La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stimulation of postsynaptic α1b‐ and α2‐adrenergic receptors amplifies dopamine‐mediated locomotor activity in both rats and mice

Identifieur interne : 001C26 ( Istex/Corpus ); précédent : 001C25; suivant : 001C27

Stimulation of postsynaptic α1b‐ and α2‐adrenergic receptors amplifies dopamine‐mediated locomotor activity in both rats and mice

Auteurs : Anne-Sophie Villégier ; Candice Drouin ; Jean-Charles Bizot ; Marc Marien ; Jacques Glowinski ; Francis Colpaërt ; Jean-Pol Tassin

Source :

RBID : ISTEX:2A2CFDAB5313C531CC3DD9B09F6F10205A1560F6

English descriptors

Abstract

Recent experiments have shown that mice lacking the α1b‐adrenergic receptor (α1b‐AR KO) are less responsive to the locomotor hyperactivity induced by psychostimulants, such as D‐amphetamine or cocaine, than their wild‐type littermates (WT). These findings suggested that psychostimulants induce locomotor hyperactivity not only because they increase dopamine (DA) transmission, but also because they release norepinephrine (NE). To test whether NE release could increase DA‐mediated locomotor hyperactivity, rats were treated with GBR 12783 (10 mg/kg), a specific inhibitor of the DA transporter, and NE release was enhanced with dexefaroxan (0.63–10 mg/kg), a potent and specific antagonist at α2‐adrenergic receptors. Dexefaroxan increased the GBR 12783‐mediated locomotor response by almost 8‐fold. The role of α1b‐ARs in this effect was then verified in α1b‐AR KO mice: whereas dexefaroxan (1 mg/kg) doubled locomotor hyperactivity induced by GBR 12783 (14 mg/kg) in WT mice, it decreased it by 43% in α1b‐AR KO mice. Finally, to test whether this latter inhibition was related to the occupation of α2‐adrenergic autoreceptors or of α2‐ARs not located on noradrenergic neurons, effects of dexefaroxan on locomotor hyperactivity induced by D‐amphetamine (0.75 mg/kg) were monitored in rats depleted in ascending noradrenergic neurons. In these animals dexefaroxan inhibited by 25–70% D‐amphetamine‐induced locomotor hyperactivity. These data indicate not only that the stimulation of α1b‐ARs increases DA‐mediated locomotor response, but also suggest a significant implication of postsynaptic α2‐ARs. Involvement of these adrenergic receptor mechanisms may be exploited in the therapy of Parkinson's disease. Synapse 50:277–284, 2003. © 2003 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/syn.10267

Links to Exploration step

ISTEX:2A2CFDAB5313C531CC3DD9B09F6F10205A1560F6

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stimulation of postsynaptic α1b‐ and α2‐adrenergic receptors amplifies dopamine‐mediated locomotor activity in both rats and mice</title>
<author>
<name sortKey="Villegier, Anne Ophie" sort="Villegier, Anne Ophie" uniqKey="Villegier A" first="Anne-Sophie" last="Villégier">Anne-Sophie Villégier</name>
<affiliation>
<mods:affiliation>Inserm U. 114, Collège de France, 75231 Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Drouin, Candice" sort="Drouin, Candice" uniqKey="Drouin C" first="Candice" last="Drouin">Candice Drouin</name>
<affiliation>
<mods:affiliation>Inserm U. 114, Collège de France, 75231 Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bizot, Jean Harles" sort="Bizot, Jean Harles" uniqKey="Bizot J" first="Jean-Charles" last="Bizot">Jean-Charles Bizot</name>
<affiliation>
<mods:affiliation>Key‐Obs SA, Centre d'innovation, 45074 Orléans, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marien, Marc" sort="Marien, Marc" uniqKey="Marien M" first="Marc" last="Marien">Marc Marien</name>
<affiliation>
<mods:affiliation>Centre de Recherche Pierre Fabre, 81100 Castres, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Glowinski, Jacques" sort="Glowinski, Jacques" uniqKey="Glowinski J" first="Jacques" last="Glowinski">Jacques Glowinski</name>
<affiliation>
<mods:affiliation>Inserm U. 114, Collège de France, 75231 Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Colpaert, Francis" sort="Colpaert, Francis" uniqKey="Colpaert F" first="Francis" last="Colpaërt">Francis Colpaërt</name>
<affiliation>
<mods:affiliation>Centre de Recherche Pierre Fabre, 81100 Castres, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tassin, Jean Ol" sort="Tassin, Jean Ol" uniqKey="Tassin J" first="Jean-Pol" last="Tassin">Jean-Pol Tassin</name>
<affiliation>
<mods:affiliation>Inserm U. 114, Collège de France, 75231 Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Inserm U. 114, Collège de France, 11, Place Marcelin Berthelot, 75231 Paris Cedex 05, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2A2CFDAB5313C531CC3DD9B09F6F10205A1560F6</idno>
<date when="2003" year="2003">2003</date>
<idno type="doi">10.1002/syn.10267</idno>
<idno type="url">https://api.istex.fr/document/2A2CFDAB5313C531CC3DD9B09F6F10205A1560F6/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001C26</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001C26</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Stimulation of postsynaptic α1b‐ and α2‐adrenergic receptors amplifies dopamine‐mediated locomotor activity in both rats and mice</title>
<author>
<name sortKey="Villegier, Anne Ophie" sort="Villegier, Anne Ophie" uniqKey="Villegier A" first="Anne-Sophie" last="Villégier">Anne-Sophie Villégier</name>
<affiliation>
<mods:affiliation>Inserm U. 114, Collège de France, 75231 Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Drouin, Candice" sort="Drouin, Candice" uniqKey="Drouin C" first="Candice" last="Drouin">Candice Drouin</name>
<affiliation>
<mods:affiliation>Inserm U. 114, Collège de France, 75231 Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bizot, Jean Harles" sort="Bizot, Jean Harles" uniqKey="Bizot J" first="Jean-Charles" last="Bizot">Jean-Charles Bizot</name>
<affiliation>
<mods:affiliation>Key‐Obs SA, Centre d'innovation, 45074 Orléans, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marien, Marc" sort="Marien, Marc" uniqKey="Marien M" first="Marc" last="Marien">Marc Marien</name>
<affiliation>
<mods:affiliation>Centre de Recherche Pierre Fabre, 81100 Castres, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Glowinski, Jacques" sort="Glowinski, Jacques" uniqKey="Glowinski J" first="Jacques" last="Glowinski">Jacques Glowinski</name>
<affiliation>
<mods:affiliation>Inserm U. 114, Collège de France, 75231 Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Colpaert, Francis" sort="Colpaert, Francis" uniqKey="Colpaert F" first="Francis" last="Colpaërt">Francis Colpaërt</name>
<affiliation>
<mods:affiliation>Centre de Recherche Pierre Fabre, 81100 Castres, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tassin, Jean Ol" sort="Tassin, Jean Ol" uniqKey="Tassin J" first="Jean-Pol" last="Tassin">Jean-Pol Tassin</name>
<affiliation>
<mods:affiliation>Inserm U. 114, Collège de France, 75231 Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Inserm U. 114, Collège de France, 11, Place Marcelin Berthelot, 75231 Paris Cedex 05, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Synapse</title>
<title level="j" type="abbrev">Synapse</title>
<idno type="ISSN">0887-4476</idno>
<idno type="eISSN">1098-2396</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2003-12-15">2003-12-15</date>
