La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Drosophila no‐dependent guanylyl cyclase is finely regulated by sequential order of coincidental signaling

Identifieur interne : 001B10 ( Istex/Corpus ); précédent : 001B09; suivant : 001B11

Drosophila no‐dependent guanylyl cyclase is finely regulated by sequential order of coincidental signaling

Auteurs : Lixing Zhang ; Sylvette Tinette ; Alain Robichon

Source :

RBID : ISTEX:0DCCC2AD052A1B857A92676B0CF450161964601D

English descriptors

Abstract

We investigate the mechanism of regulation of Drosophila‐soluble guanylate cyclase. Multiple putative sites of phosphorylation for the major kinases are present on both subunits of the heterodimer. We show that NO activation after binding to the heme group, is specifically modulated by sequential phosphorylations. PKA increases the NO stimulation at optimum level when both subunits are phosphorylated. Phosphorylation by CK (casein kinase‐like) first, inhibits the PKA phosphorylation of the alpha subunit and limits the PKA upregulation of the cyclase activity. However, PKA phosphorylation first didn't prevent CK phosphorylation of the two subunits and the sequence PKA/CK induces higher level of NO activation than CK/PKA. These phosphorylations occur independently of NO binding and the direct inhibitory effect of calcium is observed for all the sCG forms. These data show that the sGC activity is regulated in a complex way, and the well‐known asymmetry of the two subunits appears to cause the reading of the sequence of regulatory signals. This qualifies sGC as molecular detector on which converge coincidental and/or sequential neuronal signals. Furthermore, due to the fact that NO induction is huge (more than 600‐fold obtained with the mammal counterpart), we might consider that any variation in kinases activation and/or calcium concentration in micro area of neuronal processes, provokes locally significant quantitative difference of cGMP synthesis in presence of diffusing NO. J. Cell. Biochem. 85: 392–402, 2002. © 2002 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/jcb.10146

Links to Exploration step

ISTEX:0DCCC2AD052A1B857A92676B0CF450161964601D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Drosophila no‐dependent guanylyl cyclase is finely regulated by sequential order of coincidental signaling</title>
<author>
<name sortKey="Zhang, Lixing" sort="Zhang, Lixing" uniqKey="Zhang L" first="Lixing" last="Zhang">Lixing Zhang</name>
<affiliation>
<mods:affiliation>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tinette, Sylvette" sort="Tinette, Sylvette" uniqKey="Tinette S" first="Sylvette" last="Tinette">Sylvette Tinette</name>
<affiliation>
<mods:affiliation>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Robichon, Alain" sort="Robichon, Alain" uniqKey="Robichon A" first="Alain" last="Robichon">Alain Robichon</name>
<affiliation>
<mods:affiliation>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France, FREE 2049.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0DCCC2AD052A1B857A92676B0CF450161964601D</idno>
<date when="2002" year="2002">2002</date>
<idno type="doi">10.1002/jcb.10146</idno>
<idno type="url">https://api.istex.fr/document/0DCCC2AD052A1B857A92676B0CF450161964601D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001B10</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001B10</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Drosophila no‐dependent guanylyl cyclase is finely regulated by sequential order of coincidental signaling</title>
<author>
<name sortKey="Zhang, Lixing" sort="Zhang, Lixing" uniqKey="Zhang L" first="Lixing" last="Zhang">Lixing Zhang</name>
<affiliation>
<mods:affiliation>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tinette, Sylvette" sort="Tinette, Sylvette" uniqKey="Tinette S" first="Sylvette" last="Tinette">Sylvette Tinette</name>
<affiliation>
<mods:affiliation>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Robichon, Alain" sort="Robichon, Alain" uniqKey="Robichon A" first="Alain" last="Robichon">Alain Robichon</name>
<affiliation>
<mods:affiliation>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France, FREE 2049.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Cellular Biochemistry</title>
<title level="j" type="abbrev">J. Cell. Biochem.</title>
<idno type="ISSN">0730-2312</idno>
<idno type="eISSN">1097-4644</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="2002">2002</date>
<biblScope unit="volume">85</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="392">392</biblScope>
<biblScope unit="page" to="402">402</biblScope>
</imprint>
<idno type="ISSN">0730-2312</idno>
</series>
<idno type="istex">0DCCC2AD052A1B857A92676B0CF450161964601D</idno>
<idno type="DOI">10.1002/jcb.10146</idno>
<idno type="ArticleID">JCB10146</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0730-2312</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Drosophila</term>
<term>cGMP</term>
<term>coincidental signaling</term>
<term>cyclase</term>
