La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Exposure of tumor necrosis factor‐α to luminal membrane of bovine brain capillary endothelial cells cocultured with astrocytes induces a delayed increase of permeability and cytoplasmic stress fiber formation of actin

Identifieur interne : 001946 ( Istex/Corpus ); précédent : 001945; suivant : 001947

Exposure of tumor necrosis factor‐α to luminal membrane of bovine brain capillary endothelial cells cocultured with astrocytes induces a delayed increase of permeability and cytoplasmic stress fiber formation of actin

Auteurs : M. A. Deli ; L. Descamps ; M. Dehouck ; R. Cecchelli ; F. Jo ; C. S. Ábrahám ; G. Torpier

Source :

RBID : ISTEX:F3F000080C8118D02C67599B7C9BF89E437C012D

English descriptors

Abstract

Tumor necrosis factor‐α (TNF‐α), a proinflammatory cytokine, has long been known to be involved in the pathogenesis of central nervous system infections and of certain neurodegenerative diseases. However, the possible role of the blood‐brain barrier (BBB), the active interface between the blood circulation and brain tissue, remained unknown during these pathological conditions. In our in vitro reconstructed BBB model, 1‐hr exposure of recombinant human TNF‐α (in concentrations of 50, 250, and 500 U/ml, respectively) to the luminal membrane of bovine brain capillary endothelial cells (BBCEC) did not change significantly the transendothelia: flux of either sucrose (m.w. 342 Da), or inulin (m.w. 5 kDa) up to 4 hr (early phase), except for a slight decrease (P< 0.05) in sucrose permeation at 2–4 hr with the highest dose of TNF‐α On the other hand, at 16 hr after the 1‐hr challenge with TNF‐α (delayed phase) at all 3 concentrations, significant increase was induced in the permeability of BBCEC monolayers for both markers. These changes of permeability were accompanied by a selective reorganization of F‐actin filaments into stress fibers, while the intracellular distribution of vimentin remained similar to the control. These results suggest that BBCEC can respond directly to TNF‐α by a delayed increase of permeability and reorganization of actin filaments. ©1995 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/jnr.490410602

Links to Exploration step

ISTEX:F3F000080C8118D02C67599B7C9BF89E437C012D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Exposure of tumor necrosis factor‐α to luminal membrane of bovine brain capillary endothelial cells cocultured with astrocytes induces a delayed increase of permeability and cytoplasmic stress fiber formation of actin</title>
<author>
<name sortKey="Deli, M A" sort="Deli, M A" uniqKey="Deli M" first="M. A." last="Deli">M. A. Deli</name>
<affiliation>
<mods:affiliation>Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Descamps, L" sort="Descamps, L" uniqKey="Descamps L" first="L." last="Descamps">L. Descamps</name>
<affiliation>
<mods:affiliation>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dehouck, M" sort="Dehouck, M" uniqKey="Dehouck M" first="M." last="Dehouck">M. Dehouck</name>
<affiliation>
<mods:affiliation>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cecchelli, R" sort="Cecchelli, R" uniqKey="Cecchelli R" first="R." last="Cecchelli">R. Cecchelli</name>
<affiliation>
<mods:affiliation>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jo, F" sort="Jo, F" uniqKey="Jo F" first="F." last="Jo">F. Jo</name>
<affiliation>
<mods:affiliation>Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Abraham, C S" sort="Abraham, C S" uniqKey="Abraham C" first="C. S." last="Ábrahám">C. S. Ábrahám</name>
<affiliation>
<mods:affiliation>Department of Pediatrics, Albert Szent‐Györgyi Medical University, Szeged, Hungary</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Torpier, G" sort="Torpier, G" uniqKey="Torpier G" first="G." last="Torpier">G. Torpier</name>
<affiliation>
<mods:affiliation>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>INSERM U.325, Institut Pasteur‐Lille, 1 Rue A. Calmette, B.P. 245, 59019 Lille, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:F3F000080C8118D02C67599B7C9BF89E437C012D</idno>
<date when="1995" year="1995">1995</date>
<idno type="doi">10.1002/jnr.490410602</idno>
<idno type="url">https://api.istex.fr/document/F3F000080C8118D02C67599B7C9BF89E437C012D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001946</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001946</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Exposure of tumor necrosis factor‐α to luminal membrane of bovine brain capillary endothelial cells cocultured with astrocytes induces a delayed increase of permeability and cytoplasmic stress fiber formation of actin</title>
<author>
<name sortKey="Deli, M A" sort="Deli, M A" uniqKey="Deli M" first="M. A." last="Deli">M. A. Deli</name>
<affiliation>
<mods:affiliation>Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Descamps, L" sort="Descamps, L" uniqKey="Descamps L" first="L." last="Descamps">L. Descamps</name>
<affiliation>
<mods:affiliation>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dehouck, M" sort="Dehouck, M" uniqKey="Dehouck M" first="M." last="Dehouck">M. Dehouck</name>
<affiliation>
<mods:affiliation>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cecchelli, R" sort="Cecchelli, R" uniqKey="Cecchelli R" first="R." last="Cecchelli">R. Cecchelli</name>
<affiliation>
<mods:affiliation>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jo, F" sort="Jo, F" uniqKey="Jo F" first="F." last="Jo">F. Jo</name>
<affiliation>