<biblScope unit="volume">50</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="277">277</biblScope>
<biblScope unit="page" to="284">284</biblScope>
</imprint>
<idno type="ISSN">0887-4476</idno>
</series>
<idno type="istex">2A2CFDAB5313C531CC3DD9B09F6F10205A1560F6</idno>
<idno type="DOI">10.1002/syn.10267</idno>
<idno type="ArticleID">SYN10267</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0887-4476</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>6‐OHDA</term>
<term>D‐amphetamine</term>
<term>GBR 12783</term>
<term>NE‐depletion</term>
<term>dexefaroxan</term>
<term>α1b‐adrenergic receptor knockout mice</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recent experiments have shown that mice lacking the α1b‐adrenergic receptor (α1b‐AR KO) are less responsive to the locomotor hyperactivity induced by psychostimulants, such as D‐amphetamine or cocaine, than their wild‐type littermates (WT). These findings suggested that psychostimulants induce locomotor hyperactivity not only because they increase dopamine (DA) transmission, but also because they release norepinephrine (NE). To test whether NE release could increase DA‐mediated locomotor hyperactivity, rats were treated with GBR 12783 (10 mg/kg), a specific inhibitor of the DA transporter, and NE release was enhanced with dexefaroxan (0.63–10 mg/kg), a potent and specific antagonist at α2‐adrenergic receptors. Dexefaroxan increased the GBR 12783‐mediated locomotor response by almost 8‐fold. The role of α1b‐ARs in this effect was then verified in α1b‐AR KO mice: whereas dexefaroxan (1 mg/kg) doubled locomotor hyperactivity induced by GBR 12783 (14 mg/kg) in WT mice, it decreased it by 43% in α1b‐AR KO mice. Finally, to test whether this latter inhibition was related to the occupation of α2‐adrenergic autoreceptors or of α2‐ARs not located on noradrenergic neurons, effects of dexefaroxan on locomotor hyperactivity induced by D‐amphetamine (0.75 mg/kg) were monitored in rats depleted in ascending noradrenergic neurons. In these animals dexefaroxan inhibited by 25–70% D‐amphetamine‐induced locomotor hyperactivity. These data indicate not only that the stimulation of α1b‐ARs increases DA‐mediated locomotor response, but also suggest a significant implication of postsynaptic α2‐ARs. Involvement of these adrenergic receptor mechanisms may be exploited in the therapy of Parkinson's disease. Synapse 50:277–284, 2003. © 2003 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Anne‐Sophie Villégier</name>
<affiliations>
<json:string>Inserm U. 114, Collège de France, 75231 Paris, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Candice Drouin</name>
<affiliations>
<json:string>Inserm U. 114, Collège de France, 75231 Paris, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jean‐Charles Bizot</name>
<affiliations>
<json:string>Key‐Obs SA, Centre d'innovation, 45074 Orléans, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Marc Marien</name>
<affiliations>
<json:string>Centre de Recherche Pierre Fabre, 81100 Castres, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jacques Glowinski</name>
<affiliations>
<json:string>Inserm U. 114, Collège de France, 75231 Paris, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Francis Colpaërt</name>
<affiliations>
<json:string>Centre de Recherche Pierre Fabre, 81100 Castres, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jean‐Pol Tassin</name>
<affiliations>
<json:string>Inserm U. 114, Collège de France, 75231 Paris, France</json:string>
<json:string>Inserm U. 114, Collège de France, 11, Place Marcelin Berthelot, 75231 Paris Cedex 05, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>GBR 12783</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>dexefaroxan</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>α1b‐adrenergic receptor knockout mice</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>6‐OHDA</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>NE‐depletion</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>D‐amphetamine</value>
</json:item>
</subject>
<articleId>
<json:string>SYN10267</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Recent experiments have shown that mice lacking the α1b‐adrenergic receptor (α1b‐AR KO) are less responsive to the locomotor hyperactivity induced by psychostimulants, such as D‐amphetamine or cocaine, than their wild‐type littermates (WT). These findings suggested that psychostimulants induce locomotor hyperactivity not only because they increase dopamine (DA) transmission, but also because they release norepinephrine (NE). To test whether NE release could increase DA‐mediated locomotor hyperactivity, rats were treated with GBR 12783 (10 mg/kg), a specific inhibitor of the DA transporter, and NE release was enhanced with dexefaroxan (0.63–10 mg/kg), a potent and specific antagonist at α2‐adrenergic receptors. Dexefaroxan increased the GBR 12783‐mediated locomotor response by almost 8‐fold. The role of α1b‐ARs in this effect was then verified in α1b‐AR KO mice: whereas dexefaroxan (1 mg/kg) doubled locomotor hyperactivity induced by GBR 12783 (14 mg/kg) in WT mice, it decreased it by 43% in α1b‐AR KO mice. Finally, to test whether this latter inhibition was related to the occupation of α2‐adrenergic autoreceptors or of α2‐ARs not located on noradrenergic neurons, effects of dexefaroxan on locomotor hyperactivity induced by D‐amphetamine (0.75 mg/kg) were monitored in rats depleted in ascending noradrenergic neurons. In these animals dexefaroxan inhibited by 25–70% D‐amphetamine‐induced locomotor hyperactivity. These data indicate not only that the stimulation of α1b‐ARs increases DA‐mediated locomotor response, but also suggest a significant implication of postsynaptic α2‐ARs. Involvement of these adrenergic receptor mechanisms may be exploited in the therapy of Parkinson's disease. Synapse 50:277–284, 2003. © 2003 Wiley‐Liss, Inc.</abstract>
<qualityIndicators>
<score>7.928</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>612 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1761</abstractCharCount>
<pdfWordCount>5071</pdfWordCount>
<pdfCharCount>33238</pdfCharCount>
<pdfPageCount>8</pdfPageCount>
<abstractWordCount>244</abstractWordCount>
</qualityIndicators>
<title>Stimulation of postsynaptic α1b‐ and α2‐adrenergic receptors amplifies dopamine‐mediated locomotor activity in both rats and mice</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>PH Andersen</name>
</json:item>
</author>
<host>
<volume>166</volume>
<pages>
<last>504</last>
<first>493</first>
</pages>
<author></author>
<title>Eur J Pharmacol</title>
</host>
<title>The dopamine inhibitor GBR 12909: selectivity and molecular mechanism of action</title>
</json:item>
<json:item>
<author>
<json:item>
<name>SM Antelman</name>
</json:item>
<json:item>
<name>AR Caggiula</name>
</json:item>
</author>
<host>
<volume>195</volume>
<pages>
<last>653</last>
<first>646</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Norepinephrine‐dopamine interactions and behavior</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A Auclair</name>
</json:item>
<json:item>
<name>S Cotecchia</name>
</json:item>
<json:item>
<name>J Glowinski</name>
</json:item>
<json:item>
<name>JP Tassin</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>9154</last>