<term>neurons</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We investigate the mechanism of regulation of Drosophila‐soluble guanylate cyclase. Multiple putative sites of phosphorylation for the major kinases are present on both subunits of the heterodimer. We show that NO activation after binding to the heme group, is specifically modulated by sequential phosphorylations. PKA increases the NO stimulation at optimum level when both subunits are phosphorylated. Phosphorylation by CK (casein kinase‐like) first, inhibits the PKA phosphorylation of the alpha subunit and limits the PKA upregulation of the cyclase activity. However, PKA phosphorylation first didn't prevent CK phosphorylation of the two subunits and the sequence PKA/CK induces higher level of NO activation than CK/PKA. These phosphorylations occur independently of NO binding and the direct inhibitory effect of calcium is observed for all the sCG forms. These data show that the sGC activity is regulated in a complex way, and the well‐known asymmetry of the two subunits appears to cause the reading of the sequence of regulatory signals. This qualifies sGC as molecular detector on which converge coincidental and/or sequential neuronal signals. Furthermore, due to the fact that NO induction is huge (more than 600‐fold obtained with the mammal counterpart), we might consider that any variation in kinases activation and/or calcium concentration in micro area of neuronal processes, provokes locally significant quantitative difference of cGMP synthesis in presence of diffusing NO. J. Cell. Biochem. 85: 392–402, 2002. © 2002 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Lixing Zhang</name>
<affiliations>
<json:string>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Sylvette Tinette</name>
<affiliations>
<json:string>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Alain Robichon</name>
<affiliations>
<json:string>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France</json:string>
<json:string>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France, FREE 2049.</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Drosophila</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>neurons</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>cyclase</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>cGMP</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>coincidental signaling</value>
</json:item>
</subject>
<articleId>
<json:string>JCB10146</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>We investigate the mechanism of regulation of Drosophila‐soluble guanylate cyclase. Multiple putative sites of phosphorylation for the major kinases are present on both subunits of the heterodimer. We show that NO activation after binding to the heme group, is specifically modulated by sequential phosphorylations. PKA increases the NO stimulation at optimum level when both subunits are phosphorylated. Phosphorylation by CK (casein kinase‐like) first, inhibits the PKA phosphorylation of the alpha subunit and limits the PKA upregulation of the cyclase activity. However, PKA phosphorylation first didn't prevent CK phosphorylation of the two subunits and the sequence PKA/CK induces higher level of NO activation than CK/PKA. These phosphorylations occur independently of NO binding and the direct inhibitory effect of calcium is observed for all the sCG forms. These data show that the sGC activity is regulated in a complex way, and the well‐known asymmetry of the two subunits appears to cause the reading of the sequence of regulatory signals. This qualifies sGC as molecular detector on which converge coincidental and/or sequential neuronal signals. Furthermore, due to the fact that NO induction is huge (more than 600‐fold obtained with the mammal counterpart), we might consider that any variation in kinases activation and/or calcium concentration in micro area of neuronal processes, provokes locally significant quantitative difference of cGMP synthesis in presence of diffusing NO. J. Cell. Biochem. 85: 392–402, 2002. © 2002 Wiley‐Liss, Inc.</abstract>
<qualityIndicators>
<score>7.76</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>592 x 789 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1559</abstractCharCount>
<pdfWordCount>6397</pdfWordCount>
<pdfCharCount>38595</pdfCharCount>
<pdfPageCount>11</pdfPageCount>
<abstractWordCount>230</abstractWordCount>
</qualityIndicators>
<title>Drosophila no‐dependent guanylyl cyclase is finely regulated by sequential order of coincidental signaling</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>EM Becker</name>
</json:item>
<json:item>
<name>P Schmidt</name>
</json:item>
<json:item>
<name>M Schramm</name>
</json:item>
<json:item>
<name>H Schroder</name>
</json:item>
<json:item>
<name>U Walter</name>
</json:item>
<json:item>
<name>M Hoenicka</name>
</json:item>
<json:item>
<name>R Gerzer</name>
</json:item>
<json:item>
<name>JP Stasch</name>
</json:item>
</author>
<host>
<volume>35</volume>
<pages>
<last>397</last>
<first>390</first>
</pages>
<author></author>
<title>J Cardiovas Pharmacol</title>
</host>
<title>The vasodilator stimulated phosphoprotein (VASP): target of YC‐1 and nitric oxide effects in human and rat platelets</title>
</json:item>
<json:item>
<author>
<json:item>
<name>EM Becker</name>
</json:item>
<json:item>
<name>F Wunder</name>
</json:item>
<json:item>
<name>R Kast</name>
</json:item>
<json:item>
<name>C Robyr</name>
</json:item>
<json:item>
<name>M Hoenicka</name>
</json:item>
<json:item>
<name>R Gerzer</name>
</json:item>
<json:item>
<name>H Schroder</name>
</json:item>
<json:item>
<name>JP Stasch</name>
</json:item>
</author>
<host>
<volume>3</volume>
<pages>
<last>66</last>
<first>55</first>
</pages>
<author></author>
<title>Nitric Oxide</title>
</host>
<title>Generation and characterization of a stable soluble guanylate cyclase overexpressing CHO cell line</title>
</json:item>
<json:item>
<author>
<json:item>
<name>HR Bourne</name>
</json:item>
<json:item>