<mods:affiliation>Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Abraham, C S" sort="Abraham, C S" uniqKey="Abraham C" first="C. S." last="Ábrahám">C. S. Ábrahám</name>
<affiliation>
<mods:affiliation>Department of Pediatrics, Albert Szent‐Györgyi Medical University, Szeged, Hungary</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Torpier, G" sort="Torpier, G" uniqKey="Torpier G" first="G." last="Torpier">G. Torpier</name>
<affiliation>
<mods:affiliation>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>INSERM U.325, Institut Pasteur‐Lille, 1 Rue A. Calmette, B.P. 245, 59019 Lille, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Neuroscience Research</title>
<title level="j" type="abbrev">J. Neurosci. Res.</title>
<idno type="ISSN">0360-4012</idno>
<idno type="eISSN">1097-4547</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="1995-08-15">1995-08-15</date>
<biblScope unit="volume">41</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="717">717</biblScope>
<biblScope unit="page" to="726">726</biblScope>
</imprint>
<idno type="ISSN">0360-4012</idno>
</series>
<idno type="istex">F3F000080C8118D02C67599B7C9BF89E437C012D</idno>
<idno type="DOI">10.1002/jnr.490410602</idno>
<idno type="ArticleID">JNR490410602</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0360-4012</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>actin</term>
<term>astrocytes</term>
<term>blood‐brain barrier (BBB)</term>
<term>endothelial cells</term>
<term>stress fiber</term>
<term>tumor necrosis factor‐α</term>
<term>vascular permeability</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tumor necrosis factor‐α (TNF‐α), a proinflammatory cytokine, has long been known to be involved in the pathogenesis of central nervous system infections and of certain neurodegenerative diseases. However, the possible role of the blood‐brain barrier (BBB), the active interface between the blood circulation and brain tissue, remained unknown during these pathological conditions. In our in vitro reconstructed BBB model, 1‐hr exposure of recombinant human TNF‐α (in concentrations of 50, 250, and 500 U/ml, respectively) to the luminal membrane of bovine brain capillary endothelial cells (BBCEC) did not change significantly the transendothelia: flux of either sucrose (m.w. 342 Da), or inulin (m.w. 5 kDa) up to 4 hr (early phase), except for a slight decrease (P< 0.05) in sucrose permeation at 2–4 hr with the highest dose of TNF‐α On the other hand, at 16 hr after the 1‐hr challenge with TNF‐α (delayed phase) at all 3 concentrations, significant increase was induced in the permeability of BBCEC monolayers for both markers. These changes of permeability were accompanied by a selective reorganization of F‐actin filaments into stress fibers, while the intracellular distribution of vimentin remained similar to the control. These results suggest that BBCEC can respond directly to TNF‐α by a delayed increase of permeability and reorganization of actin filaments. ©1995 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>M. A. Deli</name>
<affiliations>
<json:string>Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary</json:string>
</affiliations>
</json:item>
<json:item>
<name>L. Descamps</name>
<affiliations>
<json:string>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>M.‐P. Dehouck</name>
<affiliations>
<json:string>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. Cecchelli</name>
<affiliations>
<json:string>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>F. Joó</name>
<affiliations>
<json:string>Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary</json:string>
</affiliations>
</json:item>
<json:item>
<name>C. S. Ábrahám</name>
<affiliations>
<json:string>Department of Pediatrics, Albert Szent‐Györgyi Medical University, Szeged, Hungary</json:string>
</affiliations>
</json:item>
<json:item>
<name>G. Torpier Ph.D.</name>
<affiliations>
<json:string>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</json:string>
<json:string>INSERM U.325, Institut Pasteur‐Lille, 1 Rue A. Calmette, B.P. 245, 59019 Lille, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>blood‐brain barrier (BBB)</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>tumor necrosis factor‐α</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>actin</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>stress fiber</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>vascular permeability</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>astrocytes</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>endothelial cells</value>
</json:item>
</subject>
<articleId>
<json:string>JNR490410602</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Tumor necrosis factor‐α (TNF‐α), a proinflammatory cytokine, has long been known to be involved in the pathogenesis of central nervous system infections and of certain neurodegenerative diseases. However, the possible role of the blood‐brain barrier (BBB), the active interface between the blood circulation and brain tissue, remained unknown during these pathological conditions. In our in vitro reconstructed BBB model, 1‐hr exposure of recombinant human TNF‐α (in concentrations of 50, 250, and 500 U/ml, respectively) to the luminal membrane of bovine brain capillary endothelial cells (BBCEC) did not change significantly the transendothelia: flux of either sucrose (m.w. 342 Da), or inulin (m.w. 5 kDa) up to 4 hr (early phase), except for a slight decrease (P> 0.05) in sucrose permeation at 2–4 hr with the highest dose of TNF‐α On the other hand, at 16 hr after the 1‐hr challenge with TNF‐α (delayed phase) at all 3 concentrations, significant increase was induced in the permeability of BBCEC monolayers for both markers. These changes of permeability were accompanied by a selective reorganization of F‐actin filaments into stress fibers, while the intracellular distribution of vimentin remained similar to the control. These results suggest that BBCEC can respond directly to TNF‐α by a delayed increase of permeability and reorganization of actin filaments. ©1995 Wiley‐Liss, Inc.</abstract>
