La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Adaptive changes in the nigrostriatal pathway in response to increased 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐induced neurodegeneration in the mouse

Identifieur interne : 001C86 ( Istex/Corpus ); précédent : 001C85; suivant : 001C87

Adaptive changes in the nigrostriatal pathway in response to increased 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐induced neurodegeneration in the mouse

Auteurs : Erwan Bezard ; Mohamed Jaber ; François Gonon ; Alain Boireau ; Bertrand Bloch ; Christian E. Gross

Source :

RBID : ISTEX:0767F6689204C21A242EBC8E6FC5D4CC9D81D477

English descriptors

Abstract

Although several adaptive mechanisms have been identified that mask the existence of Parkinson's disease and delay the onset and aggravation of motor symptoms, the timescale and implications of this compensatory process remain an enigma. In order to examine: (i) the nature of the dopaminergic adaptive mechanisms that come into action; (ii) their sequential activation in relation to the severity of degeneration; and (iii) their efficacy with regard to the maintenance of a normal level of basal ganglia activity, we analysed the brains of mice treated daily with 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP, 4 mg/kg, i.p.) and killed at 5‐day intervals from day 0 (D0) to D20. Our results demonstrate the sequential activation of two compensatory mechanisms: (i) an increase in striatal tyrosine hydroxylase (TH) protein content attested by the persistence of TH immunolabelling up to D15, contrasting with the decrease observed in both the number of nigral TH‐immunoreactive neurons (−70.2%) and striatal dopamine content (−38.4%); (ii) a downregulation of DA uptake in surviving terminals at D20 (73.4% of nigral degeneration). At this point, the failure of adaptive mechanisms to maintain striatal dopaminergic homeostasis is also illustrated by an increase in the cytochrome oxidase activity of substantia nigra pars reticulata, a marker of neuronal function. It has been postulated that an increase in dopamine release per pulse could constitute an adaptive mechanism. The data we present from our MPTP mice model infirm this hypothesis. This study explores the link between the degree of nigral degeneration and the sequential activation of dopaminergic compensatory mechanisms in the nigrostriatal pathway and, in so doing, proposes a rethink of the paradigm applied to these mechanisms.

Url:
DOI: 10.1046/j.1460-9568.2000.00180.x

Links to Exploration step

ISTEX:0767F6689204C21A242EBC8E6FC5D4CC9D81D477

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Adaptive changes in the nigrostriatal pathway in response to increased 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐induced neurodegeneration in the mouse</title>
<author>
<name sortKey="Bezard, Erwan" sort="Bezard, Erwan" uniqKey="Bezard E" first="Erwan" last="Bezard">Erwan Bezard</name>
<affiliation>
<mods:affiliation>Basal Gang, Laboratoire de Neurophysiologie, CNRS UMR 5543, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jaber, Mohamed" sort="Jaber, Mohamed" uniqKey="Jaber M" first="Mohamed" last="Jaber">Mohamed Jaber</name>
<affiliation>
<mods:affiliation>Laboratoire d'Histologie‐pathologie, CNRS UMR 5541, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gonon, Francois" sort="Gonon, Francois" uniqKey="Gonon F" first="François" last="Gonon">François Gonon</name>
<affiliation>
<mods:affiliation>Laboratoire d'Histologie‐pathologie, CNRS UMR 5541, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boireau, Alain" sort="Boireau, Alain" uniqKey="Boireau A" first="Alain" last="Boireau">Alain Boireau</name>
<affiliation>
<mods:affiliation>CNS Programme, Rhône‐Poulenc Rorer, CRVA, 13 quai Jules Guesde, 94403 Vitry sur Seine Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bloch, Bertrand" sort="Bloch, Bertrand" uniqKey="Bloch B" first="Bertrand" last="Bloch">Bertrand Bloch</name>
<affiliation>
<mods:affiliation>Laboratoire d'Histologie‐pathologie, CNRS UMR 5541, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gross, Christian E" sort="Gross, Christian E" uniqKey="Gross C" first="Christian E." last="Gross">Christian E. Gross</name>
<affiliation>
<mods:affiliation>Basal Gang, Laboratoire de Neurophysiologie, CNRS UMR 5543, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0767F6689204C21A242EBC8E6FC5D4CC9D81D477</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1046/j.1460-9568.2000.00180.x</idno>
<idno type="url">https://api.istex.fr/document/0767F6689204C21A242EBC8E6FC5D4CC9D81D477/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001C86</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001C86</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Adaptive changes in the nigrostriatal pathway in response to increased 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐induced neurodegeneration in the mouse</title>
<author>
<name sortKey="Bezard, Erwan" sort="Bezard, Erwan" uniqKey="Bezard E" first="Erwan" last="Bezard">Erwan Bezard</name>
<affiliation>
<mods:affiliation>Basal Gang, Laboratoire de Neurophysiologie, CNRS UMR 5543, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jaber, Mohamed" sort="Jaber, Mohamed" uniqKey="Jaber M" first="Mohamed" last="Jaber">Mohamed Jaber</name>
<affiliation>
<mods:affiliation>Laboratoire d'Histologie‐pathologie, CNRS UMR 5541, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gonon, Francois" sort="Gonon, Francois" uniqKey="Gonon F" first="François" last="Gonon">François Gonon</name>
<affiliation>
<mods:affiliation>Laboratoire d'Histologie‐pathologie, CNRS UMR 5541, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boireau, Alain" sort="Boireau, Alain" uniqKey="Boireau A" first="Alain" last="Boireau">Alain Boireau</name>
<affiliation>
<mods:affiliation>CNS Programme, Rhône‐Poulenc Rorer, CRVA, 13 quai Jules Guesde, 94403 Vitry sur Seine Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bloch, Bertrand" sort="Bloch, Bertrand" uniqKey="Bloch B" first="Bertrand" last="Bloch">Bertrand Bloch</name>
<affiliation>
<mods:affiliation>Laboratoire d'Histologie‐pathologie, CNRS UMR 5541, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gross, Christian E" sort="Gross, Christian E" uniqKey="Gross C" first="Christian E." last="Gross">Christian E. Gross</name>
<affiliation>
<mods:affiliation>Basal Gang, Laboratoire de Neurophysiologie, CNRS UMR 5543, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">European Journal of Neuroscience</title>
<idno type="ISSN">0953-816X</idno>
<idno type="eISSN">1460-9568</idno>
<imprint>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2000-08">2000-08</date>
<biblScope unit="volume">12</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="2892">2892</biblScope>
<biblScope unit="page" to="2900">2900</biblScope>
</imprint>
<idno type="ISSN">0953-816X</idno>
</series>
<idno type="istex">0767F6689204C21A242EBC8E6FC5D4CC9D81D477</idno>