<name>R Nicoll</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>75</last>
<first>65</first>
</pages>
<author></author>
<title>Cell/Neuron</title>
</host>
<title>Molecular machines integrate coincident synaptic signals</title>
</json:item>
<json:item>
<author>
<json:item>
<name>PE Brandish</name>
</json:item>
<json:item>
<name>W Buechler</name>
</json:item>
<json:item>
<name>MA Marletta</name>
</json:item>
</author>
<host>
<volume>37</volume>
<pages>
<last>16907</last>
<first>16898</first>
</pages>
<author></author>
<title>Biochemistry</title>
</host>
<title>Regeneration of the ferrous heme of soluble guanylate cyclase from the nitric oxide complex: acceleration by thiols and oxyhemoglobin</title>
</json:item>
<json:item>
<author>
<json:item>
<name>SJ Broughton</name>
</json:item>
<json:item>
<name>NS Kane</name>
</json:item>
<json:item>
<name>B Artur</name>
</json:item>
<json:item>
<name>M Yoder</name>
</json:item>
<json:item>
<name>RJ Greenspan</name>
</json:item>
<json:item>
<name>A Robichon</name>
</json:item>
</author>
<host>
<volume>62</volume>
<pages>
<last>494</last>
<first>484</first>
</pages>
<author></author>
<title>J Cell Biochem</title>
</host>
<title>Transport of Cam Kinase II along the processes elicited by neuronal contact evokes an inhibition of arborization and outgrowth in D. melanogaster cultured neurons</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F Brunner</name>
</json:item>
<json:item>
<name>K Shmidt</name>
</json:item>
<json:item>
<name>EB Nielsen</name>
</json:item>
<json:item>
<name>D Koesling</name>
</json:item>
<json:item>
<name>B Mayer</name>
</json:item>
</author>
<host>
<volume>277</volume>
<pages>
<last>53</last>
<first>48</first>
</pages>
<author></author>
<title>J Pharmacol Exp Ther</title>
</host>
<title>Novel guanylyl cyclase inhibitor potently inhibits cyclic GMP accumulation in endothelial cells and relaxation of bovine pulmonary artery</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J Carlson</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>524</last>
<first>520</first>
</pages>
<author></author>
<title>Trends Neurosci</title>
</host>
<title>Olfaction in Drosophila: genetic and molecular analysis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>RL Davis</name>
</json:item>
</author>
<host>
<volume>76</volume>
<pages>
<last>317</last>
<first>299</first>
</pages>
<author></author>
<title>Physiol Rev</title>
</host>
<title>Physiology and biochemistry of Drosophila learning mutants</title>
</json:item>
<json:item>
<author>
<json:item>
<name>SE Domino</name>
</json:item>
<json:item>
<name>DJ Tubb</name>
</json:item>
<json:item>
<name>DL Garbers</name>
</json:item>
</author>
<host>
<volume>195</volume>
<pages>
<last>345</last>
<first>345</first>
</pages>
<author></author>
<title>Methods Enzymol</title>
</host>
<title>Assay of guanylyl cyclase catalytic activity</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R Ferrero</name>
</json:item>
<json:item>
<name>F Rodriguez‐Pascal</name>
</json:item>
<json:item>
<name>M Miras‐Portugal</name>
</json:item>
<json:item>
<name>M Torres</name>
</json:item>
</author>
<host>
<volume>75</volume>
<pages>
<last>2039</last>
<first>2029</first>
</pages>
<author></author>
<title>J Neurochem</title>
</host>
<title>Nitric oxide sensitive guanylyl cyclase activity inhibition through cyclic GMP‐dependent dephosphorylation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>YL Fong</name>
</json:item>
<json:item>
<name>WL Taylor</name>
</json:item>
<json:item>
<name>AR Means</name>
</json:item>
<json:item>
<name>TR Soderling</name>
</json:item>
</author>
<host>
<volume>264</volume>
<pages>
<last>16763</last>
<first>16759</first>
</pages>
<author></author>
<title>J Biol Chem</title>
</host>
<title>Studies of the regulatory mechanism of Ca++/calmodulin‐dependent protein kinase II</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J Garthwaite</name>
</json:item>
<json:item>
<name>E Southam</name>
</json:item>
<json:item>
<name>C Boulton</name>
</json:item>
<json:item>
<name>EB Nielsen</name>
</json:item>
<json:item>
<name>K Schmidt</name>
</json:item>
<json:item>
<name>B Mayer</name>
</json:item>
</author>
<host>
<volume>48</volume>
<pages>
<last>188</last>
<first>184</first>
</pages>
<author></author>
<title>Mol Pharmacol</title>
</host>
<title>Potent and selective inhibition of nitric oxide sensitive guanylyl cyclase by 1H[1,2,4] oxadiazolo [4,3‐a] quinoxalin‐1‐one</title>
</json:item>
<json:item>
<author>
<json:item>
<name>LC Griffith</name>
</json:item>
<json:item>
<name>LM Verselis</name>
</json:item>
<json:item>
<name>KM Aitken</name>
</json:item>
<json:item>
<name>CP Kyriacou</name>
</json:item>
<json:item>
<name>W Danho</name>
</json:item>
<json:item>
<name>RJ Greenspan</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>509</last>
<first>501</first>
</pages>
<author></author>
<title>Neuron</title>
</host>
<title>Inhibition of calcium/calmodulin‐dependent protein kinase in Drosophila behavioral plasticity</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y Kamisaki</name>
</json:item>
<json:item>
<name>S Saheki</name>
</json:item>
<json:item>
<name>M Nakane</name>
</json:item>
<json:item>
<name>JA Palmieri</name>
</json:item>
<json:item>
<name>T Kuno</name>
</json:item>
<json:item>
<name>BY Chang</name>
</json:item>
<json:item>
<name>SA Waldman</name>
</json:item>
<json:item>
<name>F Murad</name>
</json:item>
</author>
<host>
<volume>261</volume>
<pages>
<last>7241</last>
<first>7236</first>
</pages>
<author></author>
<title>J Biol Chem</title>
</host>