<qualityIndicators>
<score>7.532</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>594 x 792 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1395</abstractCharCount>
<pdfWordCount>5347</pdfWordCount>
<pdfCharCount>33091</pdfCharCount>
<pdfPageCount>10</pdfPageCount>
<abstractWordCount>211</abstractWordCount>
</qualityIndicators>
<title>Exposure of tumor necrosis factor‐α to luminal membrane of bovine brain capillary endothelial cells cocultured with astrocytes induces a delayed increase of permeability and cytoplasmic stress fiber formation of actin</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>A Aderem</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<last>443</last>
<first>438</first>
</pages>
<author></author>
<title>TIBS</title>
</host>
<title>Signal transduction and the actin cytoskeleton: The roles of MARCKS and profilin</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B Beutler</name>
</json:item>
<json:item>
<name>GE Grau</name>
</json:item>
</author>
<host>
<volume>21</volume>
<pages>
<last>435</last>
<first>423</first>
</pages>
<author></author>
<title>Crit Care Med [Suppl]</title>
</host>
<title>Tumor necrosis factor in the pathogenesis of infectious diseases</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J Booher</name>
</json:item>
<json:item>
<name>M Sensenbrenner</name>
</json:item>
</author>
<host>
<volume>2</volume>
<pages>
<last>105</last>
<first>97</first>
</pages>
<author></author>
<title>Neurobiology</title>
</host>
<title>Growth and cultivation of dissociated neurones and glial cells from embryonic chick, rat and human brain in flask cultures</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J Brett</name>
</json:item>
<json:item>
<name>H Gerlach</name>
</json:item>
<json:item>
<name>P Nawroth</name>
</json:item>
<json:item>
<name>S Steinberg</name>
</json:item>
<json:item>
<name>G Godman</name>
</json:item>
<json:item>
<name>D Stern</name>
</json:item>
</author>
<host>
<volume>169</volume>
<pages>
<last>1991</last>
<first>1977</first>
</pages>
<author></author>
<title>J Exp Med</title>
</host>
<title>Tumor necrosis factor/cachectin increases permeability of endothelial cell monolayers by a mechanism involving regulatory G proteins</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G Camussi</name>
</json:item>
<json:item>
<name>E Turello</name>
</json:item>
<json:item>
<name>F Bussolino</name>
</json:item>
<json:item>
<name>C Baglioni</name>
</json:item>
</author>
<host>
<volume>96</volume>
<pages>
<last>91</last>
<first>84</first>
</pages>
<author></author>
<title>Int Arch Allergy Appl Immunol</title>
</host>
<title>Tumor necrosis factor alters cytoskeletal organization and barrier function of endothelial cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J‐P Carré</name>
</json:item>
<json:item>
<name>O Morand</name>
</json:item>
<json:item>
<name>P Homayoun</name>
</json:item>
<json:item>
<name>F Roux</name>
</json:item>
<json:item>
<name>J‐M Bourre</name>
</json:item>
<json:item>
<name>N Baumann</name>
</json:item>
</author>
<host>
<volume>52</volume>
<pages>
<last>1299</last>
<first>1294</first>
</pages>
<author></author>
<title>J Neurochem</title>
</host>
<title>Purified rat brain microvessels exhibit both acid and neutral sphingom yelinase activities</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M‐P Dehouck</name>
</json:item>
<json:item>
<name>S Méresse</name>
</json:item>
<json:item>
<name>P Delorme</name>
</json:item>
<json:item>
<name>J‐C Fruchart</name>
</json:item>
<json:item>
<name>R Cecchelli</name>
</json:item>
</author>
<host>
<volume>54</volume>
<pages>
<last>1801</last>
<first>1798</first>
</pages>
<author></author>
<title>J Neurochem</title>
</host>
<title>An easier, reproducible, and mass‐production method to study the blood‐brain barrier in vitro</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M‐P Dehouck</name>
</json:item>
<json:item>
<name>P Jolliet‐Riant</name>
</json:item>
<json:item>
<name>F Brée</name>
</json:item>
<json:item>
<name>J‐C Fruchart</name>
</json:item>
<json:item>
<name>R Cecchelli</name>
</json:item>
<json:item>
<name>J‐P Tillement</name>
</json:item>
</author>
<host>
<volume>58</volume>
<pages>
<last>1797</last>
<first>1790</first>
</pages>
<author></author>
<title>J Neurochem</title>
</host>
<title>Drug transfer across the blood‐brain barrier: Correlation between in vitro and in vivo models</title>
</json:item>
<json:item>
<author>
<json:item>
<name>MA Deli</name>
</json:item>
<json:item>
<name>F Job</name>
</json:item>
<json:item>
<name>I Krizbai</name>
</json:item>
<json:item>
<name>I Lengyel</name>
</json:item>
<json:item>
<name>MG Nunzi</name>
</json:item>
<json:item>
<name>JR Wolff</name>
</json:item>
</author>
<host>
<volume>60</volume>
<pages>
<last>1963</last>
<first>1960</first>
</pages>
<author></author>
<title>J Neurochem</title>
</host>
<title>Calcium/calmodulin‐stimulated protein kinase II is present in primary cultures of cerebral endothelial cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Z Fábry</name>