<first>9150</first>
</pages>
<author></author>
<title>J Neurosci</title>
</host>
<title>D‐amphetamine fails to increase extracellular dopamine levels in mice lacking alpha1b‐adrenergic receptors: relationship between functional and nonfunctional dopamine release</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G Blanc</name>
</json:item>
<json:item>
<name>F Trovero</name>
</json:item>
<json:item>
<name>P Vezina</name>
</json:item>
<json:item>
<name>D Herve</name>
</json:item>
<json:item>
<name>AM Godeheu</name>
</json:item>
<json:item>
<name>J Glowinski</name>
</json:item>
<json:item>
<name>JP Tassin</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>298</last>
<first>293</first>
</pages>
<author></author>
<title>Eur J Neurosci</title>
</host>
<title>Blockade of prefronto‐cortical alpha 1‐adrenergic receptors prevents locomotor hyperactivity induced by subcortical D‐amphetamine injection</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JJ Bonnet</name>
</json:item>
<json:item>
<name>J Costentin</name>
</json:item>
</author>
<host>
<volume>121</volume>
<pages>
<last>209</last>
<first>199</first>
</pages>
<author></author>
<title>Eur J Pharmacol</title>
</host>
<title>GBR 12783, a potent and selective inhibitor of dopamine uptake: biochemical studies in vivo and ex vivo</title>
</json:item>
<json:item>
<author>
<json:item>
<name>MM Bucheler</name>
</json:item>
<json:item>
<name>K Hadamek</name>
</json:item>
<json:item>
<name>L Hein</name>
</json:item>
</author>
<host>
<volume>109</volume>
<pages>
<last>826</last>
<first>819</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>Two alpha(2)‐adrenergic receptor subtypes, alpha(2A) and alpha(2C), inhibit transmitter release in the brain of gene‐targeted mice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>DB Carr</name>
</json:item>
<json:item>
<name>SR Sesack</name>
</json:item>
</author>
<host>
<volume>425</volume>
<pages>
<last>283</last>
<first>275</first>
</pages>
<author></author>
<title>J Comp Neurol</title>
</host>
<title>Dopamine terminals synapse on callosal projection neurons in the rat prefrontal cortex</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A Cavalli</name>
</json:item>
<json:item>
<name>AL Lattion</name>
</json:item>
<json:item>
<name>E Hummler</name>
</json:item>
<json:item>
<name>M Nenniger</name>
</json:item>
<json:item>
<name>T Pedrazzini</name>
</json:item>
<json:item>
<name>JF Aubert</name>
</json:item>
<json:item>
<name>MC Michel</name>
</json:item>
<json:item>
<name>M Yang</name>
</json:item>
<json:item>
<name>G Lembo</name>
</json:item>
<json:item>
<name>C Vecchione</name>
</json:item>
<json:item>
<name>M Mostardini</name>
</json:item>
<json:item>
<name>A Schmidt</name>
</json:item>
<json:item>
<name>F Beermann</name>
</json:item>
<json:item>
<name>S Cotecchia</name>
</json:item>
</author>
<host>
<volume>94</volume>
<pages>
<last>11594</last>
<first>11589</first>
</pages>
<author></author>
<title>Proc Natl Acad Sci USA</title>
</host>
<title>Decreased blood pressure response in mice deficient of the alpha1b‐adrenergic receptor</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K Chergui</name>
</json:item>
<json:item>
<name>P Charléty</name>
</json:item>
<json:item>
<name>H Akaoka</name>
</json:item>
<json:item>
<name>CF Saunier</name>
</json:item>
<json:item>
<name>JL Brunet</name>
</json:item>
<json:item>
<name>M Buda</name>
</json:item>
<json:item>
<name>TH Svensson</name>
</json:item>
<json:item>
<name>G Chouvet</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>144</last>
<first>137</first>
</pages>
<author></author>
<title>Eur J Neurosci</title>
</host>
<title>Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain dopamine neurons in vivo</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P Chopin</name>
</json:item>
<json:item>
<name>FC Colpaert</name>
</json:item>
<json:item>
<name>M Marien</name>
</json:item>
</author>
<host>
<volume>288</volume>
<pages>
<last>804</last>
<first>798</first>
</pages>
<author></author>
<title>J Pharmacol Exp Ther</title>
</host>
<title>Effects of alpha‐2 adrenoceptor agonists and antagonists on circling behavior in rats with unilateral 6‐hydroxydopamine lesions of the nigrostriatal pathway</title>
</json:item>
<json:item>
<author>
<json:item>
<name>FC Colpaërt</name>
</json:item>
</author>
<host>
<pages>
<last>254</last>
<first>225</first>
</pages>
<author></author>
<title>Noradrenergic mechanisms in Parkinson's disease</title>
</host>
<title>Noradrenergic Mechanisms in Parkinson's disease: a theory</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B Costall</name>
</json:item>
<json:item>
<name>RJ Naylor</name>
</json:item>
</author>
<host>
<volume>35</volume>
<pages>
<last>168</last>
<first>161</first>
</pages>
<author></author>
<title>Eur J Pharmacol</title>
</host>
<title>Antagonism of the hyperactivity induced by dopamine applied intracerebrally to the nucleus accumbens septi by typical neuroleptics and by clozapine, sulpiride and thioridazine</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L Darracq</name>
</json:item>
<json:item>
<name>G Blanc</name>
</json:item>
<json:item>
<name>J Glowinski</name>
</json:item>
<json:item>
<name>JP Tassin</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>2739</last>
<first>2729</first>
</pages>
<author></author>
<title>J Neurosci</title>
</host>
<title>Importance of the noradrenaline‐dopamine coupling in the locomotor activating effects of D‐amphetamine</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L Darracq</name>
</json:item>
<json:item>
<name>C Drouin</name>
</json:item>
<json:item>
<name>G Blanc</name>
</json:item>
<json:item>
<name>J Glowinski</name>
</json:item>
<json:item>
<name>JP Tassin</name>
</json:item>
</author>
<host>
<volume>103</volume>
<pages>
<last>403</last>
<first>395</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>Stimulation of metabotropic but not ionotropic glutamatergic receptors in the nucleus accumbens is required for the D‐amphetamine‐induced release of functional dopamine</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M Davis</name>
</json:item>
<json:item>
<name>JH Kehne</name>
</json:item>
<json:item>
<name>RL Commissaris</name>
</json:item>
</author>
<host>
<volume>108</volume>
<pages>
<last>241</last>
<first>233</first>
</pages>
<author></author>
<title>Eur J Pharmacol</title>
</host>
<title>Antagonism of apomorphine‐enhanced startle by alpha1‐adrenergic antagonists</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T Dennis</name>
</json:item>
<json:item>
<name>R L'Heureux</name>
</json:item>
<json:item>
<name>C Carter</name>
</json:item>
<json:item>
<name>B Scatton</name>
</json:item>
</author>
<host>
<volume>241</volume>
<pages>
<last>649</last>
<first>642</first>
</pages>
<author></author>
<title>J Pharmacol Exp Ther</title>
</host>
<title>Presynaptic alpha‐2 adrenoceptors play a major role in the effects of idazoxan on cortical noradrenaline release (as measured by in vivo dialysis) in the rat</title>
</json:item>
<json:item>
<author>
<json:item>
<name>SL Dickinson</name>
</json:item>
<json:item>
<name>B Gadie</name>
</json:item>
<json:item>
<name>IF Tulloch</name>
</json:item>
</author>
<host>
<volume>96</volume>
<pages>
<last>527</last>
<first>521</first>