<idno type="DOI">10.1046/j.1460-9568.2000.00180.x</idno>
<idno type="ArticleID">EJN180</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0953-816X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Parkinson's disease</term>
<term>compensation</term>
<term>cytochrome oxidase</term>
<term>dopamine transporter</term>
<term>immunohistochemistry</term>
<term>tyrosine hydroxylase</term>
<term>voltammetry</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Although several adaptive mechanisms have been identified that mask the existence of Parkinson's disease and delay the onset and aggravation of motor symptoms, the timescale and implications of this compensatory process remain an enigma. In order to examine: (i) the nature of the dopaminergic adaptive mechanisms that come into action; (ii) their sequential activation in relation to the severity of degeneration; and (iii) their efficacy with regard to the maintenance of a normal level of basal ganglia activity, we analysed the brains of mice treated daily with 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP, 4 mg/kg, i.p.) and killed at 5‐day intervals from day 0 (D0) to D20. Our results demonstrate the sequential activation of two compensatory mechanisms: (i) an increase in striatal tyrosine hydroxylase (TH) protein content attested by the persistence of TH immunolabelling up to D15, contrasting with the decrease observed in both the number of nigral TH‐immunoreactive neurons (−70.2%) and striatal dopamine content (−38.4%); (ii) a downregulation of DA uptake in surviving terminals at D20 (73.4% of nigral degeneration). At this point, the failure of adaptive mechanisms to maintain striatal dopaminergic homeostasis is also illustrated by an increase in the cytochrome oxidase activity of substantia nigra pars reticulata, a marker of neuronal function. It has been postulated that an increase in dopamine release per pulse could constitute an adaptive mechanism. The data we present from our MPTP mice model infirm this hypothesis. This study explores the link between the degree of nigral degeneration and the sequential activation of dopaminergic compensatory mechanisms in the nigrostriatal pathway and, in so doing, proposes a rethink of the paradigm applied to these mechanisms.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Erwan Bezard</name>
<affiliations>
<json:string>Basal Gang, Laboratoire de Neurophysiologie, CNRS UMR 5543, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Mohamed Jaber</name>
<affiliations>
<json:string>Laboratoire d'Histologie‐pathologie, CNRS UMR 5541, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>François Gonon</name>
<affiliations>
<json:string>Laboratoire d'Histologie‐pathologie, CNRS UMR 5541, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Alain Boireau</name>
<affiliations>
<json:string>CNS Programme, Rhône‐Poulenc Rorer, CRVA, 13 quai Jules Guesde, 94403 Vitry sur Seine Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Bertrand Bloch</name>
<affiliations>
<json:string>Laboratoire d'Histologie‐pathologie, CNRS UMR 5541, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Christian E. Gross</name>
<affiliations>
<json:string>Basal Gang, Laboratoire de Neurophysiologie, CNRS UMR 5543, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>compensation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>cytochrome oxidase</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>dopamine transporter</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>immunohistochemistry</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Parkinson's disease</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>tyrosine hydroxylase</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>voltammetry</value>
</json:item>
</subject>
<articleId>
<json:string>EJN180</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Although several adaptive mechanisms have been identified that mask the existence of Parkinson's disease and delay the onset and aggravation of motor symptoms, the timescale and implications of this compensatory process remain an enigma. In order to examine: (i) the nature of the dopaminergic adaptive mechanisms that come into action; (ii) their sequential activation in relation to the severity of degeneration; and (iii) their efficacy with regard to the maintenance of a normal level of basal ganglia activity, we analysed the brains of mice treated daily with 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP, 4 mg/kg, i.p.) and killed at 5‐day intervals from day 0 (D0) to D20. Our results demonstrate the sequential activation of two compensatory mechanisms: (i) an increase in striatal tyrosine hydroxylase (TH) protein content attested by the persistence of TH immunolabelling up to D15, contrasting with the decrease observed in both the number of nigral TH‐immunoreactive neurons (−70.2%) and striatal dopamine content (−38.4%); (ii) a downregulation of DA uptake in surviving terminals at D20 (73.4% of nigral degeneration). At this point, the failure of adaptive mechanisms to maintain striatal dopaminergic homeostasis is also illustrated by an increase in the cytochrome oxidase activity of substantia nigra pars reticulata, a marker of neuronal function. It has been postulated that an increase in dopamine release per pulse could constitute an adaptive mechanism. The data we present from our MPTP mice model infirm this hypothesis. This study explores the link between the degree of nigral degeneration and the sequential activation of dopaminergic compensatory mechanisms in the nigrostriatal pathway and, in so doing, proposes a rethink of the paradigm applied to these mechanisms.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>612 x 791 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1804</abstractCharCount>
<pdfWordCount>7689</pdfWordCount>
<pdfCharCount>46539</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>266</abstractWordCount>
</qualityIndicators>
<title>Adaptive changes in the nigrostriatal pathway in response to increased 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐induced neurodegeneration in the mouse</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>M. Abercrombie</name>
</json:item>
</author>
<host>
<volume>94</volume>
<pages>
<last>247</last>
<first>239</first>
</pages>
<author></author>
<title>Anat. Rec.</title>
</host>
<title>Estimation of nuclear population from microtome sections</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.D. Abercrombie</name>
</json:item>
<json:item>
<name>A.E. Bonatz</name>
</json:item>
<json:item>
<name>M.J. Zigmond</name>
</json:item>
</author>
<host>
<volume>525</volume>
<pages>
<last>44</last>
<first>36</first>
</pages>
<author></author>
<title>Brain Res.</title>
</host>
<title>Effects of L‐DOPA on extracellular dopamine in striatum of normal and 6‐hydroxydopamine‐treated rats</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Agid</name>
</json:item>