</json:item>
<json:item>
<name>MM Waldschmidt</name>
</json:item>
<json:item>
<name>D Hendrickson</name>
</json:item>
<json:item>
<name>J Keiner</name>
</json:item>
<json:item>
<name>L Love‐Homan</name>
</json:item>
<json:item>
<name>F Takei</name>
</json:item>
<json:item>
<name>MN Hart</name>
</json:item>
</author>
<host>
<volume>36</volume>
<pages>
<last>11</last>
<first>1</first>
</pages>
<author></author>
<title>J Neuroimmunol</title>
</host>
<title>Adhesion molecules on murine brain microvascular endothelial cells: Expression and regulation of ICAM‐1 and Lgp 55</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H Fillit</name>
</json:item>
<json:item>
<name>W Ding</name>
</json:item>
<json:item>
<name>L Buee</name>
</json:item>
<json:item>
<name>J Kalman</name>
</json:item>
<json:item>
<name>L Altstiel</name>
</json:item>
<json:item>
<name>B Lawlor</name>
</json:item>
<json:item>
<name>G Wolf‐Klein</name>
</json:item>
</author>
<host>
<volume>129</volume>
<pages>
<last>320</last>
<first>318</first>
</pages>
<author></author>
<title>Neurosci Lett</title>
</host>
<title>Elevated circulating tumor necrosis factor levels in Alzheimer's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T Finkel</name>
</json:item>
<json:item>
<name>JA Theriot</name>
</json:item>
<json:item>
<name>KR Dise</name>
</json:item>
<json:item>
<name>GF Tomaselli</name>
</json:item>
<json:item>
<name>PJ Goldschmidt‐Clermont</name>
</json:item>
</author>
<host>
<volume>91</volume>
<pages>
<last>1514</last>
<first>1510</first>
</pages>
<author></author>
<title>Proc Natl Acad Sci USA</title>
</host>
<title>Dynamic actin structures stabilized by profilin</title>
</json:item>
<json:item>
<author>
<json:item>
<name>SE Goldblum</name>
</json:item>
<json:item>
<name>WL Sun</name>
</json:item>
</author>
<host>
<volume>258</volume>
<pages>
<last>67</last>
<first>57</first>
</pages>
<author></author>
<title>Am J Physiol</title>
</host>
<title>Tumor necrosis factor‐α augments pulmonary arterial transendothelial albumin flux in vitro</title>
</json:item>
<json:item>
<author>
<json:item>
<name>GE Grau</name>
</json:item>
<json:item>
<name>LF Fajardo</name>
</json:item>
<json:item>
<name>PF Piguet</name>
</json:item>
<json:item>
<name>B Allet</name>
</json:item>
<json:item>
<name>PH Lambert</name>
</json:item>
<json:item>
<name>P Vassalli</name>
</json:item>
</author>
<host>
<volume>237</volume>
<pages>
<last>1212</last>
<first>1210</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Tumor necrosis factor (cachectin) as an essential mediator in murine cerebral malaria</title>
</json:item>
<json:item>
<author>
<json:item>
<name>LME Grimaldi</name>
</json:item>
<json:item>
<name>GV Martino</name>
</json:item>
<json:item>
<name>DM Franciotta</name>
</json:item>
<json:item>
<name>R Brustia</name>
</json:item>
<json:item>
<name>A Castagna</name>
</json:item>
<json:item>
<name>R Pristera</name>
</json:item>
<json:item>
<name>A Lazzarin</name>
</json:item>
</author>
<host>
<volume>29</volume>
<pages>
<last>25</last>
<first>21</first>
</pages>
<author></author>
<title>Ann Neurol</title>
</host>
<title>Elevated alpha‐tumor necrosis factor levels in spinal fluid from HIV‐1‐infected patients with central nervous system involvement</title>
</json:item>
<json:item>
<author>
<json:item>
<name>BM Gumbiner</name>
</json:item>
</author>
<host>
<volume>11</volume>
<pages>
<last>564</last>
<first>551</first>
</pages>
<author></author>
<title>Neuron</title>
</host>
<title>Proteins associated with the cytoplasmic surface of adhesion molecules</title>
</json:item>
<json:item>
<author>
<json:item>
<name>EG Gutierrez</name>
</json:item>
<json:item>
<name>WA Banks</name>
</json:item>
<json:item>
<name>AJ Kastin</name>
</json:item>
</author>
<host>
<volume>47</volume>
<pages>
<last>176</last>
<first>169</first>
</pages>
<author></author>
<title>J Neuroimmunol</title>
</host>
<title>Murine tumor necrosis factor alpha is transported from blood to brain in the mouse</title>
</json:item>
<json:item>
<author>
<json:item>
<name>FM Hofman</name>
</json:item>
<json:item>
<name>DR Hinton</name>
</json:item>
<json:item>
<name>K Johnson</name>
</json:item>
<json:item>
<name>JE Merrill</name>
</json:item>
</author>
<host>
<volume>170</volume>
<pages>
<last>612</last>
<first>607</first>
</pages>
<author></author>
<title>J Exp Med</title>
</host>
<title>Tumor necrosis factor identified in multiple sclerosis brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>CW Hughes</name>
</json:item>
<json:item>
<name>DK Male</name>
</json:item>
<json:item>
<name>PL Lantos</name>
</json:item>
</author>
<host>
<volume>64</volume>
<pages>
<last>681</last>
<first>677</first>
</pages>
<author></author>
<title>Immunology</title>
</host>
<title>Adhesion of lymphocytes to cerebral microvascular cells: effects of interferon‐γ, tumour necrosis factor and interleukin‐1</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F Joó</name>
</json:item>
</author>
<host>
<volume>58</volume>
<pages>
<last>17</last>
<first>1</first>
</pages>
<author></author>
<title>J Neurochem</title>
</host>
<title>The cerebral microvessels in culture, an update</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K Kohno</name>
</json:item>
<json:item>
<name>R Hamanaka</name>
</json:item>
<json:item>
<name>T Abe</name>
</json:item>
<json:item>
<name>Y Nomura</name>
</json:item>
<json:item>
<name>A Morimoto</name>
</json:item>
<json:item>
<name>H Izumi</name>