<title>Soluble gunanylate cyclase from rat lung exists as a heterodimer</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B Kloss</name>
</json:item>
<json:item>
<name>JL Price</name>
</json:item>
<json:item>
<name>L Saez</name>
</json:item>
<json:item>
<name>J Blau</name>
</json:item>
<json:item>
<name>A Rothenfluh</name>
</json:item>
<json:item>
<name>CS Wesley</name>
</json:item>
<json:item>
<name>W Young</name>
</json:item>
</author>
<host>
<volume>94</volume>
<pages>
<last>107</last>
<first>97</first>
</pages>
<author></author>
<title>Iepsilon Cell</title>
</host>
<title>Drosophila clokgene double time encodes peotein closely related to human casein kinase</title>
</json:item>
<json:item>
<author>
<json:item>
<name>FN Ko</name>
</json:item>
<json:item>
<name>CC Wu</name>
</json:item>
<json:item>
<name>SC Kuo</name>
</json:item>
<json:item>
<name>FY Lee</name>
</json:item>
<json:item>
<name>CM Teng</name>
</json:item>
</author>
<host>
<volume>84</volume>
<pages>
<last>4233</last>
<first>4226</first>
</pages>
<author></author>
<title>Blood</title>
</host>
<title>YC‐1, a novel activator of platelet guanylate cyclase</title>
</json:item>
<json:item>
<author>
<json:item>
<name>KW Koch</name>
</json:item>
<json:item>
<name>L Stryer</name>
</json:item>
</author>
<host>
<volume>334</volume>
<pages>
<last>66</last>
<first>64</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions</title>
</json:item>
<json:item>
<author>
<json:item>
<name>LR Levin</name>
</json:item>
<json:item>
<name>PL Han</name>
</json:item>
<json:item>
<name>PM Hwang</name>
</json:item>
<json:item>
<name>RL Feinstein</name>
</json:item>
<json:item>
<name>RL Davis</name>
</json:item>
<json:item>
<name>RR Reed</name>
</json:item>
</author>
<host>
<volume>68</volume>
<pages>
<last>489</last>
<first>479</first>
</pages>
<author></author>
<title>Cell</title>
</host>
<title>The Drosophila learning and memory gene rutabaga encodes a Ca++/calmodulin responsive adenyl cyclase</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W Liu</name>
</json:item>
<json:item>
<name>J Yoon</name>
</json:item>
<json:item>
<name>M Burg</name>
</json:item>
<json:item>
<name>L Chen</name>
</json:item>
<json:item>
<name>WL Pak</name>
</json:item>
</author>
<host>
<volume>270</volume>
<pages>
<last>12427</last>
<first>12418</first>
</pages>
<author></author>
<title>J Biol Chem</title>
</host>
<title>Molecular characterization of two Drosophila guanylate cyclases expressed in the nervous system</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A Margulis</name>
</json:item>
<json:item>
<name>A Sitaramayya</name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>1039</last>
<first>1034</first>
</pages>
<author></author>
<title>Biochemistry</title>
</host>
<title>Rate of deactivation of nitric oxide stimulated guanylate cyclase: influence of nitric oxide scavengers and calcium</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S Moncada</name>
</json:item>
<json:item>
<name>RM Palmer</name>
</json:item>
<json:item>
<name>EA Higgs</name>
</json:item>
</author>
<host>
<volume>43</volume>
<pages>
<last>142</last>
<first>109</first>
</pages>
<author></author>
<title>Pharmacol Rev</title>
</host>
<title>Nitric oxide: physiology, pathophysiology and pharmacology</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F Murad</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<last>1868</last>
<first>1857</first>
</pages>
<author></author>
<title>Angew Chem Int Ed Engl</title>
</host>
<title>Discovery of some of the biological effects of nitric oxide and its role in cell signalling (Nobel lecture)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A Mülsch</name>
</json:item>
<json:item>
<name>J Bauersachs</name>
</json:item>
<json:item>
<name>A Schafer</name>
</json:item>
<json:item>
<name>JP Stasch</name>
</json:item>
<json:item>
<name>R Kast</name>
</json:item>
<json:item>
<name>R Busse</name>
</json:item>
</author>
<host>
<volume>120</volume>
<pages>
<last>689</last>
<first>681</first>
</pages>
<author></author>
<title>Br J Pharmacol</title>
</host>
<title>Effect of YC‐1 an NO‐independent superoxide sensitive stimulator of soluble guanylate cyclase, on smooth muscle responsiveness to nitrovasodilators</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A Nighorn</name>
</json:item>
<json:item>
<name>MJ Healy</name>
</json:item>
<json:item>
<name>RL Davis</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>467</last>
<first>455</first>
</pages>
<issue>3</issue>
<author></author>
<title>Neuron</title>
</host>
<title>The cyclic AMP phosphodiesterase encoded by the Drosophila dunce gene is concentrated in the mushroom body neuropil</title>
</json:item>
<json:item>
<author>
<json:item>
<name>KA Osborne</name>
</json:item>
<json:item>
<name>A Robichon</name>
</json:item>
<json:item>
<name>E Burgess</name>
</json:item>
<json:item>
<name>S Butland</name>
</json:item>
<json:item>
<name>RA Shaw</name>
</json:item>
<json:item>
<name>A Coulthard</name>
</json:item>
<json:item>
<name>HS Pereira</name>
</json:item>
<json:item>
<name>RJ Greenspan</name>
</json:item>
<json:item>
<name>MB Sokolowski</name>
</json:item>
</author>
<host>
<volume>277</volume>
<pages>
<last>836</last>
<first>834</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Natural behavior polymorphism due to a cGMP‐dependent protein kinase of Drosophila</title>
</json:item>
<json:item>
<author>
<json:item>
<name>SJ Parkinson</name>
</json:item>
<json:item>
<name>A Jovanovic</name>
</json:item>
<json:item>
<name>S Jovanovic</name>