</pages>
<author></author>
<title>Psychopharmacology (Berl)</title>
</host>
<title>Alpha 1‐ and alpha 2‐adrenoreceptor antagonists differentially influence locomotor and stereotyped behaviour induced by d‐amphetamine and apomorphine in the rat</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C Drouin</name>
</json:item>
<json:item>
<name>G Blanc</name>
</json:item>
<json:item>
<name>AS Villegier</name>
</json:item>
<json:item>
<name>J Glowinski</name>
</json:item>
<json:item>
<name>JP Tassin</name>
</json:item>
</author>
<host>
<volume>43</volume>
<pages>
<last>61</last>
<first>51</first>
</pages>
<author></author>
<title>Synapse</title>
</host>
<title>Critical role of alpha1‐adrenergic receptors in acute and sensitized locomotor effects of D‐amphetamine, cocaine, and GBR12783: influence of preexposure conditions and pharmacological characteristics</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C Drouin</name>
</json:item>
<json:item>
<name>L Darracq</name>
</json:item>
<json:item>
<name>F Trovero</name>
</json:item>
<json:item>
<name>G Blanc</name>
</json:item>
<json:item>
<name>J Glowinski</name>
</json:item>
<json:item>
<name>S Cotecchia</name>
</json:item>
<json:item>
<name>JP Tassin</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>2884</last>
<first>2873</first>
</pages>
<author></author>
<title>J Neurosci</title>
</host>
<title>Alpha1b‐adrenergic receptors control locomotor and rewarding effects of psychostimulants and opiates</title>
</json:item>
<json:item>
<author>
<json:item>
<name>AO Elkhawad</name>
</json:item>
<json:item>
<name>GN Woodruff</name>
</json:item>
</author>
<host>
<volume>54</volume>
<pages>
<last>114</last>
<first>107</first>
</pages>
<author></author>
<title>Br J Pharmacol</title>
</host>
<title>Studies on the behavioural pharmacology of a cyclic analogue of dopamine following its injection into the brains of conscious rats</title>
</json:item>
<json:item>
<author>
<json:item>
<name>SM Florin</name>
</json:item>
<json:item>
<name>R Kuczenski</name>
</json:item>
<json:item>
<name>DS Segal</name>
</json:item>
</author>
<host>
<volume>654</volume>
<pages>
<last>62</last>
<first>53</first>
</pages>
<author></author>
<title>Brain Res</title>
</host>
<title>Regional extracellular norepinephrine responses to amphetamine and cocaine and effects of clonidine pretreatment</title>
</json:item>
<json:item>
<author>
<json:item>
<name>RF Gariano</name>
</json:item>
<json:item>
<name>PM Groves</name>
</json:item>
</author>
<host>
<volume>462</volume>
<pages>
<last>198</last>
<first>194</first>
</pages>
<author></author>
<title>Brain Res</title>
</host>
<title>Burst firing induced in midbrain dopamine neurons by stimulation of the medial prefrontal and anterior cingulate cortices</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J Grenhoff</name>
</json:item>
<json:item>
<name>TH Svensson</name>
</json:item>
</author>
<host>
<volume>233</volume>
<pages>
<last>84</last>
<first>79</first>
</pages>
<author></author>
<title>Eur J Pharmacol</title>
</host>
<title>Prazosin modulates the firing pattern of dopamine neurons in rat ventral tegmental area</title>
</json:item>
<json:item>
<author>
<json:item>
<name>PG Guyenet</name>
</json:item>
<json:item>
<name>JB Cabot</name>
</json:item>
</author>
<host>
<volume>1</volume>
<pages>
<last>917</last>
<first>908</first>
</pages>
<author></author>
<title>J Neurosci</title>
</host>
<title>Inhibition of sympathetic preganglionic neurons by catecholamines and clonidine: mediation by an alpha‐adrenergic receptor</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S Izenwasser</name>
</json:item>
<json:item>
<name>P Terry</name>
</json:item>
<json:item>
<name>B Heller</name>
</json:item>
<json:item>
<name>JM Witkin</name>
</json:item>
<json:item>
<name>JL Katz</name>
</json:item>
</author>
<host>
<volume>263</volume>
<pages>
<last>283</last>
<first>277</first>
</pages>
<author></author>
<title>Eur J Pharmacol</title>
</host>
<title>Differential relationships among dopamine transporter affinities and stimulant potencies of various uptake inhibitors</title>
</json:item>
<json:item>
<author>
<json:item>
<name>DM Jackson</name>
</json:item>
<json:item>
<name>NE Anden</name>
</json:item>
<json:item>
<name>A Dahlstrom</name>
</json:item>
</author>
<host>
<volume>45</volume>
<pages>
<last>149</last>
<first>139</first>
</pages>
<author></author>
<title>Psychopharmacologia</title>
</host>
<title>A functional effect of dopamine in the nucleus accumbens and in some other dopamine‐rich parts of the rat brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P Kelly</name>
</json:item>
<json:item>
<name>P Seviour</name>
</json:item>
<json:item>
<name>S Iversen</name>
</json:item>
</author>
<host>
<volume>94</volume>
<pages>
<last>522</last>
<first>507</first>
</pages>
<author></author>
<title>Brain Res</title>
</host>
<title>Amphetamine and apomorphine responses in the rat following 6‐OHDA lesions of the nucleus accumbens septi and corpus striatum</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L Kokkinidis</name>
</json:item>
<json:item>
<name>H Anisman</name>
</json:item>
</author>
<host>
<volume>59</volume>
<pages>
<last>292</last>
<first>285</first>
</pages>
<author></author>
<title>Psychopharmacology</title>
</host>
<title>Involvement of norepinephrine in startle arousal after acute and chronic D‐amphetamine administration</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L Kokkinidis</name>
</json:item>
<json:item>
<name>H Anisman</name>
</json:item>
</author>
<host>
<volume>64</volume>
<pages>
<last>54</last>
<first>45</first>
</pages>
<author></author>
<title>Psychopharmacology</title>
</host>
<title>Circling behavior following systemic D‐amphetamine administration: potential noradrenergic and dopaminergic involvement</title>
</json:item>
<json:item>
<author>
<json:item>
<name>AJ Lategan</name>
</json:item>
<json:item>
<name>MR Marien</name>
</json:item>
<json:item>
<name>FC Colpaert</name>
</json:item>
</author>
<host>
<volume>523</volume>
<pages>
<last>138</last>
<first>134</first>
</pages>
<author></author>
<title>Brain Res</title>
</host>
<title>Effects of locus coeruleus lesions on the release of endogenous dopamine in the rat nucleus accumbens and caudate nucleus as determined by intracerebral microdialysis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M Le Moal</name>
</json:item>
<json:item>
<name>L Stinus</name>
</json:item>
<json:item>
<name>D Galey</name>
</json:item>
</author>
<host>
<volume>50</volume>
<pages>
<last>535</last>
<first>521</first>
</pages>
<author></author>
<title>Exp Neurol</title>
</host>
<title>Radiofrequency lesion of the ventral mesencephalic tegmentum: neurological and behavioral considerations</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G Le Pen</name>
</json:item>
<json:item>
<name>D Duterte‐Boucher</name>
</json:item>
<json:item>
<name>J Costentin</name>
</json:item>
</author>
<host>
<volume>286</volume>
<pages>
<last>696</last>
<first>688</first>
</pages>
<author></author>
<title>J Pharmacol Exp Ther</title>
</host>
<title>Sensitization to the rewarding effects of the specific dopamine uptake inhibitor GBR12783</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A Lee</name>
</json:item>
<json:item>