<json:item>
<name>F. Javoy</name>
</json:item>
<json:item>
<name>J. Glowinski</name>
</json:item>
</author>
<host>
<volume>245</volume>
<pages>
<last>151</last>
<first>150</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Hyperactivity of remaining dopaminergic neurones after partial destruction of the nigro‐striatal dopaminergic system in the rat</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Amalric</name>
</json:item>
<json:item>
<name>H. Moukhles</name>
</json:item>
<json:item>
<name>A. Nieoullon</name>
</json:item>
<json:item>
<name>A. Daszuta</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>980</last>
<first>972</first>
</pages>
<author></author>
<title>Eur. J. Neurosci.</title>
</host>
<title>Complex deficits on reaction time performance following bilateral intrastriatal 6‐OHDA infusion in the rat</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Bernheimer</name>
</json:item>
<json:item>
<name>W. Birkmayer</name>
</json:item>
<json:item>
<name>O. Hornykiewicz</name>
</json:item>
<json:item>
<name>K. Jellinger</name>
</json:item>
<json:item>
<name>F. Seitelberger</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>455</last>
<first>415</first>
</pages>
<author></author>
<title>J. Neurol. Sci.</title>
</host>
<title>Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Betarbet</name>
</json:item>
<json:item>
<name>R. Turner</name>
</json:item>
<json:item>
<name>V. Chocklan</name>
</json:item>
<json:item>
<name>M.R. DeLong</name>
</json:item>
<json:item>
<name>K.A. Allers</name>
</json:item>
<json:item>
<name>J. Walters</name>
</json:item>
<json:item>
<name>A.I. Levey</name>
</json:item>
<json:item>
<name>J.T. Greenamyre</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<last>6788</last>
<first>6761</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Dopaminergic neurons intrinsic to the primate striatum</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Bezard</name>
</json:item>
<json:item>
<name>T. Boraud</name>
</json:item>
<json:item>
<name>B. Bioulac</name>
</json:item>
<json:item>
<name>C. Gross</name>
</json:item>
</author>
<host>
<volume>11</volume>
<pages>
<last>2170</last>
<first>2167</first>
</pages>
<author></author>
<title>Eur. J. Neurosci.</title>
</host>
<title>Involvement of the subthalamic nucleus in glutamatergic compensatory mechanisms</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Bezard</name>
</json:item>
<json:item>
<name>S. Dovero</name>
</json:item>
<json:item>
<name>B. Bioulac</name>
</json:item>
<json:item>
<name>C. Gross</name>
</json:item>
</author>
<host>
<volume>234</volume>
<pages>
<last>46</last>
<first>43</first>
</pages>
<author></author>
<title>Neurosci. Lett.</title>
</host>
<title>Kinetics of nigral degeneration in a chronic model of MPTP‐treated mice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Bezard</name>
</json:item>
<json:item>
<name>C.E. Gross</name>
</json:item>
</author>
<host>
<volume>55</volume>
<pages>
<last>116</last>
<first>93</first>
</pages>
<author></author>
<title>Prog. Neurobiol.</title>
</host>
<title>Compensatory mechanisms in experimental and human parkinsonism: towards a dynamic approach</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Bezard</name>
</json:item>
<json:item>
<name>C. Imbert</name>
</json:item>
<json:item>
<name>C.E. Gross</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>90</last>
<first>71</first>
</pages>
<author></author>
<title>Rev. Neurosci.</title>
</host>
<title>Experimental models of Parkinson's disease: from the static to the dynamic</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V. Blanchard</name>
</json:item>
<json:item>
<name>M. Christin</name>
</json:item>
<json:item>
<name>S. Vyas</name>
</json:item>
<json:item>
<name>M. Savasta</name>
</json:item>
<json:item>
<name>F. Javoy‐Agid</name>
</json:item>
<json:item>
<name>C. Feuerstein</name>
</json:item>
<json:item>
<name>Y. Agid</name>
</json:item>
<json:item>
<name>R. Raisman‐Vozari</name>
</json:item>
</author>
<host>
<volume>64</volume>
<pages>
<last>1679</last>
<first>1669</first>
</pages>
<author></author>
<title>J. Neurochem.</title>
</host>
<title>Long‐term induction of tyrosine hydroxylase: compensatory response to partial degeneration of the dopaminergic nigrostriatal system in the rat brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Dubach</name>
</json:item>
<json:item>
<name>R. Schmidt</name>
</json:item>
<json:item>
<name>D. Kunkel</name>
</json:item>
<json:item>
<name>D.M. Bowden</name>
</json:item>
<json:item>
<name>R. Martin</name>
</json:item>
<json:item>
<name>D.C. German</name>
</json:item>
</author>
<host>
<volume>75</volume>
<pages>
<last>210</last>
<first>205</first>
</pages>
<author></author>
<title>Neurosci. Lett.</title>
</host>
<title>Primate neostriatal neurons containing tyrosine hydroxylase: immunohistochemical evidence</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Dugast</name>
</json:item>
<json:item>
<name>M.F. Suaud‐Chagny</name>
</json:item>
<json:item>
<name>F. Gonon</name>
</json:item>
</author>
<host>
<volume>62</volume>
<pages>
<last>654</last>
<first>647</first>
</pages>
<issue>3</issue>
<author></author>
<title>Neuroscience</title>
</host>
<title>Continuous in vivo monitoring of evoked dopamine release in the rat nucleus accumbens by amperometry</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Ehringer</name>
</json:item>
<json:item>
<name>O. Hornykiewicz</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<last>1239</last>
<first>1236</first>
</pages>
<author></author>
<title>Klin. Wochenschr.</title>
</host>
<title>Verteilung von Noradrenalin 7und Dopamin (3‐Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Franklin, K.B. & Paxinos, G. 1997. The Mouse Brain in Stereotaxic Coordinates. Academic Press. Orlando.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>P.A. Garris</name>
</json:item>
<json:item>
<name>E.L. Ciolkowski</name>
</json:item>
<json:item>
<name>P. Pastore</name>
</json:item>
<json:item>
<name>R.M. Wightman</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>6093</last>
<first>6084</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.A. Garris</name>
</json:item>
<json:item>
<name>Q.D. Walker</name>
</json:item>
<json:item>
<name>R.M. Wightman</name>
</json:item>
</author>
<host>
<volume>753</volume>
<pages>
<last>234</last>
<first>225</first>
</pages>
<author></author>
<title>Brain Res.</title>
</host>
<title>Dopamine release and uptake rates both decrease in the partially denervated striatum in proportion to the loss of dopamine terminals</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F. Gonon</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<last>5978</last>
<first>5972</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F. Gonzalez‐Lima</name>
</json:item>
<json:item>
<name>M. Garrosa</name>
</json:item>
</author>
<host>
<volume>123</volume>
<pages>
<last>253</last>
<first>251</first>
</pages>
<author></author>
<title>Neurosci. Lett.</title>