</json:item>
<json:item>
<name>K Shimizu</name>
</json:item>
<json:item>
<name>M Ono</name>
</json:item>
<json:item>
<name>M Kuwano</name>
</json:item>
</author>
<host>
<volume>208</volume>
<pages>
<last>503</last>
<first>498</first>
</pages>
<author></author>
<title>Exp Cell Res</title>
</host>
<title>Morphological change and destabilization of β‐actin mRNA by tumor necrosis factor in human microvascular endothelial cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R Kolesnick</name>
</json:item>
<json:item>
<name>DW Golde</name>
</json:item>
</author>
<host>
<volume>77</volume>
<pages>
<last>328</last>
<first>325</first>
</pages>
<author></author>
<title>Cell</title>
</host>
<title>The sphingomyelin pathway in tumor necrosis factor and interleukin‐1 signaling</title>
</json:item>
<json:item>
<author>
<json:item>
<name>EG Langeler</name>
</json:item>
<json:item>
<name>W Fiers</name>
</json:item>
<json:item>
<name>VWM van Hinsbergh</name>
</json:item>
</author>
<host>
<volume>11</volume>
<pages>
<last>881</last>
<first>872</first>
</pages>
<author></author>
<title>Arterioscler Thromb</title>
</host>
<title>Effects of tumor necrosis factor on prostacyclin production and the barrier function of human endothelial cell monolayers</title>
</json:item>
<json:item>
<author>
<json:item>
<name>TP Leist</name>
</json:item>
<json:item>
<name>K Frei</name>
</json:item>
<json:item>
<name>S Kam‐Hansen</name>
</json:item>
<json:item>
<name>RM Zinkernagel</name>
</json:item>
<json:item>
<name>A Fontana</name>
</json:item>
</author>
<host>
<volume>167</volume>
<pages>
<last>1748</last>
<first>1743</first>
</pages>
<author></author>
<title>J Exp Med</title>
</host>
<title>Tumor necrosis factor α in cerebrospinal fluid during bacterial, but not viral, meningitis. Evaluation in murine model infections and in patients</title>
</json:item>
<json:item>
<author>
<json:item>
<name>AP Lieberman</name>
</json:item>
<json:item>
<name>PM Pitha</name>
</json:item>
<json:item>
<name>HS Shin</name>
</json:item>
<json:item>
<name>ML Shin</name>
</json:item>
</author>
<host>
<volume>86</volume>
<pages>
<last>6352</last>
<first>6348</first>
</pages>
<author></author>
<title>Proc Natl Acad Sci USA</title>
</host>
<title>Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D Male</name>
</json:item>
<json:item>
<name>G Pryce</name>
</json:item>
<json:item>
<name>C Hughes</name>
</json:item>
<json:item>
<name>P Lantos</name>
</json:item>
</author>
<host>
<volume>127</volume>
<pages>
<last>11</last>
<first>1</first>
</pages>
<author></author>
<title>Cell Immunol</title>
</host>
<title>Lymphocyte migration into brain modelled in vitro: Control by lymphocyte activation, cytokines, and antigen</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D Male</name>
</json:item>
<json:item>
<name>G Pryce</name>
</json:item>
<json:item>
<name>A Linke</name>
</json:item>
<json:item>
<name>J Rahman</name>
</json:item>
</author>
<host>
<volume>40</volume>
<pages>
<last>172</last>
<first>167</first>
</pages>
<author></author>
<title>J Neuroimmunol</title>
</host>
<title>Lymphocyte migration into the CNS modelled in vitro</title>
</json:item>
<json:item>
<author>
<json:item>
<name>CW Marano</name>
</json:item>
<json:item>
<name>KV Laughlin</name>
</json:item>
<json:item>
<name>LM Russo</name>
</json:item>
<json:item>
<name>A Peralta Soler</name>
</json:item>
<json:item>
<name>JM Mullin</name>
</json:item>
</author>
<host>
<volume>157</volume>
<pages>
<last>527</last>
<first>519</first>
</pages>
<author></author>
<title>J Cell Physiol</title>
</host>
<title>Long‐term effects of tumor necrosis factor on LLC‐PK1 transepithelial resistance</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P Megyeri</name>
</json:item>
<json:item>
<name>CS Ábrahám</name>
</json:item>
<json:item>
<name>P Temesvári</name>
</json:item>
<json:item>
<name>J Kovács</name>
</json:item>
<json:item>
<name>T Vas</name>
</json:item>
<json:item>
<name>CP Speer</name>
</json:item>
</author>
<host>
<volume>148</volume>
<pages>
<last>140</last>
<first>137</first>
</pages>
<author></author>
<title>Neurosci Lett</title>
</host>
<title>Recombinant human tumor necrosis factor α constricts pial arterioles and increases blood‐brain barrier permeability in newborn piglets</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S Méresse</name>
</json:item>
<json:item>
<name>M‐P Dehouck</name>
</json:item>
<json:item>
<name>P Delorme</name>
</json:item>
<json:item>
<name>M Bensaid</name>
</json:item>
<json:item>
<name>J‐P Tauber</name>
</json:item>
<json:item>
<name>C Delbart</name>
</json:item>
<json:item>
<name>J‐C Fruchart</name>
</json:item>
<json:item>
<name>R Cecchelli</name>
</json:item>
</author>
<host>
<volume>53</volume>
<pages>
<last>1371</last>
<first>1363</first>
</pages>
<author></author>
<title>J Neurochem</title>
</host>
<title>Bovine brain endothelial cells express tight junctions and monoamine oxidase activity in long‐term culture</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M Mogi</name>
</json:item>
<json:item>
<name>M Harada</name>
</json:item>
<json:item>
<name>P Riederer</name>
</json:item>
<json:item>
<name>H Narabayashi</name>
</json:item>
<json:item>
<name>K Fujita</name>
</json:item>
<json:item>
<name>T Nagatsu</name>
</json:item>
</author>
<host>
<volume>165</volume>
<pages>
<last>210</last>
<first>208</first>
</pages>
<author></author>
<title>Neurosci Lett</title>
</host>
<title>Tumor necrosis factor‐α increases both in the brain and in the cerebrospinal fluid from parkinsonian patients</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JM Mullin</name>