<name>AE Wissekerke</name>
</json:item>
<json:item>
<name>DL Rosin</name>
</json:item>
<json:item>
<name>KR Lynch</name>
</json:item>
</author>
<host>
<volume>84</volume>
<pages>
<last>1096</last>
<first>1085</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>Localization of alpha2C‐adrenergic receptor immunoreactivity in catecholaminergic neurons in the rat central nervous system</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L Linner</name>
</json:item>
<json:item>
<name>H Endersz</name>
</json:item>
<json:item>
<name>D Ohman</name>
</json:item>
<json:item>
<name>F Bengtsson</name>
</json:item>
<json:item>
<name>M Schalling</name>
</json:item>
<json:item>
<name>TH Svensson</name>
</json:item>
</author>
<host>
<volume>297</volume>
<pages>
<last>546</last>
<first>540</first>
</pages>
<author></author>
<title>J Pharmacol Exp Ther</title>
</host>
<title>Reboxetine modulates the firing pattern of dopamine cells in the ventral tegmental area and selectively increases dopamine availability in the prefrontal cortex</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M Mavridis</name>
</json:item>
<json:item>
<name>AD Degryse</name>
</json:item>
<json:item>
<name>AJ Lategan</name>
</json:item>
<json:item>
<name>MR Marien</name>
</json:item>
<json:item>
<name>FC Colpaert</name>
</json:item>
</author>
<host>
<volume>41</volume>
<pages>
<last>523</last>
<first>507</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>Effect of locus coeruleus lesions on parkinsonian signs, striatal dopamine and substantia nigra cell loss after 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine in monkeys: a possible role for the locus coeruleus in the progression of Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>AK Mohammed</name>
</json:item>
<json:item>
<name>W Danysz</name>
</json:item>
<json:item>
<name>SO Ogren</name>
</json:item>
<json:item>
<name>T Archer</name>
</json:item>
</author>
<host>
<volume>64</volume>
<pages>
<last>144</last>
<first>139</first>
</pages>
<author></author>
<title>Neurosci Lett</title>
</host>
<title>Central noradrenaline depletion attenuates amphetamine‐induced locomotor behavior</title>
</json:item>
<json:item>
<author>
<json:item>
<name>SO Ogren</name>
</json:item>
<json:item>
<name>T Archer</name>
</json:item>
<json:item>
<name>C Johanson</name>
</json:item>
</author>
<host>
<volume>43</volume>
<pages>
<last>331</last>
<first>327</first>
</pages>
<author></author>
<title>Neurosci Lett</title>
</host>
<title>Evidence for a selective brain noradrenergic involvement in the locomotor stimulant effects of amphetamine in the rat</title>
</json:item>
<json:item>
<author>
<json:item>
<name>PJ Pauwels</name>
</json:item>
<json:item>
<name>S Tardif</name>
</json:item>
<json:item>
<name>T Wurch</name>
</json:item>
<json:item>
<name>FC Colpaërt</name>
</json:item>
</author>
<host>
<volume>292</volume>
<pages>
<last>663</last>
<first>654</first>
</pages>
<author></author>
<title>J Pharmacol Exp Ther</title>
</host>
<title>Facilitation of constitutive alpha(2A)‐adrenoceptor activity by both single amino acid mutation (Thr(373)Lys) and g(alphao) protein coexpression: evidence for inverse agonism</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Paxinos G,Watson C.1982.Stereotaxic atlas of the rat brain.New York:Academic Press.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>AJ Pijnenburg</name>
</json:item>
<json:item>
<name>WM Honig</name>
</json:item>
<json:item>
<name>JA Van der Heyden</name>
</json:item>
<json:item>
<name>JM Van Rossum</name>
</json:item>
</author>
<host>
<volume>35</volume>
<pages>
<last>58</last>
<first>45</first>
</pages>
<author></author>
<title>Eur J Pharmacol</title>
</host>
<title>Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity</title>
</json:item>
<json:item>
<author>
<json:item>
<name>DL Rosin</name>
</json:item>
<json:item>
<name>EM Talley</name>
</json:item>
<json:item>
<name>A Lee</name>
</json:item>
<json:item>
<name>RL Stornetta</name>
</json:item>
<json:item>
<name>BD Gaylinn</name>
</json:item>
<json:item>
<name>PG Guyenet</name>
</json:item>
<json:item>
<name>KR Lynch</name>
</json:item>
</author>
<host>
<volume>372</volume>
<pages>
<last>165</last>
<first>135</first>
</pages>
<author></author>
<title>J Comp Neurol</title>
</host>
<title>Distribution of alpha 2C‐adrenergic receptor‐like immunoreactivity in the rat central nervous system</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J Sallinen</name>
</json:item>
<json:item>
<name>RE Link</name>
</json:item>
<json:item>
<name>A Haapalinna</name>
</json:item>
<json:item>
<name>T Viitamaa</name>
</json:item>
<json:item>
<name>M Kulatunga</name>
</json:item>
<json:item>
<name>B Sjoholm</name>
</json:item>
<json:item>
<name>E Macdonald</name>
</json:item>
<json:item>
<name>M Pelto‐Huikko</name>
</json:item>
<json:item>
<name>T Leino</name>
</json:item>
<json:item>
<name>GS Barsh</name>
</json:item>
<json:item>
<name>BK Kobilka</name>
</json:item>
<json:item>
<name>M Scheinin</name>
</json:item>
</author>
<host>
<volume>51</volume>
<pages>
<last>46</last>
<first>36</first>
</pages>
<author></author>
<title>Mol Pharmacol</title>
</host>
<title>Genetic alteration of alpha2C‐adrenoceptor expression in mice: influence on locomotor, hypothermic, and neurochemical effects of dexmedetomidine, a subtype‐nonselective alpha 2‐adrenoceptor agonist</title>
</json:item>
<json:item>
<author>
<json:item>
<name>SR Sesack</name>
</json:item>
<json:item>
<name>VM Pickel</name>
</json:item>
</author>
<host>
<volume>320</volume>
<pages>
<last>160</last>
<first>145</first>
</pages>
<author></author>
<title>J Comp Neurol</title>
</host>
<title>Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area</title>
</json:item>
<json:item>
<author>
<json:item>
<name>WX Shi</name>
</json:item>
<json:item>
<name>CL Pun</name>
</json:item>
<json:item>
<name>XX Zhang</name>
</json:item>
<json:item>
<name>MD Jones</name>
</json:item>
<json:item>
<name>BS Bunney</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>3511</last>
<first>3504</first>
</pages>
<author></author>
<title>J Neurosci</title>
</host>
<title>Dual effects of D‐amphetamine on dopamine neurons mediated by dopamine and nondopamine receptors</title>
</json:item>
<json:item>
<author>
<json:item>
<name>AM Snoddy</name>
</json:item>
<json:item>
<name>RE Tessel</name>
</json:item>
</author>
<host>
<volume>116</volume>
<pages>
<last>228</last>
<first>221</first>
</pages>
<author></author>
<title>Eur J Pharmacol</title>
</host>
<title>Prazosin: effect on psychomotor stimulant cues and locomotor activity in mice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K Taghzouti</name>
</json:item>
<json:item>
<name>H Simon</name>
</json:item>
<json:item>
<name>D Herve</name>
</json:item>
<json:item>
<name>G Blanc</name>
</json:item>
<json:item>
<name>JM Studler</name>
</json:item>
<json:item>
<name>J Glowinski</name>
</json:item>
<json:item>
<name>M Le Moal</name>
</json:item>
<json:item>
<name>JP Tassin</name>
</json:item>
</author>
<host>
<volume>440</volume>
<pages>
<last>176</last>
<first>172</first>
</pages>
<author></author>
<title>Brain Res</title>
</host>
<title>Behavioural deficits induced by an electrolytic lesion of the rat ventral mesencephalic tegmentum are corrected by a superimposed lesion of the dorsal noradrenergic system</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JP Tassin</name>