</host>
<title>Quantitative histochemistry of cytochrome oxidase in rat brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F. Hefti</name>
</json:item>
<json:item>
<name>E. Melamed</name>
</json:item>
<json:item>
<name>R.J. Wurtman</name>
</json:item>
</author>
<host>
<volume>195</volume>
<pages>
<last>137</last>
<first>123</first>
</pages>
<author></author>
<title>Brain Res.</title>
</host>
<title>Partial lesions of the dopaminergic nigrostriatal system in rat brain: biochemical characterization</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R.E. Heikkila</name>
</json:item>
<json:item>
<name>P. Sonsalla</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>303</last>
<first>299</first>
</pages>
<author></author>
<title>Neurochem. Int.</title>
</host>
<title>The MPTP‐treated mouse as a model of parkinsonism: how good is it?</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R.E. Heikkila</name>
</json:item>
<json:item>
<name>B.A. Steber</name>
</json:item>
<json:item>
<name>L. Manzino</name>
</json:item>
<json:item>
<name>P.K. Sonsalla</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>183</last>
<first>171</first>
</pages>
<author></author>
<title>Mol. Chem. Neuropathol.</title>
</host>
<title>Some features of the nigrostriatal neurotoxin MPTP in the mouse</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Hetier</name>
</json:item>
<json:item>
<name>A. Boireau</name>
</json:item>
<json:item>
<name>P. Dubédat</name>
</json:item>
<json:item>
<name>J.C. Blanchard</name>
</json:item>
</author>
<host>
<volume>337</volume>
<pages>
<last>17</last>
<first>13</first>
</pages>
<author></author>
<title>Naunyn-Schmiedeberg's Arch. Pharmacol.</title>
</host>
<title>Neurotensin effects on evoked release of dopamine in slices from striatum, nucleus accumbens and prefrontal cortex in rat</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Ho</name>
</json:item>
<json:item>
<name>M. Blum</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>5629</last>
<first>5614</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Induction of interleukin‐1 associated with compensatory dopaminergic sprouting in the denervated striatum of young mice: model of aging and neurodegenerative disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Imbert</name>
</json:item>
<json:item>
<name>E. Bezard</name>
</json:item>
<json:item>
<name>B. Bioulac</name>
</json:item>
<json:item>
<name>B. Dufy</name>
</json:item>
<json:item>
<name>C.E. Gross</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<first>1654</first>
</pages>
<author></author>
<title>Soc. Neurosci. Abstract.</title>
</host>
<title>A new chronic MPTP model: validation in monkey and mouse</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Jaber</name>
</json:item>
<json:item>
<name>B. Dumartin</name>
</json:item>
<json:item>
<name>C. Sagné</name>
</json:item>
<json:item>
<name>J.W. Haycock</name>
</json:item>
<json:item>
<name>C. Roubert</name>
</json:item>
<json:item>
<name>B. Giros</name>
</json:item>
<json:item>
<name>B. Bloch</name>
</json:item>
<json:item>
<name>M.G. Caron</name>
</json:item>
</author>
<host>
<volume>11</volume>
<pages>
<last>3511</last>
<first>3499</first>
</pages>
<author></author>
<title>Eur. J. Neurosci.</title>
</host>
<title>Differential regulation of tyrosine hydroxylase in the basal ganglia of mice lacking the dopamine transporter</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V. Jackson‐Lewis</name>
</json:item>
<json:item>
<name>M. Jakowec</name>
</json:item>
<json:item>
<name>R.E. Burke</name>
</json:item>
<json:item>
<name>S. Przedborski</name>
</json:item>
</author>
<host>
<volume>4</volume>
<pages>
<last>269</last>
<first>257</first>
</pages>
<author></author>
<title>Neurodegeneration</title>
</host>
<title>Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S.C. Kumer</name>
</json:item>
<json:item>
<name>K.E. Vrana</name>
</json:item>
</author>
<host>
<volume>67</volume>
<pages>
<last>462</last>
<first>443</first>
</pages>
<author></author>
<title>J. Neurochem.</title>
</host>
<title>Intricate regulation of tyrosine hydroxylase activity and gene expression</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. LeMoine</name>
</json:item>
</author>
<host>
<volume>123</volume>
<pages>
<last>156</last>
<first>143</first>
</pages>
<author></author>
<title>Methods in Molecular Biology</title>
</host>
<title>Quantitative in situ hybridization using radioactive probes to study gene expression in heterocellular systems</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L.J. Mavericky</name>
</json:item>
<json:item>
<name>W.G. Kuhr</name>
</json:item>
<json:item>
<name>R.M. Wightman</name>
</json:item>
</author>
<host>
<volume>51</volume>
<pages>
<last>1069</last>
<first>1060</first>
</pages>
<author></author>
<title>J. Neurochem.</title>
</host>
<title>Differentiation of dopamine overflow and uptake processes in the extracellular fluid of the rat caudate nucleus with fast‐scan in vivo voltammetry</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.K. Morrish</name>
</json:item>
<json:item>
<name>G.V. Sawle</name>
</json:item>
<json:item>
<name>D.J. Brooks</name>
</json:item>
</author>
<host>
<volume>119</volume>
<pages>
<last>591</last>
<first>585</first>
</pages>
<author></author>
<title>Brain</title>
</host>
<title>An [18F]dopa‐PET and clinical study of the rate of progression in Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.L. Nelson</name>
</json:item>
<json:item>
<name>C.L. Liang</name>
</json:item>
<json:item>
<name>C.M. Sinton</name>
</json:item>
<json:item>
<name>D.C. German</name>
</json:item>
</author>
<host>
<volume>369</volume>
<pages>
<last>371</last>
<first>361</first>
</pages>
<author></author>
<title>J. Comp. Neurol.</title>
</host>
<title>Midbrain dopaminergic neurons in the mouse: computer‐assisted mapping</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.N. Nobrega</name>
</json:item>
<json:item>
<name>A. Richter</name>
</json:item>
<json:item>
<name>D. Jiwa</name>
</json:item>
<json:item>
<name>R. Raymond</name>
</json:item>
<json:item>
<name>W. Löscher</name>
</json:item>
</author>
<host>
<volume>83</volume>
<pages>
<last>1223</last>
<first>1215</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>Regional alterations in neuronal activity in dystonic hamster brain determined by quantitative cytochrome oxidase histochemistry</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L.H. Parsons</name>
</json:item>
<json:item>
<name>A.D. Smith</name>
</json:item>
<json:item>
<name>J.B. Justice</name>
</json:item>
</author>
<host>
<volume>40</volume>
<pages>
<last>147</last>
<first>139</first>
</pages>
<author></author>
<title>J. Neurosci. Meths</title>
</host>
<title>The in vivo microdialysis recovery of dopamine is altered independently of basal level by 6‐hydroxydopamine lesions to the nucleus accumbens</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.M. Pasinetti</name>
</json:item>
<json:item>