</json:item>
<json:item>
<name>KV Snock</name>
</json:item>
</author>
<host>
<volume>50</volume>
<pages>
<last>2176</last>
<first>2172</first>
</pages>
<author></author>
<title>Cancer Res</title>
</host>
<title>Effect of tumor necrosis factor on epithelial tight junctions and transepithelial permeability</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JM Mullin</name>
</json:item>
<json:item>
<name>KV Laughlin</name>
</json:item>
<json:item>
<name>CW Marano</name>
</json:item>
<json:item>
<name>LM Russo</name>
</json:item>
<json:item>
<name>A Peralta Soler</name>
</json:item>
</author>
<host>
<volume>263</volume>
<pages>
<last>924</last>
<first>915</first>
</pages>
<author></author>
<title>Am J Physiol</title>
</host>
<title>Modulation of tumor necrosis factor‐induced increase in renal (LLC‐PK1) transepithelial permeability</title>
</json:item>
<json:item>
<author>
<json:item>
<name>AJ Ridley</name>
</json:item>
<json:item>
<name>A Hall</name>
</json:item>
</author>
<host>
<volume>70</volume>
<pages>
<last>399</last>
<first>389</first>
</pages>
<author></author>
<title>Cell</title>
</host>
<title>The small GTP‐binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors</title>
</json:item>
<json:item>
<author>
<json:item>
<name>DS Robbins</name>
</json:item>
<json:item>
<name>Y Shirazi</name>
</json:item>
<json:item>
<name>B‐E Drisdale</name>
</json:item>
<json:item>
<name>A Lieberman</name>
</json:item>
<json:item>
<name>HS Shin</name>
</json:item>
<json:item>
<name>ML Shin</name>
</json:item>
</author>
<host>
<volume>139</volume>
<pages>
<last>2596</last>
<first>2593</first>
</pages>
<author></author>
<title>J Immunol</title>
</host>
<title>Production of cytotoxic factor for oligodendrocytes by stimulated astrocytes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JA Royall</name>
</json:item>
<json:item>
<name>RL Berkow</name>
</json:item>
<json:item>
<name>JS Beckman</name>
</json:item>
<json:item>
<name>MK Cunningham</name>
</json:item>
<json:item>
<name>S Matalon</name>
</json:item>
<json:item>
<name>BA Freeman</name>
</json:item>
</author>
<host>
<volume>1989</volume>
<pages>
<last>410</last>
<first>399</first>
</pages>
<author></author>
<title>Am J Physiol</title>
</host>
<title>Tumor necrosis factor and interleukin lα increase vascular endothelial permeability</title>
</json:item>
<json:item>
<author>
<json:item>
<name>LL Rubin</name>
</json:item>
<json:item>
<name>DE Hall</name>
</json:item>
<json:item>
<name>S Porter</name>
</json:item>
<json:item>
<name>K Barbu</name>
</json:item>
<json:item>
<name>C Cannon</name>
</json:item>
<json:item>
<name>HC Horner</name>
</json:item>
<json:item>
<name>M Janatpour</name>
</json:item>
<json:item>
<name>CW Liaw</name>
</json:item>
<json:item>
<name>K Manning</name>
</json:item>
<json:item>
<name>J Morales</name>
</json:item>
<json:item>
<name>LI Tanner</name>
</json:item>
<json:item>
<name>KJ Tomaselli</name>
</json:item>
<json:item>
<name>F Bard</name>
</json:item>
</author>
<host>
<volume>115</volume>
<pages>
<last>1735</last>
<first>1725</first>
</pages>
<author></author>
<title>J Cell Biol</title>
</host>
<title>A cell culture model of the bloodbrain barrier</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M Sawada</name>
</json:item>
<json:item>
<name>N Kondo</name>
</json:item>
<json:item>
<name>A Suzumura</name>
</json:item>
<json:item>
<name>T Marunouchi</name>
</json:item>
</author>
<host>
<volume>491</volume>
<pages>
<last>397</last>
<first>394</first>
</pages>
<author></author>
<title>Brain Res</title>
</host>
<title>Production of tumor necrosis factor‐alpha by microglia and astrocytes in culture</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M Schliwa</name>
</json:item>
<json:item>
<name>J Van Berkom</name>
</json:item>
</author>
<host>
<volume>90</volume>
<pages>
<last>235</last>
<first>222</first>
</pages>
<author></author>
<title>J Cell Biol</title>
</host>
<title>Structural interaction of cytoskeletal components</title>
</json:item>
<json:item>
<author>
<json:item>
<name>MK Sharief</name>
</json:item>
<json:item>
<name>R Hentges</name>
</json:item>
</author>
<host>
<volume>325</volume>
<pages>
<last>472</last>
<first>467</first>
</pages>
<author></author>
<title>N Engl J Med</title>
</host>
<title>Association between tumor necrosis factor‐α and disease progression in patients with multiple sclerosis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>MK Sharief</name>
</json:item>
<json:item>
<name>EJ Thompson</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<last>34</last>
<first>27</first>
</pages>
<author></author>
<title>J Neuroimmunol</title>
</host>
<title>In vivo relationship of tumor necrosis factor‐α to blood‐brain barrier damage in patients with active multiple sclerosis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y Shimada</name>
</json:item>
<json:item>
<name>H Ito</name>
</json:item>
<json:item>
<name>K Kaji</name>
</json:item>
<json:item>
<name>M Fukuda</name>
</json:item>
</author>
<host>
<volume>55</volume>
<pages>
<last>254</last>
<first>245</first>
</pages>
<author></author>
<title>Mech Ageing Dev</title>
</host>
<title>Tumor necrosis factor reduces lifespan of human endothelial cells in vitro</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A Siflinger‐Birnboim</name>
</json:item>
<json:item>
<name>PJ Del Vecchio</name>
</json:item>
<json:item>
<name>JA Cooper</name>
</json:item>
<json:item>
<name>FA Blumenstock</name>
</json:item>