</json:item>
<json:item>
<name>L Stinus</name>
</json:item>
<json:item>
<name>H Simon</name>
</json:item>
<json:item>
<name>G Blanc</name>
</json:item>
<json:item>
<name>AM Thierry</name>
</json:item>
<json:item>
<name>M Le Moal</name>
</json:item>
<json:item>
<name>B Cardo</name>
</json:item>
<json:item>
<name>J Glowinski</name>
</json:item>
</author>
<host>
<volume>141</volume>
<pages>
<last>281</last>
<first>267</first>
</pages>
<author></author>
<title>Brain Res</title>
</host>
<title>Relationship between the locomotor hyperactivity induced by A10 lesions and the destruction of the fronto‐cortical dopaminergic innervation in the rat</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JP Tassin</name>
</json:item>
<json:item>
<name>H Simon</name>
</json:item>
<json:item>
<name>D Hervé</name>
</json:item>
<json:item>
<name>G Blanc</name>
</json:item>
<json:item>
<name>M Le Moal</name>
</json:item>
<json:item>
<name>J Glowinski</name>
</json:item>
<json:item>
<name>J Bockaert</name>
</json:item>
</author>
<host>
<volume>295</volume>
<pages>
<last>698</last>
<first>696</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Non‐dopaminergic fibres may regulate dopamine‐sensitive adenylate cyclase in the prefrontal cortex and nucleus accumbens</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JP Tassin</name>
</json:item>
<json:item>
<name>JM Studler</name>
</json:item>
<json:item>
<name>D Herve</name>
</json:item>
<json:item>
<name>G Blanc</name>
</json:item>
<json:item>
<name>J Glowinski</name>
</json:item>
</author>
<host>
<volume>46</volume>
<pages>
<last>248</last>
<first>243</first>
</pages>
<author></author>
<title>J Neurochem</title>
</host>
<title>Contribution of noradrenergic neurons to the regulation of dopaminergic (D1) receptor denervation supersensitivity in rat prefrontal cortex</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S Tellez</name>
</json:item>
<json:item>
<name>FC Colpaert</name>
</json:item>
<json:item>
<name>M Marien</name>
</json:item>
</author>
<host>
<volume>68</volume>
<pages>
<last>785</last>
<first>778</first>
</pages>
<author></author>
<title>J Neurochem</title>
</host>
<title>Acetylcholine release in the rat prefrontal cortex in vivo: modulation by alpha2‐adrenoceptor agonists and antagonists</title>
</json:item>
<json:item>
<author>
<json:item>
<name>RE Tessel</name>
</json:item>
<json:item>
<name>JE Barrett</name>
</json:item>
</author>
<host>
<volume>90</volume>
<pages>
<last>440</last>
<first>436</first>
</pages>
<author></author>
<title>Psychopharmacology</title>
</host>
<title>Antagonism of the behavioral effects of cocaine and D‐amphetamine by prazosin</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P Vezina</name>
</json:item>
<json:item>
<name>G Blanc</name>
</json:item>
<json:item>
<name>J Glowinski</name>
</json:item>
<json:item>
<name>JP Tassin</name>
</json:item>
</author>
<host>
<volume>261</volume>
<pages>
<last>490</last>
<first>484</first>
</pages>
<author></author>
<title>J Pharmacol Exp Ther</title>
</host>
<title>Nicotine and morphine differentially activate brain dopamine in prefrontocortical and subcortical terminal fields: effects of acute and repeated injections</title>
</json:item>
<json:item>
<author>
<json:item>
<name>RA Whittington</name>
</json:item>
<json:item>
<name>L Virag</name>
</json:item>
<json:item>
<name>HO Morishima</name>
</json:item>
<json:item>
<name>Y Vulliemoz</name>
</json:item>
</author>
<host>
<volume>919</volume>
<pages>
<last>138</last>
<first>132</first>
</pages>
<author></author>
<title>Brain Res</title>
</host>
<title>Dexmedetomidine decreases extracellular dopamine concentrations in the rat nucleus accumbens</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L Yavich</name>
</json:item>
<json:item>
<name>R Lappalainen</name>
</json:item>
<json:item>
<name>J Sirvio</name>
</json:item>
<json:item>
<name>A Haapalinna</name>
</json:item>
<json:item>
<name>E MacDonald</name>
</json:item>
</author>
<host>
<volume>339</volume>
<pages>
<last>119</last>
<first>113</first>
</pages>
<author></author>
<title>Eur J Pharmacol</title>
</host>
<title>Alpha2‐adrenergic control of dopamine overflow and metabolism in mouse striatum</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C Zarow</name>
</json:item>
<json:item>
<name>SA Lyness</name>
</json:item>
<json:item>
<name>JA Mortimer</name>
</json:item>
<json:item>
<name>HC Chui</name>
</json:item>
</author>
<host>
<volume>60</volume>
<pages>
<last>341</last>
<first>337</first>
</pages>
<author></author>
<title>Arch Neurol</title>
</host>
<title>Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>50</volume>
<publisherId>
<json:string>SYN</json:string>
</publisherId>
<pages>
<total>8</total>
<last>284</last>
<first>277</first>
</pages>
<issn>
<json:string>0887-4476</json:string>
</issn>
<issue>4</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1098-2396</json:string>
</eissn>
<title>Synapse</title>
<doi>
<json:string>10.1002/(ISSN)1098-2396</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>neurosciences</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>neurology & neurosurgery</json:string>
</scienceMetrix>
</categories>
<publicationDate>2003</publicationDate>
<copyrightDate>2003</copyrightDate>
<doi>
<json:string>10.1002/syn.10267</json:string>
</doi>
<id>2A2CFDAB5313C531CC3DD9B09F6F10205A1560F6</id>
<score>0.25730258</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/2A2CFDAB5313C531CC3DD9B09F6F10205A1560F6/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/2A2CFDAB5313C531CC3DD9B09F6F10205A1560F6/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/2A2CFDAB5313C531CC3DD9B09F6F10205A1560F6/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Stimulation of postsynaptic α1b‐ and α2‐adrenergic receptors amplifies dopamine‐mediated locomotor activity in both rats and mice</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<p>Copyright © 2003 Wiley‐Liss, Inc.</p>
</availability>
<date>2003</date>
</publicationStmt>
<notesStmt>
<note>Fondation Lagrue</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Stimulation of postsynaptic α1b‐ and α2‐adrenergic receptors amplifies dopamine‐mediated locomotor activity in both rats and mice</title>
<author xml:id="author-1">
<persName>
<forename type="first">Anne‐Sophie</forename>
<surname>Villégier</surname>
</persName>
<affiliation>Inserm U. 114, Collège de France, 75231 Paris, France</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Candice</forename>
<surname>Drouin</surname>
</persName>
<affiliation>Inserm U. 114, Collège de France, 75231 Paris, France</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Jean‐Charles</forename>
<surname>Bizot</surname>
</persName>
<affiliation>Key‐Obs SA, Centre d'innovation, 45074 Orléans, France</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Marc</forename>
<surname>Marien</surname>
</persName>
<affiliation>Centre de Recherche Pierre Fabre, 81100 Castres, France</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Jacques</forename>
<surname>Glowinski</surname>
</persName>
<affiliation>Inserm U. 114, Collège de France, 75231 Paris, France</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">Francis</forename>