<name>H.H. Osterburg</name>
</json:item>
<json:item>
<name>A.B. Kelly</name>
</json:item>
<json:item>
<name>S. Kohama</name>
</json:item>
<json:item>
<name>D.G. Morgan</name>
</json:item>
<json:item>
<name>J.F. Reinhard</name>
</json:item>
<json:item>
<name>R.H. Stellwagen</name>
</json:item>
<json:item>
<name>C.E. Finch</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>73</last>
<first>63</first>
</pages>
<author></author>
<title>Mol. Brain Res.</title>
</host>
<title>Slow changes of tyrosine hydroxylase gene expression in dopaminergic brain neurons after neurotoxin lesioning: a model for neuron aging</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Pifl</name>
</json:item>
<json:item>
<name>B. Giros</name>
</json:item>
<json:item>
<name>M.G. Caron</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>4253</last>
<first>4246</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Dopamine transporter expression confers cytotoxicity to low doses of the parkinsonism‐inducing neurotoxin 1‐methyl‐4‐phenylpyridinium</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Raisman‐Vozari</name>
</json:item>
<json:item>
<name>E.C. Hirsch</name>
</json:item>
<json:item>
<name>F. Javoy‐Agid</name>
</json:item>
<json:item>
<name>C. Vassort</name>
</json:item>
<json:item>
<name>M. Savasta</name>
</json:item>
<json:item>
<name>C. Feuerstein</name>
</json:item>
<json:item>
<name>J. Thibault</name>
</json:item>
<json:item>
<name>Y. Agid</name>
</json:item>
</author>
<host>
<volume>57</volume>
<pages>
<last>1222</last>
<first>1212</first>
</pages>
<author></author>
<title>J. Neurochem.</title>
</host>
<title>Quantitative autoradiography of tyrosine hydroxylase immunoreactivity in the rat brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Riederer</name>
</json:item>
<json:item>
<name>S. Wuketich</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<last>301</last>
<first>277</first>
</pages>
<author></author>
<title>J. Neural Transm.</title>
</host>
<title>Time course of nigrostriatal degeneration in parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T.E. Robinson</name>
</json:item>
<json:item>
<name>I.Q. Whishaw</name>
</json:item>
</author>
<host>
<volume>450</volume>
<pages>
<last>224</last>
<first>209</first>
</pages>
<author></author>
<title>Brain Res.</title>
</host>
<title>Normalization of extracellular dopamine in striatum following recovery from a partial unilateral 6‐OHDA lesion of the substantia nigra: a microdialysis study in freely moving rats</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Schulzer</name>
</json:item>
<json:item>
<name>C.S. Lee</name>
</json:item>
<json:item>
<name>E.K. Mak</name>
</json:item>
<json:item>
<name>F.J.G. Vingerhoets</name>
</json:item>
<json:item>
<name>D.B. Calne</name>
</json:item>
</author>
<host>
<volume>117</volume>
<pages>
<last>516</last>
<first>509</first>
</pages>
<author></author>
<title>Brain</title>
</host>
<title>A mathematical model of pathogenesis in idiopathic parkinsonism</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.P. Smith</name>
</json:item>
<json:item>
<name>R.C. Young</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>432</last>
<first>427</first>
</pages>
<author></author>
<title>Adv. Neurol.</title>
</host>
<title>A new experimental model of hypokinesia</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.L. Snyder</name>
</json:item>
<json:item>
<name>R.W. Keller</name>
</json:item>
<json:item>
<name>M.J. Zigmond</name>
</json:item>
</author>
<host>
<volume>253</volume>
<pages>
<last>876</last>
<first>867</first>
</pages>
<author></author>
<title>J. Pharmacol. Exp. Ther.</title>
</host>
<title>Dopamine efflux from striatal slices after intracerebral 6‐hydroxydopamine: evidence for compensatory hyperactivity of residual terminals</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.K. Stachowiak</name>
</json:item>
<json:item>
<name>R.W. Keller</name>
</json:item>
<json:item>
<name>E.M. Stricker</name>
</json:item>
<json:item>
<name>M.J. Zigmond</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>1654</last>
<first>1648</first>
</pages>
<author></author>
<title>J. Neurosci.</title>
</host>
<title>Increased dopamine efflux from striatal slices during development and after nigrostriatal bundle damage</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.F. Suaud‐Chagny</name>
</json:item>
<json:item>
<name>M. Buda</name>
</json:item>
<json:item>
<name>F.G. Gonon</name>
</json:item>
</author>
<host>
<volume>164</volume>
<pages>
<last>283</last>
<first>273</first>
</pages>
<author></author>
<title>Eur. J. Pharmacol.</title>
</host>
<title>Pharmacology of evoked dopamine release studied in the olfactory tubercle by in vivo electrochemistry</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.F. Suaud‐Chagny</name>
</json:item>
<json:item>
<name>C. Dugast</name>
</json:item>
<json:item>
<name>K. Chergui</name>
</json:item>
<json:item>
<name>M. Msghina</name>
</json:item>
<json:item>
<name>F. Gonon</name>
</json:item>
</author>
<host>
<volume>65</volume>
<pages>
<last>2611</last>
<first>2603</first>
</pages>
<author></author>
<title>J. Neurochem.</title>
</host>
<title>Uptake of dopamine released by impulse flow in the rat mesolimbic and striatal systems in vivo</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Sundström</name>
</json:item>
<json:item>
<name>E.‐B. Samuelsson</name>
</json:item>
</author>
<host>
<volume>81</volume>
<pages>
<last>231</last>
<first>226</first>
</pages>
<author></author>
<title>Pharmacol. Toxicol.</title>
</host>
<title>Comparison of key steps in 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) neurotoxicity in rodents</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Tashiro</name>
</json:item>
<json:item>
<name>T. Sugimoto</name>
</json:item>
<json:item>
<name>T. Hattori</name>
</json:item>
<json:item>
<name>Y. Uemura</name>
</json:item>
<json:item>
<name>I. Nagatsu</name>
</json:item>
<json:item>
<name>H. Kikuchi</name>
</json:item>
<json:item>
<name>N. Mizuno</name>
</json:item>
</author>
<host>
<volume>97</volume>
<pages>
<last>10</last>
<first>6</first>
</pages>
<author></author>
<title>Neurosci. Lett.</title>
</host>
<title>Tyrosine hydroxylase‐like immunoreactive neurons in the striatum of the rat</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.R. Uhl</name>
</json:item>
<json:item>
<name>D. Walther</name>
</json:item>
<json:item>
<name>D. Mash</name>
</json:item>
<json:item>
<name>B. Faucheux</name>
</json:item>
<json:item>
<name>F. Javoy‐Agid</name>
</json:item>
</author>
<host>
<volume>35</volume>
<pages>
<last>498</last>
<first>494</first>
</pages>
<author></author>
<title>Ann. Neurol.</title>
</host>
<title>Dopamine transporter messenger RNA in Parkinson's disease and control substantia nigra neurons</title>
</json:item>
<json:item>
<author>
<json:item>
<name>U. Ungerstedt</name>
</json:item>
</author>
<host>
<volume>82</volume>
<pages>
<last>122</last>
<first>95</first>
</pages>