<json:item>
<name>JN Shepard</name>
</json:item>
<json:item>
<name>AB Malik</name>
</json:item>
</author>
<host>
<volume>132</volume>
<pages>
<last>117</last>
<first>111</first>
</pages>
<author></author>
<title>J Cell Physiol</title>
</host>
<title>Molecular sieving characteristics of the cultured endothelial cell monolayer</title>
</json:item>
<json:item>
<author>
<json:item>
<name>TJ Stelzner</name>
</json:item>
<json:item>
<name>JV Weil</name>
</json:item>
<json:item>
<name>RF O'Brien</name>
</json:item>
</author>
<host>
<volume>139</volume>
<pages>
<last>166</last>
<first>157</first>
</pages>
<author></author>
<title>J Cell Physiol</title>
</host>
<title>Role of cyclic adenosine monophosphate in the induction of endothelial barrier properties</title>
</json:item>
<json:item>
<author>
<json:item>
<name>LS Terada</name>
</json:item>
<json:item>
<name>IR Willingham</name>
</json:item>
<json:item>
<name>DM Guidot</name>
</json:item>
<json:item>
<name>GN Shibao</name>
</json:item>
<json:item>
<name>GW Kindt</name>
</json:item>
<json:item>
<name>JE Repine</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>19</last>
<first>13</first>
</pages>
<author></author>
<title>Inflammation</title>
</host>
<title>Tungsten treatment prevents tumor necrosis factor‐induced injury of brain endothelial cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>KJ Tracey</name>
</json:item>
<json:item>
<name>A Cerami</name>
</json:item>
</author>
<host>
<volume>21</volume>
<pages>
<last>422</last>
<first>415</first>
</pages>
<author></author>
<title>Crit Care Med [Suppl]</title>
</host>
<title>Tumor necrosis factor: An updated review of its biology</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N Tsukada</name>
</json:item>
<json:item>
<name>K Miyagi</name>
</json:item>
<json:item>
<name>M Matsuda</name>
</json:item>
<json:item>
<name>N Yanagisawa</name>
</json:item>
<json:item>
<name>K Yone</name>
</json:item>
</author>
<host>
<volume>102</volume>
<pages>
<last>234</last>
<first>230</first>
</pages>
<author></author>
<title>J Neurol Sci</title>
</host>
<title>Tumor necrosis factor and interleukin‐1 in the CSF and sera of patients with multiple sclerosis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A Waage</name>
</json:item>
<json:item>
<name>A Halstensen</name>
</json:item>
<json:item>
<name>R Shalaby</name>
</json:item>
<json:item>
<name>P Brandtzaeg</name>
</json:item>
<json:item>
<name>P Kierulf</name>
</json:item>
<json:item>
<name>T Espevik</name>
</json:item>
</author>
<host>
<volume>170</volume>
<pages>
<last>1867</last>
<first>1859</first>
</pages>
<author></author>
<title>J Exp Med</title>
</host>
<title>Local production of tumor necrosis factor α, interleukin 1 and interleukin 6 in meningococcal meningitis. Relation to the inflammatory response</title>
</json:item>
<json:item>
<author>
<json:item>
<name>SJC Warner</name>
</json:item>
<json:item>
<name>P Libby</name>
</json:item>
</author>
<host>
<volume>142</volume>
<pages>
<last>109</last>
<first>100</first>
</pages>
<author></author>
<title>J Immunol</title>
</host>
<title>Human vascular smooth muscle cells. Target for and source of tumor necrosis factor</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S Yoshida</name>
</json:item>
<json:item>
<name>T Minakawara</name>
</json:item>
<json:item>
<name>N Takai</name>
</json:item>
<json:item>
<name>R Tanaka</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<last>376</last>
<first>373</first>
</pages>
<author></author>
<title>Neurosurgery</title>
</host>
<title>Effects of cytokines on cultured microvascular endothelial cells derived from gerbil brain</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>41</volume>
<publisherId>
<json:string>JNR</json:string>
</publisherId>
<pages>
<total>10</total>
<last>726</last>
<first>717</first>
</pages>
<issn>
<json:string>0360-4012</json:string>
</issn>
<issue>6</issue>
<subject>
<json:item>
<value>Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1097-4547</json:string>
</eissn>
<title>Journal of Neuroscience Research</title>
<doi>
<json:string>10.1002/(ISSN)1097-4547</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>neurosciences</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>neurology & neurosurgery</json:string>
</scienceMetrix>
</categories>
<publicationDate>1995</publicationDate>
<copyrightDate>1995</copyrightDate>
<doi>
<json:string>10.1002/jnr.490410602</json:string>
</doi>
<id>F3F000080C8118D02C67599B7C9BF89E437C012D</id>
<score>0.16294913</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/F3F000080C8118D02C67599B7C9BF89E437C012D/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/F3F000080C8118D02C67599B7C9BF89E437C012D/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/F3F000080C8118D02C67599B7C9BF89E437C012D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Exposure of tumor necrosis factor‐α to luminal membrane of bovine brain capillary endothelial cells cocultured with astrocytes induces a delayed increase of permeability and cytoplasmic stress fiber formation of actin</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<p>Copyright © 1995 Wiley‐Liss, Inc.</p>
</availability>
<date>1995</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Exposure of tumor necrosis factor‐α to luminal membrane of bovine brain capillary endothelial cells cocultured with astrocytes induces a delayed increase of permeability and cytoplasmic stress fiber formation of actin</title>
<author xml:id="author-1">
<persName>
<forename type="first">M. A.</forename>
