33-0-2-51-12-54-68; fax: +33-0-2-51-12-52-68</p>
</note>
<affiliation>UMR-CNRS 6112 Laboratoire de Planétologie et Géodynamique, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Michel</forename>
<surname>Menvielle</surname>
</persName>
<email>antoine.mocquet@chimie.univ-nantes.fr</email>
<affiliation>CETP, UMR CNRS/UVSQ 8639-Observatoire de Saint-Maur, 4 Avenue de Neptune, 94107 Saint-Maur-des-Fossés, France</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Planetary and Space Science</title>
<title level="j" type="abbrev">PSS</title>
<idno type="pISSN">0032-0633</idno>
<idno type="PII">S0032-0633(00)X0058-X</idno>
<meeting>
<addName>Mars Exploration Program</addName>
<addName>Mars Exploration</addName>
</meeting>
<editor>
<persName>Sotin</persName>
</editor>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000"></date>
<biblScope unit="volume">48</biblScope>
<biblScope unit="issue">12–14</biblScope>
<biblScope unit="page" from="1249">1249</biblScope>
<biblScope unit="page" to="1260">1260</biblScope>
</imprint>
</monogr>
<idno type="istex">386FF392C2AFA497B54796562FD7ECDB608297F9</idno>
<idno type="DOI">10.1016/S0032-0633(00)00107-0</idno>
<idno type="PII">S0032-0633(00)00107-0</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2000</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The complementarity of seismological and electromagnetic sounding methods for the thermodynamical characterization of the Martian mantle is discussed by illustrating the observational constraints and limitations of both methods. The increase of temperature within a few hundreds of kilometers thick Martian outer lid with conductive heat transfer should induce the presence of a seismic low-velocity zone, due to the relatively small increase of pressure within Mars. The depth of minimum velocity will help to constrain the thickness and mean thermal gradient of the lid. These parameters will be strongly constrained by electromagnetic sounding methods. At greater depths, temperature variations of the order of 400K will be detectable if seismic velocities can be determined with an accuracy better than 2%. An extrapolation of presently available laboratory data to the pressure range of Mars’ mantle predicts that the deep mantle electrical conductivity will be accessible if Mars’ mantle is cold, and mineralogically similar to the Earth's. On the other hand, the high temperature and/or the high conductivity of garnet might impede an interpretation of electromagnetic sounding data at depths greater than 300km for a nominal duration of the NetLander mission of the order of one Martian year. If the mantle is olivine-rich, the phase transitions of olivine should translate into first-order seismic and electromagnetic discontinuities, eventually smoothed if the iron content of Mars’ mantle is about twice the Earth's one. The depth of occurrence of the exothermic olivine to waldsleyite and ringwoodite transitions will provide information on the temperature of the mantle. A pyroxene-rich mantle should instead be characterized by a constant increase of seismic velocities in the depth range 800–1200km. This seismic gradient would be generated by the progressive increase of the garnet content at the expense of pyroxenes in solid solutions of non-olivine minerals.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1999-12-17">Modified</change>
<change when="2000">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/386FF392C2AFA497B54796562FD7ECDB608297F9/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>PSS</jid>
<aid>1216</aid>
<ce:pii>S0032-0633(00)00107-0</ce:pii>
<ce:doi>10.1016/S0032-0633(00)00107-0</ce:doi>
<ce:copyright type="full-transfer" year="2000">Elsevier Science Ltd</ce:copyright>
</item-info>
<head>
<ce:title>Complementarity of seismological and electromagnetic sounding methods for constraining the structure of the Martian mantle</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Antoine</ce:given-name>
<ce:surname>Mocquet</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:e-address>antoine.mocquet@chimie.univ-nantes.fr</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>Michel</ce:given-name>
<ce:surname>Menvielle</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="AFF3">
<ce:sup>c</ce:sup>
</ce:cross-ref>
<ce:e-address>michel.menvielle@cetp.ipsl.fr</ce:e-address>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>UMR-CNRS 6112 Laboratoire de Planétologie et Géodynamique, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>CETP, UMR CNRS/UVSQ 8639-Observatoire de Saint-Maur, 4 Avenue de Neptune, 94107 Saint-Maur-des-Fossés, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF3">
<ce:label>c</ce:label>
<ce:textfn>Département des Sciences de la Terre, Université Paris-Sud, France</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel.: +33-0-2-51-12-54-68; fax: +33-0-2-51-12-52-68</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="31" month="5" year="1999"></ce:date-received>
<ce:date-revised day="17" month="12" year="1999"></ce:date-revised>