<author></author>
<title>Acta Physiol. Scand.</title>
</host>
<title>Adipsia and aphagia after 6‐hydroxydopamine induced degeneration of the nigro‐striatal dopamine system</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Vila</name>
</json:item>
<json:item>
<name>R. Levy</name>
</json:item>
<json:item>
<name>M.‐T. Herrero</name>
</json:item>
<json:item>
<name>B. Faucheux</name>
</json:item>
<json:item>
<name>J.A. Obeso</name>
</json:item>
<json:item>
<name>Y. Agid</name>
</json:item>
<json:item>
<name>E.C. Hirsch</name>
</json:item>
</author>
<host>
<volume>71</volume>
<pages>
<last>912</last>
<first>903</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>Metabolic activity of the basal ganglia in parkinsonian syndromes in human and nonhuman primates: a cytochrome oxidase histochemistry study</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R.M. Wightman</name>
</json:item>
<json:item>
<name>J.B. Zimmerman</name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<last>144</last>
<first>135</first>
</pages>
<author></author>
<title>Brain Res. Rev.</title>
</host>
<title>Control of dopamine extracellular concentration in rat striatum by impulse flow and uptake</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.T.T. Wong‐Riley</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>101</last>
<first>94</first>
</pages>
<author></author>
<title>Trends Neurosci.</title>
</host>
<title>Cytochrome oxidase: an endogenous metabolic marker for neuronal activity</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W.Q. Zhang</name>
</json:item>
<json:item>
<name>H.A. Tilson</name>
</json:item>
<json:item>
<name>K.P. Nanry</name>
</json:item>
<json:item>
<name>P.M. Hudson</name>
</json:item>
<json:item>
<name>J.‐S. Hong</name>
</json:item>
<json:item>
<name>M.K. Stachowiak</name>
</json:item>
</author>
<host>
<volume>461</volume>
<pages>
<last>342</last>
<first>335</first>
</pages>
<author></author>
<title>Brain Res.</title>
</host>
<title>Increased dopamine release from striata of rats after unilateral nigrostriatal bundle damage</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.J. Zigmond</name>
</json:item>
<json:item>
<name>E.D. Abercrombie</name>
</json:item>
<json:item>
<name>T.W. Berger</name>
</json:item>
<json:item>
<name>A.A. Grace</name>
</json:item>
<json:item>
<name>E.M. Stricker</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>296</last>
<first>290</first>
</pages>
<author></author>
<title>Trends Neurosci.</title>
</host>
<title>Compensations after lesions of central dopaminergic neurons: some clinical and basic implications</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.J. Zigmond</name>
</json:item>
<json:item>
<name>E.M. Stricker</name>
</json:item>
</author>
<host>
<volume>31</volume>
<pages>
<last>79</last>
<first>1</first>
</pages>
<author></author>
<title>Int. Rev. Neurobiol.</title>
</host>
<title>Animal models of parkinsonism using selective neurotoxins: clinical and basic implications</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>12</volume>
<publisherId>
<json:string>EJN</json:string>
</publisherId>
<pages>
<total>9</total>
<last>2900</last>
<first>2892</first>
</pages>
<issn>
<json:string>0953-816X</json:string>
</issn>
<issue>8</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1460-9568</json:string>
</eissn>
<title>European Journal of Neuroscience</title>
<doi>
<json:string>10.1111/(ISSN)1460-9568</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>neurosciences</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>neurology & neurosurgery</json:string>
</scienceMetrix>
</categories>
<publicationDate>2000</publicationDate>
<copyrightDate>2000</copyrightDate>
<doi>
<json:string>10.1046/j.1460-9568.2000.00180.x</json:string>
</doi>
<id>0767F6689204C21A242EBC8E6FC5D4CC9D81D477</id>
<score>0.15817074</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/0767F6689204C21A242EBC8E6FC5D4CC9D81D477/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/0767F6689204C21A242EBC8E6FC5D4CC9D81D477/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/0767F6689204C21A242EBC8E6FC5D4CC9D81D477/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Adaptive changes in the nigrostriatal pathway in response to increased 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐induced neurodegeneration in the mouse</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2000</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Adaptive changes in the nigrostriatal pathway in response to increased 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐induced neurodegeneration in the mouse</title>
<author xml:id="author-1">
<persName>
<forename type="first">Erwan</forename>
<surname>Bezard</surname>
</persName>
<affiliation>Basal Gang, Laboratoire de Neurophysiologie, CNRS UMR 5543, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Mohamed</forename>
<surname>Jaber</surname>
</persName>
<note type="biography">Present address: INSERM 259, Université Victor Segalen, Rue Camille Saint‐Saëns, BP, 59, 33076 Bordeaux Cedex, France.</note>
<affiliation>Present address: INSERM 259, Université Victor Segalen, Rue Camille Saint‐Saëns, BP, 59, 33076 Bordeaux Cedex, France.</affiliation>
<affiliation>Laboratoire d'Histologie‐pathologie, CNRS UMR 5541, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">François</forename>
<surname>Gonon</surname>
</persName>
<affiliation>Laboratoire d'Histologie‐pathologie, CNRS UMR 5541, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Alain</forename>
<surname>Boireau</surname>
</persName>
<affiliation>CNS Programme, Rhône‐Poulenc Rorer, CRVA, 13 quai Jules Guesde, 94403 Vitry sur Seine Cedex, France</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Bertrand</forename>
<surname>Bloch</surname>
</persName>
<affiliation>Laboratoire d'Histologie‐pathologie, CNRS UMR 5541, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">Christian E.</forename>
<surname>Gross</surname>
</persName>
<affiliation>Basal Gang, Laboratoire de Neurophysiologie, CNRS UMR 5543, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</affiliation>
</author>
</analytic>
<monogr>
<title level="j">European Journal of Neuroscience</title>
<idno type="pISSN">0953-816X</idno>
<idno type="eISSN">1460-9568</idno>
<idno type="DOI">10.1111/(ISSN)1460-9568</idno>
<imprint>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2000-08"></date>
<biblScope unit="volume">12</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="2892">2892</biblScope>
<biblScope unit="page" to="2900">2900</biblScope>
</imprint>
</monogr>
<idno type="istex">0767F6689204C21A242EBC8E6FC5D4CC9D81D477</idno>
<idno type="DOI">10.1046/j.1460-9568.2000.00180.x</idno>