</json:item>
<json:item>
<name>F Wagner</name>
</json:item>
<json:item>
<name>A Terzic</name>
</json:item>
<json:item>
<name>SA Waldman</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<last>6448</last>
<first>6441</first>
</pages>
<author></author>
<title>Biochemistry</title>
</host>
<title>Regulation of nitric oxide responsive recombinant soluble guanylyl cyclase by calcium</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F Polleux</name>
</json:item>
<json:item>
<name>T Morrow</name>
</json:item>
<json:item>
<name>A Gosh</name>
</json:item>
</author>
<host>
<volume>404</volume>
<pages>
<last>573</last>
<first>567</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Semaphorin 3A is a chemoattractant for cortical apical dendrites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>XX Qui</name>
</json:item>
<json:item>
<name>R Davis</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>1458</last>
<first>1447</first>
</pages>
<author></author>
<title>Genes Dev</title>
</host>
<title>Genetic dissection of the learning/memory gene dunce of Drosophila melanogaster</title>
</json:item>
<json:item>
<host>
<pages>
<last>38</last>
<first>1</first>
</pages>
<author></author>
<title>Roberts DB.1986.Rickwood D,Hanes BD, editors. Basic Drosophila care and techniques in Drosophila, a practical approach.Oxford:IRL Press. p1–38.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>PJ Robinson</name>
</json:item>
<json:item>
<name>JM Sontag</name>
</json:item>
<json:item>
<name>JP Liu</name>
</json:item>
<json:item>
<name>EM Fyskse</name>
</json:item>
<json:item>
<name>C Slaughter</name>
</json:item>
<json:item>
<name>H McMahon</name>
</json:item>
<json:item>
<name>TC Sudhof</name>
</json:item>
</author>
<host>
<volume>365</volume>
<pages>
<last>166</last>
<first>163</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Dynamin GTPase regulated by protein kinase C phosphorylation in nerve terminals</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A Schrammel</name>
</json:item>
<json:item>
<name>S Behrends</name>
</json:item>
<json:item>
<name>K Schmidt</name>
</json:item>
<json:item>
<name>D Koesling</name>
</json:item>
<json:item>
<name>B Mayer</name>
</json:item>
</author>
<host>
<volume>50</volume>
<pages>
<last>5</last>
<first>1</first>
</pages>
<issue>1</issue>
<author></author>
<title>Mol Pharmacol</title>
</host>
<title>Characterization of 1H‐[1,2,4]oxadiazolo [4,3‐a] quinoxalin‐1‐one as a heme‐site inhibitor of nitric oxide‐sensitive quanylyl cyclase</title>
</json:item>
<json:item>
<author>
<json:item>
<name>IS Severina</name>
</json:item>
<json:item>
<name>OG Bussygina</name>
</json:item>
<json:item>
<name>NV Pyatakova</name>
</json:item>
</author>
<host>
<volume>65</volume>
<pages>
<last>788</last>
<first>783</first>
</pages>
<author></author>
<title>Biochemistry</title>
</host>
<title>Carnosine as a regulator of soluble guanylate cyclase</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S Shah</name>
</json:item>
<json:item>
<name>DR Hyde</name>
</json:item>
</author>
<host>
<volume>270</volume>
<pages>
<last>15376</last>
<first>15368</first>
</pages>
<author></author>
<title>J Biol Chem</title>
</host>
<title>Two Drosophila genes that encode the α and β subunits of the brain soluble guanylyl cyclase</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JP Stasch</name>
</json:item>
<json:item>
<name>EM Becker</name>
</json:item>
<json:item>
<name>C Alonso‐Alija</name>
</json:item>
<json:item>
<name>H Apeler</name>
</json:item>
<json:item>
<name>K Dembowsky</name>
</json:item>
<json:item>
<name>A Feurer</name>
</json:item>
<json:item>
<name>R Gerzer</name>
</json:item>
<json:item>
<name>I Minuth</name>
</json:item>
<json:item>
<name>E Perzborn</name>
</json:item>
<json:item>
<name>U Pleiss</name>
</json:item>
<json:item>
<name>H Schroder</name>
</json:item>
<json:item>
<name>W Schroder</name>
</json:item>
<json:item>
<name>E Stahl</name>
</json:item>
<json:item>
<name>W Steinke</name>
</json:item>
<json:item>
<name>A Straub</name>
</json:item>
<json:item>
<name>M Schramm</name>
</json:item>
</author>
<host>
<volume>410</volume>
<pages>
<last>215</last>
<first>212</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>NO‐independent regulatory site on soluble guanylate cyclase</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V Suri</name>
</json:item>
<json:item>
<name>JC Hall</name>
</json:item>
<json:item>
<name>M Rosbach</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>7555</last>
<first>7547</first>
</pages>
<author></author>
<title>J Neurosci</title>
</host>
<title>Two novel doubletime mutants alter circadian properties and eliminate the delay between RNA and protein in Drosophila</title>
</json:item>
<json:item>
<author>
<json:item>
<name>CC Wu</name>
</json:item>
<json:item>
<name>FN Ko</name>
</json:item>
<json:item>
<name>SC Kuo</name>
</json:item>
<json:item>
<name>FY Lee</name>
</json:item>
<json:item>
<name>CM Teng</name>
</json:item>
</author>
<host>
<volume>120</volume>
<pages>
<last>689</last>
<first>681</first>
</pages>
<author></author>
<title>Br Pharmacol</title>
</host>
<title>YC‐1 inhibited human platelet aggregation through NO‐independent activation of soluble guanylate cyclase</title>
</json:item>
<json:item>
<author>
<json:item>
<name>PS Yuen</name>
</json:item>
<json:item>
<name>LK Doolittle</name>
</json:item>
<json:item>
<name>DL Garbers</name>
</json:item>
</author>
<host>
<volume>269</volume>
<pages>
<last>793</last>
<first>791</first>
</pages>
<author></author>