<surname>Colpaërt</surname>
</persName>
<affiliation>Centre de Recherche Pierre Fabre, 81100 Castres, France</affiliation>
</author>
<author xml:id="author-7">
<persName>
<forename type="first">Jean‐Pol</forename>
<surname>Tassin</surname>
</persName>
<affiliation>Inserm U. 114, Collège de France, 75231 Paris, France</affiliation>
<affiliation>Inserm U. 114, Collège de France, 11, Place Marcelin Berthelot, 75231 Paris Cedex 05, France</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Synapse</title>
<title level="j" type="abbrev">Synapse</title>
<idno type="pISSN">0887-4476</idno>
<idno type="eISSN">1098-2396</idno>
<idno type="DOI">10.1002/(ISSN)1098-2396</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2003-12-15"></date>
<biblScope unit="volume">50</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="277">277</biblScope>
<biblScope unit="page" to="284">284</biblScope>
</imprint>
</monogr>
<idno type="istex">2A2CFDAB5313C531CC3DD9B09F6F10205A1560F6</idno>
<idno type="DOI">10.1002/syn.10267</idno>
<idno type="ArticleID">SYN10267</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2003</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Recent experiments have shown that mice lacking the α1b‐adrenergic receptor (α1b‐AR KO) are less responsive to the locomotor hyperactivity induced by psychostimulants, such as D‐amphetamine or cocaine, than their wild‐type littermates (WT). These findings suggested that psychostimulants induce locomotor hyperactivity not only because they increase dopamine (DA) transmission, but also because they release norepinephrine (NE). To test whether NE release could increase DA‐mediated locomotor hyperactivity, rats were treated with GBR 12783 (10 mg/kg), a specific inhibitor of the DA transporter, and NE release was enhanced with dexefaroxan (0.63–10 mg/kg), a potent and specific antagonist at α2‐adrenergic receptors. Dexefaroxan increased the GBR 12783‐mediated locomotor response by almost 8‐fold. The role of α1b‐ARs in this effect was then verified in α1b‐AR KO mice: whereas dexefaroxan (1 mg/kg) doubled locomotor hyperactivity induced by GBR 12783 (14 mg/kg) in WT mice, it decreased it by 43% in α1b‐AR KO mice. Finally, to test whether this latter inhibition was related to the occupation of α2‐adrenergic autoreceptors or of α2‐ARs not located on noradrenergic neurons, effects of dexefaroxan on locomotor hyperactivity induced by D‐amphetamine (0.75 mg/kg) were monitored in rats depleted in ascending noradrenergic neurons. In these animals dexefaroxan inhibited by 25–70% D‐amphetamine‐induced locomotor hyperactivity. These data indicate not only that the stimulation of α1b‐ARs increases DA‐mediated locomotor response, but also suggest a significant implication of postsynaptic α2‐ARs. Involvement of these adrenergic receptor mechanisms may be exploited in the therapy of Parkinson's disease. Synapse 50:277–284, 2003. © 2003 Wiley‐Liss, Inc.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>GBR 12783</term>
</item>
<item>
<term>dexefaroxan</term>
</item>
<item>
<term>α1b‐adrenergic receptor knockout mice</term>
</item>
<item>
<term>6‐OHDA</term>
</item>
<item>
<term>NE‐depletion</term>
</item>
<item>
<term>D‐amphetamine</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2003-03-26">Received</change>
<change when="2003-07-08">Registration</change>
<change when="2003-12-15">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/2A2CFDAB5313C531CC3DD9B09F6F10205A1560F6/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1098-2396</doi>
<issn type="print">0887-4476</issn>
<issn type="electronic">1098-2396</issn>
<idGroup>
<id type="product" value="SYN"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="SYNAPSE">Synapse</title>
<title type="short">Synapse</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="40">
<doi origin="wiley" registered="yes">10.1002/syn.v50:4</doi>
<numberingGroup>
<numbering type="journalVolume" number="50">50</numbering>
<numbering type="journalIssue">4</numbering>
</numberingGroup>
<coverDate startDate="2003-12-15">15 December 2003</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="20" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/syn.10267</doi>
<idGroup>
<id type="unit" value="SYN10267"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="8"></count>
</countGroup>
<copyright ownership="publisher">Copyright © 2003 Wiley‐Liss, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2003-03-26"></event>
<event type="manuscriptAccepted" date="2003-07-08"></event>
<event type="firstOnline" date="2003-09-29"></event>
<event type="publishedOnlineFinalForm" date="2003-09-29"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-04"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-10"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-03"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">277</numbering>
<numbering type="pageLast">284</numbering>
</numberingGroup>
<correspondenceTo>Inserm U. 114, Collège de France, 11, Place Marcelin Berthelot, 75231 Paris Cedex 05, France</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:SYN.SYN10267.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="4"></count>
<count type="tableTotal" number="0"></count>
<count type="referenceTotal" number="55"></count>
<count type="wordTotal" number="5732"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Stimulation of postsynaptic α1b‐ and α2‐adrenergic receptors amplifies dopamine‐mediated locomotor activity in both rats and mice</title>
<title type="short" xml:lang="en">NE Amplifies DA Locomotor Response</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Anne‐Sophie</givenNames>
<familyName>Villégier</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Candice</givenNames>
<familyName>Drouin</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Jean‐Charles</givenNames>
<familyName>Bizot</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Marc</givenNames>
<familyName>Marien</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Jacques</givenNames>
<familyName>Glowinski</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Francis</givenNames>
<familyName>Colpaërt</familyName>
</personName>
</creator>
<creator xml:id="au7" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Jean‐Pol</givenNames>
<familyName>Tassin</familyName>
</personName>
<contactDetails>
<email normalForm="jean-pol.tassin@college-de-france.fr">jean‐pol.tassin@college‐de‐france.fr</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="FR" type="organization">
<unparsedAffiliation>Inserm U. 114, Collège de France, 75231 Paris, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="FR" type="organization">
<unparsedAffiliation>Key‐Obs SA, Centre d'innovation, 45074 Orléans, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="FR" type="organization">
<unparsedAffiliation>Centre de Recherche Pierre Fabre, 81100 Castres, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">GBR 12783</keyword>
<keyword xml:id="kwd2">dexefaroxan</keyword>
<keyword xml:id="kwd3">α1b‐adrenergic receptor knockout mice</keyword>
<keyword xml:id="kwd4">6‐OHDA</keyword>
<keyword xml:id="kwd5">NE‐depletion</keyword>