<idno type="ArticleID">EJN180</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2000</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Although several adaptive mechanisms have been identified that mask the existence of Parkinson's disease and delay the onset and aggravation of motor symptoms, the timescale and implications of this compensatory process remain an enigma. In order to examine: (i) the nature of the dopaminergic adaptive mechanisms that come into action; (ii) their sequential activation in relation to the severity of degeneration; and (iii) their efficacy with regard to the maintenance of a normal level of basal ganglia activity, we analysed the brains of mice treated daily with 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP, 4 mg/kg, i.p.) and killed at 5‐day intervals from day 0 (D0) to D20. Our results demonstrate the sequential activation of two compensatory mechanisms: (i) an increase in striatal tyrosine hydroxylase (TH) protein content attested by the persistence of TH immunolabelling up to D15, contrasting with the decrease observed in both the number of nigral TH‐immunoreactive neurons (−70.2%) and striatal dopamine content (−38.4%); (ii) a downregulation of DA uptake in surviving terminals at D20 (73.4% of nigral degeneration). At this point, the failure of adaptive mechanisms to maintain striatal dopaminergic homeostasis is also illustrated by an increase in the cytochrome oxidase activity of substantia nigra pars reticulata, a marker of neuronal function. It has been postulated that an increase in dopamine release per pulse could constitute an adaptive mechanism. The data we present from our MPTP mice model infirm this hypothesis. This study explores the link between the degree of nigral degeneration and the sequential activation of dopaminergic compensatory mechanisms in the nigrostriatal pathway and, in so doing, proposes a rethink of the paradigm applied to these mechanisms.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>compensation</term>
</item>
<item>
<term>cytochrome oxidase</term>
</item>
<item>
<term>dopamine transporter</term>
</item>
<item>
<term>immunohistochemistry</term>
</item>
<item>
<term>Parkinson's disease</term>
</item>
<item>
<term>tyrosine hydroxylase</term>
</item>
<item>
<term>voltammetry</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2000-08">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/0767F6689204C21A242EBC8E6FC5D4CC9D81D477/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Science Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1460-9568</doi>
<issn type="print">0953-816X</issn>
<issn type="electronic">1460-9568</issn>
<idGroup>
<id type="product" value="EJN"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="EUROPEAN JOURNAL OF NEUROSCIENCE">European Journal of Neuroscience</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="08008">
<doi origin="wiley">10.1111/ejn.2000.12.issue-8</doi>
<numberingGroup>
<numbering type="journalVolume" number="12">12</numbering>
<numbering type="journalIssue" number="8">8</numbering>
</numberingGroup>
<coverDate startDate="2000-08">August 2000</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="0289200" status="forIssue">
<doi origin="wiley">10.1046/j.1460-9568.2000.00180.x</doi>
<idGroup>
<id type="unit" value="EJN180"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="9"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Original Articles</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2001-12-24"></event>
<event type="publishedOnlineFinalForm" date="2001-12-24"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.6 mode:FullText source:Header result:Header" date="2010-04-19"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-12"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-16"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="2892">2892</numbering>
<numbering type="pageLast" number="2900">2900</numbering>
</numberingGroup>
<correspondenceTo> : Dr E. Bezard, as above. 
E‐mail:
<email normalForm="erwan.bezard@umr5543.u-bordeaux2.fr">erwan.bezard@umr5543.u‐bordeaux2.fr</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:EJN.EJN180.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Received 11 November 1999, revised 4 May 2000, accepted 12 May 2000</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="4"></count>
<count type="tableTotal" number="0"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="55"></count>
<count type="wordTotal" number="8001"></count>
<count type="linksPubMed" number="0"></count>
<count type="linksCrossRef" number="0"></count>
</countGroup>
<titleGroup>
<title type="main">Adaptive changes in the nigrostriatal pathway in response to increased 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐induced neurodegeneration in the mouse</title>
<title type="shortAuthors">E. Bezard et al
<i>.</i>
</title>
<title type="short">Adaptive mechanisms and level of nigral degeneration</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>Erwan</givenNames>
<familyName>Bezard</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a2" noteRef="#fn1">
<personName>
<givenNames>Mohamed</givenNames>
<familyName>Jaber</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a2">
<personName>
<givenNames>François</givenNames>
<familyName>Gonon</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a3">
<personName>
<givenNames>Alain</givenNames>
<familyName>Boireau</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a2">
<personName>
<givenNames>Bertrand</givenNames>
<familyName>Bloch</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr6" affiliationRef="#a1">
<personName>
<givenNames>Christian E.</givenNames>
<familyName>Gross</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="FR">
<unparsedAffiliation>Basal Gang, Laboratoire de Neurophysiologie, CNRS UMR 5543, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="FR">
<unparsedAffiliation>Laboratoire d'Histologie‐pathologie, CNRS UMR 5541, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="FR">
<unparsedAffiliation>CNS Programme, Rhône‐Poulenc Rorer, CRVA, 13 quai Jules Guesde, 94403 Vitry sur Seine Cedex, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">compensation</keyword>
<keyword xml:id="k2">cytochrome oxidase</keyword>
<keyword xml:id="k3">dopamine transporter</keyword>
<keyword xml:id="k4">immunohistochemistry</keyword>
<keyword xml:id="k5">Parkinson's disease</keyword>
<keyword xml:id="k6">tyrosine hydroxylase</keyword>