<title>J Biol Chem</title>
</host>
<title>Dominant negative mutants of nitric oxide sensitive guanylyl cyclase</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y Zhao</name>
</json:item>
<json:item>
<name>JPM Schelvis</name>
</json:item>
<json:item>
<name>GT Babcok</name>
</json:item>
<json:item>
<name>MA Marletta</name>
</json:item>
</author>
<host>
<volume>37</volume>
<pages>
<last>4509</last>
<first>4502</first>
</pages>
<author></author>
<title>Biochemistry</title>
</host>
<title>Identification of histidine 105 in the β1 subunit of soluble guanylate cyclase as the heme proximal ligand</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y Zhao</name>
</json:item>
<json:item>
<name>PE Brandish</name>
</json:item>
<json:item>
<name>M DiValentin</name>
</json:item>
<json:item>
<name>JP Schelvis</name>
</json:item>
<json:item>
<name>GT babcock</name>
</json:item>
<json:item>
<name>MA Marletta</name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>10854</last>
<first>10848</first>
</pages>
<author></author>
<title>Biochemistry</title>
</host>
<title>Inhibition of soluble guanylate cyclase by ODQ</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>85</volume>
<publisherId>
<json:string>JCB</json:string>
</publisherId>
<pages>
<total>11</total>
<last>402</last>
<first>392</first>
</pages>
<issn>
<json:string>0730-2312</json:string>
</issn>
<issue>2</issue>
<subject>
<json:item>
<value>Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1097-4644</json:string>
</eissn>
<title>Journal of Cellular Biochemistry</title>
<doi>
<json:string>10.1002/(ISSN)1097-4644</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>cell biology</json:string>
<json:string>biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>biomedical research</json:string>
<json:string>biochemistry & molecular biology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2002</publicationDate>
<copyrightDate>2002</copyrightDate>
<doi>
<json:string>10.1002/jcb.10146</json:string>
</doi>
<id>0DCCC2AD052A1B857A92676B0CF450161964601D</id>
<score>0.19845274</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/0DCCC2AD052A1B857A92676B0CF450161964601D/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/0DCCC2AD052A1B857A92676B0CF450161964601D/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/0DCCC2AD052A1B857A92676B0CF450161964601D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Drosophila no‐dependent guanylyl cyclase is finely regulated by sequential order of coincidental signaling</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>New York</pubPlace>
<availability>
<p>Copyright © 2002 Wiley‐Liss, Inc.</p>
</availability>
<date>2002</date>
</publicationStmt>
<notesStmt>
<note>CNRS</note>
<note>FREE - No. 2049;</note>
<note>Local government of Burgundy</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Drosophila no‐dependent guanylyl cyclase is finely regulated by sequential order of coincidental signaling</title>
<author xml:id="author-1">
<persName>
<forename type="first">Lixing</forename>
<surname>Zhang</surname>
</persName>
<note type="biography">Lixing Zhang is a scholar at Southern Yangtze University Duxi 214036, China and is presently supported by the Burgundy local government post doctoral fellowship.</note>
<affiliation>Lixing Zhang is a scholar at Southern Yangtze University Duxi 214036, China and is presently supported by the Burgundy local government post doctoral fellowship.</affiliation>
<affiliation>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Sylvette</forename>
<surname>Tinette</surname>
</persName>
<affiliation>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Alain</forename>
<surname>Robichon</surname>
</persName>
<affiliation>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France</affiliation>
<affiliation>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France, FREE 2049.</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Cellular Biochemistry</title>
<title level="j" type="abbrev">J. Cell. Biochem.</title>
<idno type="pISSN">0730-2312</idno>
<idno type="eISSN">1097-4644</idno>
<idno type="DOI">10.1002/(ISSN)1097-4644</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="2002"></date>
<biblScope unit="volume">85</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="392">392</biblScope>
<biblScope unit="page" to="402">402</biblScope>
</imprint>
</monogr>
<idno type="istex">0DCCC2AD052A1B857A92676B0CF450161964601D</idno>
<idno type="DOI">10.1002/jcb.10146</idno>
<idno type="ArticleID">JCB10146</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2002</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>We investigate the mechanism of regulation of Drosophila‐soluble guanylate cyclase. Multiple putative sites of phosphorylation for the major kinases are present on both subunits of the heterodimer. We show that NO activation after binding to the heme group, is specifically modulated by sequential phosphorylations. PKA increases the NO stimulation at optimum level when both subunits are phosphorylated. Phosphorylation by CK (casein kinase‐like) first, inhibits the PKA phosphorylation of the alpha subunit and limits the PKA upregulation of the cyclase activity. However, PKA phosphorylation first didn't prevent CK phosphorylation of the two subunits and the sequence PKA/CK induces higher level of NO activation than CK/PKA. These phosphorylations occur independently of NO binding and the direct inhibitory effect of calcium is observed for all the sCG forms. These data show that the sGC activity is regulated in a complex way, and the well‐known asymmetry of the two subunits appears to cause the reading of the sequence of regulatory signals. This qualifies sGC as molecular detector on which converge coincidental and/or sequential neuronal signals. Furthermore, due to the fact that NO induction is huge (more than 600‐fold obtained with the mammal counterpart), we might consider that any variation in kinases activation and/or calcium concentration in micro area of neuronal processes, provokes locally significant quantitative difference of cGMP synthesis in presence of diffusing NO. J. Cell. Biochem. 85: 392–402, 2002. © 2002 Wiley‐Liss, Inc.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>Drosophila</term>