<keyword xml:id="kwd6">D‐amphetamine</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Fondation Lagrue</fundingAgency>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Recent experiments have shown that mice lacking the α1b‐adrenergic receptor (α1b‐AR KO) are less responsive to the locomotor hyperactivity induced by psychostimulants, such as D‐amphetamine or cocaine, than their wild‐type littermates (WT). These findings suggested that psychostimulants induce locomotor hyperactivity not only because they increase dopamine (DA) transmission, but also because they release norepinephrine (NE). To test whether NE release could increase DA‐mediated locomotor hyperactivity, rats were treated with GBR 12783 (10 mg/kg), a specific inhibitor of the DA transporter, and NE release was enhanced with dexefaroxan (0.63–10 mg/kg), a potent and specific antagonist at α2‐adrenergic receptors. Dexefaroxan increased the GBR 12783‐mediated locomotor response by almost 8‐fold. The role of α1b‐ARs in this effect was then verified in α1b‐AR KO mice: whereas dexefaroxan (1 mg/kg) doubled locomotor hyperactivity induced by GBR 12783 (14 mg/kg) in WT mice, it decreased it by 43% in α1b‐AR KO mice. Finally, to test whether this latter inhibition was related to the occupation of α2‐adrenergic autoreceptors or of α2‐ARs not located on noradrenergic neurons, effects of dexefaroxan on locomotor hyperactivity induced by D‐amphetamine (0.75 mg/kg) were monitored in rats depleted in ascending noradrenergic neurons. In these animals dexefaroxan inhibited by 25–70% D‐amphetamine‐induced locomotor hyperactivity. These data indicate not only that the stimulation of α1b‐ARs increases DA‐mediated locomotor response, but also suggest a significant implication of postsynaptic α2‐ARs. Involvement of these adrenergic receptor mechanisms may be exploited in the therapy of Parkinson's disease. Synapse 50:277–284, 2003. © 2003 Wiley‐Liss, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Stimulation of postsynaptic α1b‐ and α2‐adrenergic receptors amplifies dopamine‐mediated locomotor activity in both rats and mice</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>NE Amplifies DA Locomotor Response</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Stimulation of postsynaptic α1b‐ and α2‐adrenergic receptors amplifies dopamine‐mediated locomotor activity in both rats and mice</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anne‐Sophie</namePart>
<namePart type="family">Villégier</namePart>
<affiliation>Inserm U. 114, Collège de France, 75231 Paris, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Candice</namePart>
<namePart type="family">Drouin</namePart>
<affiliation>Inserm U. 114, Collège de France, 75231 Paris, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean‐Charles</namePart>
<namePart type="family">Bizot</namePart>
<affiliation>Key‐Obs SA, Centre d'innovation, 45074 Orléans, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marc</namePart>
<namePart type="family">Marien</namePart>
<affiliation>Centre de Recherche Pierre Fabre, 81100 Castres, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacques</namePart>
<namePart type="family">Glowinski</namePart>
<affiliation>Inserm U. 114, Collège de France, 75231 Paris, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Colpaërt</namePart>
<affiliation>Centre de Recherche Pierre Fabre, 81100 Castres, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean‐Pol</namePart>
<namePart type="family">Tassin</namePart>
<affiliation>Inserm U. 114, Collège de France, 75231 Paris, France</affiliation>
<affiliation>Inserm U. 114, Collège de France, 11, Place Marcelin Berthelot, 75231 Paris Cedex 05, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2003-12-15</dateIssued>
<dateCaptured encoding="w3cdtf">2003-03-26</dateCaptured>
<dateValid encoding="w3cdtf">2003-07-08</dateValid>
<copyrightDate encoding="w3cdtf">2003</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">4</extent>
<extent unit="references">55</extent>
<extent unit="words">5732</extent>
</physicalDescription>
<abstract lang="en">Recent experiments have shown that mice lacking the α1b‐adrenergic receptor (α1b‐AR KO) are less responsive to the locomotor hyperactivity induced by psychostimulants, such as D‐amphetamine or cocaine, than their wild‐type littermates (WT). These findings suggested that psychostimulants induce locomotor hyperactivity not only because they increase dopamine (DA) transmission, but also because they release norepinephrine (NE). To test whether NE release could increase DA‐mediated locomotor hyperactivity, rats were treated with GBR 12783 (10 mg/kg), a specific inhibitor of the DA transporter, and NE release was enhanced with dexefaroxan (0.63–10 mg/kg), a potent and specific antagonist at α2‐adrenergic receptors. Dexefaroxan increased the GBR 12783‐mediated locomotor response by almost 8‐fold. The role of α1b‐ARs in this effect was then verified in α1b‐AR KO mice: whereas dexefaroxan (1 mg/kg) doubled locomotor hyperactivity induced by GBR 12783 (14 mg/kg) in WT mice, it decreased it by 43% in α1b‐AR KO mice. Finally, to test whether this latter inhibition was related to the occupation of α2‐adrenergic autoreceptors or of α2‐ARs not located on noradrenergic neurons, effects of dexefaroxan on locomotor hyperactivity induced by D‐amphetamine (0.75 mg/kg) were monitored in rats depleted in ascending noradrenergic neurons. In these animals dexefaroxan inhibited by 25–70% D‐amphetamine‐induced locomotor hyperactivity. These data indicate not only that the stimulation of α1b‐ARs increases DA‐mediated locomotor response, but also suggest a significant implication of postsynaptic α2‐ARs. Involvement of these adrenergic receptor mechanisms may be exploited in the therapy of Parkinson's disease. Synapse 50:277–284, 2003. © 2003 Wiley‐Liss, Inc.</abstract>
<note type="funding">Fondation Lagrue</note>
<subject lang="en">
<genre>keywords</genre>
<topic>GBR 12783</topic>
<topic>dexefaroxan</topic>
<topic>α1b‐adrenergic receptor knockout mice</topic>
<topic>6‐OHDA</topic>
<topic>NE‐depletion</topic>
<topic>D‐amphetamine</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Synapse</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Synapse</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0887-4476</identifier>
<identifier type="eISSN">1098-2396</identifier>
<identifier type="DOI">10.1002/(ISSN)1098-2396</identifier>
<identifier type="PublisherID">SYN</identifier>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>50</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>277</start>
<end>284</end>
<total>8</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">2A2CFDAB5313C531CC3DD9B09F6F10205A1560F6</identifier>
<identifier type="DOI">10.1002/syn.10267</identifier>
<identifier type="ArticleID">SYN10267</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2003 Wiley‐Liss, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C26 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001C26 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:2A2CFDAB5313C531CC3DD9B09F6F10205A1560F6
   |texte=   Stimulation of postsynaptic α1b‐ and α2‐adrenergic receptors amplifies dopamine‐mediated locomotor activity in both rats and mice
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024