<keyword xml:id="k7">voltammetry</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Although several adaptive mechanisms have been identified that mask the existence of Parkinson's disease and delay the onset and aggravation of motor symptoms, the timescale and implications of this compensatory process remain an enigma. In order to examine: (i) the nature of the dopaminergic adaptive mechanisms that come into action; (ii) their sequential activation in relation to the severity of degeneration; and (iii) their efficacy with regard to the maintenance of a normal level of basal ganglia activity, we analysed the brains of mice treated daily with 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP, 4 mg/kg, i.p.) and killed at 5‐day intervals from day 0 (D0) to D20. Our results demonstrate the sequential activation of two compensatory mechanisms: (i) an increase in striatal tyrosine hydroxylase (TH) protein content attested by the persistence of TH immunolabelling up to D15, contrasting with the decrease observed in both the number of nigral TH‐immunoreactive neurons (−70.2%) and striatal dopamine content (−38.4%); (ii) a downregulation of DA uptake in surviving terminals at D20 (73.4% of nigral degeneration). At this point, the failure of adaptive mechanisms to maintain striatal dopaminergic homeostasis is also illustrated by an increase in the cytochrome oxidase activity of substantia nigra pars reticulata, a marker of neuronal function. It has been postulated that an increase in dopamine release per pulse could constitute an adaptive mechanism. The data we present from our MPTP mice model infirm this hypothesis. This study explores the link between the degree of nigral degeneration and the sequential activation of dopaminergic compensatory mechanisms in the nigrostriatal pathway and, in so doing, proposes a rethink of the paradigm applied to these mechanisms.</p>
</abstract>
</abstractGroup>
</contentMeta>
<noteGroup>
<note xml:id="fn1">
<label>*</label>
<p> Present address: INSERM 259, Université Victor Segalen, Rue Camille Saint‐Saëns, BP, 59, 33076 Bordeaux Cedex, France. </p>
</note>
</noteGroup>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Adaptive changes in the nigrostriatal pathway in response to increased 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐induced neurodegeneration in the mouse</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Adaptive mechanisms and level of nigral degeneration</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Adaptive changes in the nigrostriatal pathway in response to increased 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐induced neurodegeneration in the mouse</title>
</titleInfo>
<name type="personal">
<namePart type="given">Erwan</namePart>
<namePart type="family">Bezard</namePart>
<affiliation>Basal Gang, Laboratoire de Neurophysiologie, CNRS UMR 5543, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohamed</namePart>
<namePart type="family">Jaber</namePart>
<affiliation>Laboratoire d'Histologie‐pathologie, CNRS UMR 5541, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</affiliation>
<description>Present address: INSERM 259, Université Victor Segalen, Rue Camille Saint‐Saëns, BP, 59, 33076 Bordeaux Cedex, France.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">François</namePart>
<namePart type="family">Gonon</namePart>
<affiliation>Laboratoire d'Histologie‐pathologie, CNRS UMR 5541, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alain</namePart>
<namePart type="family">Boireau</namePart>
<affiliation>CNS Programme, Rhône‐Poulenc Rorer, CRVA, 13 quai Jules Guesde, 94403 Vitry sur Seine Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bertrand</namePart>
<namePart type="family">Bloch</namePart>
<affiliation>Laboratoire d'Histologie‐pathologie, CNRS UMR 5541, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian E.</namePart>
<namePart type="family">Gross</namePart>
<affiliation>Basal Gang, Laboratoire de Neurophysiologie, CNRS UMR 5543, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Science Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2000-08</dateIssued>
<edition>Received 11 November 1999, revised 4 May 2000, accepted 12 May 2000</edition>
<copyrightDate encoding="w3cdtf">2000</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">4</extent>
<extent unit="references">55</extent>
<extent unit="words">8001</extent>
</physicalDescription>
<abstract lang="en">Although several adaptive mechanisms have been identified that mask the existence of Parkinson's disease and delay the onset and aggravation of motor symptoms, the timescale and implications of this compensatory process remain an enigma. In order to examine: (i) the nature of the dopaminergic adaptive mechanisms that come into action; (ii) their sequential activation in relation to the severity of degeneration; and (iii) their efficacy with regard to the maintenance of a normal level of basal ganglia activity, we analysed the brains of mice treated daily with 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP, 4 mg/kg, i.p.) and killed at 5‐day intervals from day 0 (D0) to D20. Our results demonstrate the sequential activation of two compensatory mechanisms: (i) an increase in striatal tyrosine hydroxylase (TH) protein content attested by the persistence of TH immunolabelling up to D15, contrasting with the decrease observed in both the number of nigral TH‐immunoreactive neurons (−70.2%) and striatal dopamine content (−38.4%); (ii) a downregulation of DA uptake in surviving terminals at D20 (73.4% of nigral degeneration). At this point, the failure of adaptive mechanisms to maintain striatal dopaminergic homeostasis is also illustrated by an increase in the cytochrome oxidase activity of substantia nigra pars reticulata, a marker of neuronal function. It has been postulated that an increase in dopamine release per pulse could constitute an adaptive mechanism. The data we present from our MPTP mice model infirm this hypothesis. This study explores the link between the degree of nigral degeneration and the sequential activation of dopaminergic compensatory mechanisms in the nigrostriatal pathway and, in so doing, proposes a rethink of the paradigm applied to these mechanisms.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>compensation</topic>
<topic>cytochrome oxidase</topic>
<topic>dopamine transporter</topic>
<topic>immunohistochemistry</topic>
<topic>Parkinson's disease</topic>
<topic>tyrosine hydroxylase</topic>
<topic>voltammetry</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>European Journal of Neuroscience</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0953-816X</identifier>
<identifier type="eISSN">1460-9568</identifier>
<identifier type="DOI">10.1111/(ISSN)1460-9568</identifier>
<identifier type="PublisherID">EJN</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>12</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>2892</start>
<end>2900</end>
<total>9</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">0767F6689204C21A242EBC8E6FC5D4CC9D81D477</identifier>
<identifier type="DOI">10.1046/j.1460-9568.2000.00180.x</identifier>
<identifier type="ArticleID">EJN180</identifier>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Science Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C86 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001C86 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:0767F6689204C21A242EBC8E6FC5D4CC9D81D477
   |texte=   Adaptive changes in the nigrostriatal pathway in response to increased 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐induced neurodegeneration in the mouse
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024