</item>
<item>
<term>neurons</term>
</item>
<item>
<term>cyclase</term>
</item>
<item>
<term>cGMP</term>
</item>
<item>
<term>coincidental signaling</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2001-10-17">Received</change>
<change when="2002-01-22">Registration</change>
<change when="2002">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/0DCCC2AD052A1B857A92676B0CF450161964601D/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>New York</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1097-4644</doi>
<issn type="print">0730-2312</issn>
<issn type="electronic">1097-4644</issn>
<idGroup>
<id type="product" value="JCB"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF CELLULAR BIOCHEMISTRY">Journal of Cellular Biochemistry</title>
<title type="short">J. Cell. Biochem.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="20">
<doi origin="wiley" registered="yes">10.1002/jcb.v85:2</doi>
<numberingGroup>
<numbering type="journalVolume" number="85">85</numbering>
<numbering type="journalIssue">2</numbering>
</numberingGroup>
<coverDate startDate="2002">2002</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="16" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/jcb.10146</doi>
<idGroup>
<id type="unit" value="JCB10146"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="11"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Article</title>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2002 Wiley‐Liss, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2001-10-17"></event>
<event type="manuscriptAccepted" date="2002-01-22"></event>
<event type="firstOnline" date="2002-02-28"></event>
<event type="publishedOnlineFinalForm" date="2002-03-13"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:FullText result:FullText" date="2010-03-06"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-29"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-23"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">392</numbering>
<numbering type="pageLast">402</numbering>
</numberingGroup>
<correspondenceTo>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France, FREE 2049.</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JCB.JCB10146.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="6"></count>
<count type="tableTotal" number="1"></count>
<count type="referenceTotal" number="39"></count>
<count type="wordTotal" number="7023"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">
<i>Drosophila</i>
no‐dependent guanylyl cyclase is finely regulated by sequential order of coincidental signaling</title>
<title type="short" xml:lang="en">Guanylyl Cyclase & Coincidental Signaling</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" noteRef="#fn1">
<personName>
<givenNames>Lixing</givenNames>
<familyName>Zhang</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Sylvette</givenNames>
<familyName>Tinette</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Alain</givenNames>
<familyName>Robichon</familyName>
</personName>
<contactDetails>
<email>robichon@cesg.cnrs.fr</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="FR" type="organization">
<unparsedAffiliation>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">
<i>Drosophila</i>
</keyword>
<keyword xml:id="kwd2">neurons</keyword>
<keyword xml:id="kwd3">cyclase</keyword>
<keyword xml:id="kwd4">cGMP</keyword>
<keyword xml:id="kwd5">coincidental signaling</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>CNRS</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>FREE</fundingAgency>
<fundingNumber>2049</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>Local government of Burgundy</fundingAgency>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>We investigate the mechanism of regulation of
<i>Drosophila</i>
‐soluble guanylate cyclase. Multiple putative sites of phosphorylation for the major kinases are present on both subunits of the heterodimer. We show that NO activation after binding to the heme group, is specifically modulated by sequential phosphorylations. PKA increases the NO stimulation at optimum level when both subunits are phosphorylated. Phosphorylation by CK (casein kinase‐like) first, inhibits the PKA phosphorylation of the alpha subunit and limits the PKA upregulation of the cyclase activity. However, PKA phosphorylation first didn't prevent CK phosphorylation of the two subunits and the sequence PKA/CK induces higher level of NO activation than CK/PKA. These phosphorylations occur independently of NO binding and the direct inhibitory effect of calcium is observed for all the sCG forms. These data show that the sGC activity is regulated in a complex way, and the well‐known asymmetry of the two subunits appears to cause the reading of the sequence of regulatory signals. This qualifies sGC as molecular detector on which converge coincidental and/or sequential neuronal signals. Furthermore, due to the fact that NO induction is huge (more than 600‐fold obtained with the mammal counterpart), we might consider that any variation in kinases activation and/or calcium concentration in micro area of neuronal processes, provokes locally significant quantitative difference of cGMP synthesis in presence of diffusing NO. J. Cell. Biochem. 85: 392–402, 2002. © 2002 Wiley‐Liss, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