<ce:date-accepted day="12" month="4" year="2000"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>The complementarity of seismological and electromagnetic sounding methods for the thermodynamical characterization of the Martian mantle is discussed by illustrating the observational constraints and limitations of both methods. The increase of temperature within a few hundreds of kilometers thick Martian outer lid with conductive heat transfer should induce the presence of a seismic low-velocity zone, due to the relatively small increase of pressure within Mars. The depth of minimum velocity will help to constrain the thickness and mean thermal gradient of the lid. These parameters will be strongly constrained by electromagnetic sounding methods. At greater depths, temperature variations of the order of 400
<ce:hsp sp="0.16"></ce:hsp>
K will be detectable if seismic velocities can be determined with an accuracy better than 2%. An extrapolation of presently available laboratory data to the pressure range of Mars’ mantle predicts that the deep mantle electrical conductivity will be accessible if Mars’ mantle is cold, and mineralogically similar to the Earth's. On the other hand, the high temperature and/or the high conductivity of garnet might impede an interpretation of electromagnetic sounding data at depths greater than 300
<ce:hsp sp="0.16"></ce:hsp>
km for a nominal duration of the NetLander mission of the order of one Martian year. If the mantle is olivine-rich, the phase transitions of olivine should translate into first-order seismic and electromagnetic discontinuities, eventually smoothed if the iron content of Mars’ mantle is about twice the Earth's one. The depth of occurrence of the exothermic olivine to waldsleyite and ringwoodite transitions will provide information on the temperature of the mantle. A pyroxene-rich mantle should instead be characterized by a constant increase of seismic velocities in the depth range 800–1200
<ce:hsp sp="0.16"></ce:hsp>
km. This seismic gradient would be generated by the progressive increase of the garnet content at the expense of pyroxenes in solid solutions of non-olivine minerals.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Complementarity of seismological and electromagnetic sounding methods for constraining the structure of the Martian mantle</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Complementarity of seismological and electromagnetic sounding methods for constraining the structure of the Martian mantle</title>
</titleInfo>
<name type="personal">
<namePart type="given">Antoine</namePart>
<namePart type="family">Mocquet</namePart>
<affiliation>E-mail: antoine.mocquet@chimie.univ-nantes.fr</affiliation>
<affiliation>UMR-CNRS 6112 Laboratoire de Planétologie et Géodynamique, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France</affiliation>
<description>Corresponding author. Tel.: +33-0-2-51-12-54-68; fax: +33-0-2-51-12-52-68</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michel</namePart>
<namePart type="family">Menvielle</namePart>
<affiliation>E-mail: antoine.mocquet@chimie.univ-nantes.fr</affiliation>
<affiliation>CETP, UMR CNRS/UVSQ 8639-Observatoire de Saint-Maur, 4 Avenue de Neptune, 94107 Saint-Maur-des-Fossés, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2000</dateIssued>
<dateModified encoding="w3cdtf">1999-12-17</dateModified>
<copyrightDate encoding="w3cdtf">2000</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">The complementarity of seismological and electromagnetic sounding methods for the thermodynamical characterization of the Martian mantle is discussed by illustrating the observational constraints and limitations of both methods. The increase of temperature within a few hundreds of kilometers thick Martian outer lid with conductive heat transfer should induce the presence of a seismic low-velocity zone, due to the relatively small increase of pressure within Mars. The depth of minimum velocity will help to constrain the thickness and mean thermal gradient of the lid. These parameters will be strongly constrained by electromagnetic sounding methods. At greater depths, temperature variations of the order of 400K will be detectable if seismic velocities can be determined with an accuracy better than 2%. An extrapolation of presently available laboratory data to the pressure range of Mars’ mantle predicts that the deep mantle electrical conductivity will be accessible if Mars’ mantle is cold, and mineralogically similar to the Earth's. On the other hand, the high temperature and/or the high conductivity of garnet might impede an interpretation of electromagnetic sounding data at depths greater than 300km for a nominal duration of the NetLander mission of the order of one Martian year. If the mantle is olivine-rich, the phase transitions of olivine should translate into first-order seismic and electromagnetic discontinuities, eventually smoothed if the iron content of Mars’ mantle is about twice the Earth's one. The depth of occurrence of the exothermic olivine to waldsleyite and ringwoodite transitions will provide information on the temperature of the mantle. A pyroxene-rich mantle should instead be characterized by a constant increase of seismic velocities in the depth range 800–1200km. This seismic gradient would be generated by the progressive increase of the garnet content at the expense of pyroxenes in solid solutions of non-olivine minerals.</abstract>