<noteGroup>
<note xml:id="fn1">
<label>*</label>
<p>Lixing Zhang is a scholar at Southern Yangtze University Duxi 214036, China and is presently supported by the Burgundy local government post doctoral fellowship.</p>
</note>
</noteGroup>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Drosophila no‐dependent guanylyl cyclase is finely regulated by sequential order of coincidental signaling</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Guanylyl Cyclase & Coincidental Signaling</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Drosophila no‐dependent guanylyl cyclase is finely regulated by sequential order of coincidental signaling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lixing</namePart>
<namePart type="family">Zhang</namePart>
<affiliation>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France</affiliation>
<description>Lixing Zhang is a scholar at Southern Yangtze University Duxi 214036, China and is presently supported by the Burgundy local government post doctoral fellowship.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sylvette</namePart>
<namePart type="family">Tinette</namePart>
<affiliation>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alain</namePart>
<namePart type="family">Robichon</namePart>
<affiliation>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France</affiliation>
<affiliation>CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France, FREE 2049.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">New York</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2002</dateIssued>
<dateCaptured encoding="w3cdtf">2001-10-17</dateCaptured>
<dateValid encoding="w3cdtf">2002-01-22</dateValid>
<copyrightDate encoding="w3cdtf">2002</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">6</extent>
<extent unit="tables">1</extent>
<extent unit="references">39</extent>
<extent unit="words">7023</extent>
</physicalDescription>
<abstract lang="en">We investigate the mechanism of regulation of Drosophila‐soluble guanylate cyclase. Multiple putative sites of phosphorylation for the major kinases are present on both subunits of the heterodimer. We show that NO activation after binding to the heme group, is specifically modulated by sequential phosphorylations. PKA increases the NO stimulation at optimum level when both subunits are phosphorylated. Phosphorylation by CK (casein kinase‐like) first, inhibits the PKA phosphorylation of the alpha subunit and limits the PKA upregulation of the cyclase activity. However, PKA phosphorylation first didn't prevent CK phosphorylation of the two subunits and the sequence PKA/CK induces higher level of NO activation than CK/PKA. These phosphorylations occur independently of NO binding and the direct inhibitory effect of calcium is observed for all the sCG forms. These data show that the sGC activity is regulated in a complex way, and the well‐known asymmetry of the two subunits appears to cause the reading of the sequence of regulatory signals. This qualifies sGC as molecular detector on which converge coincidental and/or sequential neuronal signals. Furthermore, due to the fact that NO induction is huge (more than 600‐fold obtained with the mammal counterpart), we might consider that any variation in kinases activation and/or calcium concentration in micro area of neuronal processes, provokes locally significant quantitative difference of cGMP synthesis in presence of diffusing NO. J. Cell. Biochem. 85: 392–402, 2002. © 2002 Wiley‐Liss, Inc.</abstract>
<note type="funding">CNRS</note>
<note type="funding">FREE - No. 2049; </note>
<note type="funding">Local government of Burgundy</note>
<subject lang="en">
<genre>keywords</genre>
<topic>Drosophila</topic>
<topic>neurons</topic>
<topic>cyclase</topic>
<topic>cGMP</topic>
<topic>coincidental signaling</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Cellular Biochemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Cell. Biochem.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Article</topic>
</subject>
<identifier type="ISSN">0730-2312</identifier>
<identifier type="eISSN">1097-4644</identifier>
<identifier type="DOI">10.1002/(ISSN)1097-4644</identifier>
<identifier type="PublisherID">JCB</identifier>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>85</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>392</start>
<end>402</end>
<total>11</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">0DCCC2AD052A1B857A92676B0CF450161964601D</identifier>
<identifier type="DOI">10.1002/jcb.10146</identifier>
<identifier type="ArticleID">JCB10146</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2002 Wiley‐Liss, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B10 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001B10 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:0DCCC2AD052A1B857A92676B0CF450161964601D
   |texte=   Drosophila no‐dependent guanylyl cyclase is finely regulated by sequential order of coincidental signaling
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024