<note type="content">Fig. 1: End-member Marstherms: Model 1 after Breuer et al. (1993) and Spohn et al. (1998) (broken curve), Model 2 after Grasset and Parmentier (1998) (solid curve). The liquidus (white dots) and solidus (black dots) curves of anhydrous peridotite are plotted after Zhang and Herzberg (1994). The thickness of the outermost thermally conductive lid is either set equal to 200km (light gray area), or 300km (dark gray area) in both models. The thermal adiabatic gradient is set to a value equal to 0.1Kkm−1 in the deep mantle.</note>
<note type="content">Fig. 2: P- and S-wave velocities corresponding to the temperature profiles defined in Fig. 1 and Table 1.</note>
<note type="content">Fig. 3: A posteriori distributions of the parameters for (a) Model 1a, and (b) Model 1b. In both cases, the data sets consist of apparent resistivities computed at frequencies evenly distributed on a logarithmic scale (10 points per decade) over the range 0.1–0.0001 Hz, plus 1–5cyclesday−1 (cpd) (nF=36). In each case, a 16% Gaussian noise is added. For all the models, the a priori distribution and the marginal a posteriori distributions are digitized over a set of 71 possible resistivities evenly distributed on a logarithmic scale as 10 values per decade over the 0.001 to 10000Ωm interval. The level of grey of the (m,l) pixels corresponds to the value of the marginal a posteriori distribution of the parameter Xl for Xl=ρm: the darker the pixel, the higher the marginal a posteriori probability. On each image, the expected values (dashed curves) of the resistivities, and the resistivity profile of the model used to compute the apparent resistivities (solid curves), are also plotted.</note>
<note type="content">Fig. 4: Same as Fig. 3 for (a) Model 2a, and (b) Model 2b.</note>
<note type="content">Fig. 5: Minimum (white symbols) and maximum (black symbols) values of electrical conductivity of major mantle minerals. The values are extrapolated at high temperature after the experimental data of Duba et al. (1974), Huebner et al. (1979), Hinze et al. (1981), Li and Jeanloz (1991), Kavner et al. (1995), and Xu et al. (1998) using Eq. (6). The generic term ‘spinelle’ is used for both waldsleyite and ringwoodite, since these phases display similar values of electrical conductivity (Xu et al., 1998).</note>
<note type="content">Fig. 6: Examples of candidate electrical conductivity profiles for the Martian mantle. The minimum (white symbols) and maximum (black symbols) values are computed using Eq. (7), and the individual values of electrical conductivity displayed in Fig. 5.</note>
<note type="content">Fig. 7: Same as Fig. 3 for a ‘cold’ (Model 1a) and pure olivine mantle, and for two different values of the smoothing parameter α (Eq. (9). (a) α=5; (b) α=1.</note>
<note type="content">Table 1: End-member models of mantle temperature for Marsa</note>
<note type="content">Table 2: Physical parameters transposed from 3SMAC (Nataf and Ricard, 1996) to the pressure range of Mars’ mantlea</note>
<note type="content">Table 3: Range of experimental determination of pre-exponential factor σ0 and activation energy E∗ values for olivine, waldsleyite and ringwoodite, pyroxenes and garnetsa</note>
<relatedItem type="host">
<titleInfo>
<title>Planetary and Space Science</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>PSS</title>
</titleInfo>
<name type="conference">
<namePart>Mars Exploration Program</namePart>
<namePart>Mars Exploration</namePart>
</name>
<name type="personal">
<namePart>Sotin</namePart>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">200010</dateIssued>
</originInfo>
<identifier type="ISSN">0032-0633</identifier>
<identifier type="PII">S0032-0633(00)X0058-X</identifier>
<part>
<date>200010</date>
<detail type="issue">
<title>Mars Exploration Program</title>
</detail>
<detail type="volume">
<number>48</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>12–14</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>1143</start>
<end>1422</end>
</extent>
<extent unit="pages">
<start>1249</start>
<end>1260</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">386FF392C2AFA497B54796562FD7ECDB608297F9</identifier>
<identifier type="DOI">10.1016/S0032-0633(00)00107-0</identifier>
<identifier type="PII">S0032-0633(00)00107-0</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2000 Elsevier Science Ltd</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science Ltd, ©2000</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E63 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001E63 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:386FF392C2AFA497B54796562FD7ECDB608297F9
   |texte=   Complementarity of seismological and electromagnetic sounding methods for constraining the structure of the Martian mantle
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024