<surname>Deli</surname>
</persName>
<affiliation>Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">L.</forename>
<surname>Descamps</surname>
</persName>
<affiliation>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">M.‐P.</forename>
<surname>Dehouck</surname>
</persName>
<affiliation>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">R.</forename>
<surname>Cecchelli</surname>
</persName>
<affiliation>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">F.</forename>
<surname>Joó</surname>
</persName>
<affiliation>Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">C. S.</forename>
<surname>Ábrahám</surname>
</persName>
<affiliation>Department of Pediatrics, Albert Szent‐Györgyi Medical University, Szeged, Hungary</affiliation>
</author>
<author xml:id="author-7">
<persName>
<forename type="first">G.</forename>
<surname>Torpier</surname>
</persName>
<roleName type="degree">Ph.D.</roleName>
<affiliation>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</affiliation>
<affiliation>INSERM U.325, Institut Pasteur‐Lille, 1 Rue A. Calmette, B.P. 245, 59019 Lille, France</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Neuroscience Research</title>
<title level="j" type="abbrev">J. Neurosci. Res.</title>
<idno type="pISSN">0360-4012</idno>
<idno type="eISSN">1097-4547</idno>
<idno type="DOI">10.1002/(ISSN)1097-4547</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="1995-08-15"></date>
<biblScope unit="volume">41</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="717">717</biblScope>
<biblScope unit="page" to="726">726</biblScope>
</imprint>
</monogr>
<idno type="istex">F3F000080C8118D02C67599B7C9BF89E437C012D</idno>
<idno type="DOI">10.1002/jnr.490410602</idno>
<idno type="ArticleID">JNR490410602</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1995</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Tumor necrosis factor‐α (TNF‐α), a proinflammatory cytokine, has long been known to be involved in the pathogenesis of central nervous system infections and of certain neurodegenerative diseases. However, the possible role of the blood‐brain barrier (BBB), the active interface between the blood circulation and brain tissue, remained unknown during these pathological conditions. In our in vitro reconstructed BBB model, 1‐hr exposure of recombinant human TNF‐α (in concentrations of 50, 250, and 500 U/ml, respectively) to the luminal membrane of bovine brain capillary endothelial cells (BBCEC) did not change significantly the transendothelia: flux of either sucrose (m.w. 342 Da), or inulin (m.w. 5 kDa) up to 4 hr (early phase), except for a slight decrease (P< 0.05) in sucrose permeation at 2–4 hr with the highest dose of TNF‐α On the other hand, at 16 hr after the 1‐hr challenge with TNF‐α (delayed phase) at all 3 concentrations, significant increase was induced in the permeability of BBCEC monolayers for both markers. These changes of permeability were accompanied by a selective reorganization of F‐actin filaments into stress fibers, while the intracellular distribution of vimentin remained similar to the control. These results suggest that BBCEC can respond directly to TNF‐α by a delayed increase of permeability and reorganization of actin filaments. ©1995 Wiley‐Liss, Inc.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>blood‐brain barrier (BBB)</term>
</item>
<item>
<term>tumor necrosis factor‐α</term>
</item>
<item>
<term>actin</term>
</item>
<item>
<term>stress fiber</term>
</item>
<item>
<term>vascular permeability</term>
</item>
<item>
<term>astrocytes</term>
</item>
<item>
<term>endothelial cells</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1994-08-15">Received</change>
<change when="1994-11-09">Registration</change>
<change when="1995-08-15">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/F3F000080C8118D02C67599B7C9BF89E437C012D/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1097-4547</doi>
<issn type="print">0360-4012</issn>
<issn type="electronic">1097-4547</issn>
<idGroup>
<id type="product" value="JNR"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF NEUROSCIENCE RESEARCH">Journal of Neuroscience Research</title>
<title type="short">J. Neurosci. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="60">
<doi origin="wiley" registered="yes">10.1002/jnr.v41:6</doi>
<numberingGroup>
<numbering type="journalVolume" number="41">41</numbering>
<numbering type="journalIssue">6</numbering>
</numberingGroup>
<coverDate startDate="1995-08-15">15 August 1995</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="2" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/jnr.490410602</doi>
<idGroup>
<id type="unit" value="JNR490410602"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="10"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Article</title>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 1995 Wiley‐Liss, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1994-08-15"></event>
<event type="manuscriptRevised" date="1994-11-07"></event>
<event type="manuscriptAccepted" date="1994-11-09"></event>
<event type="firstOnline" date="2004-10-11"></event>
<event type="publishedOnlineFinalForm" date="2004-10-11"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-15"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">717</numbering>
<numbering type="pageLast">726</numbering>
</numberingGroup>
<correspondenceTo>INSERM U.325, Institut Pasteur‐Lille, 1 Rue A. Calmette, B.P. 245, 59019 Lille, France</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JNR.JNR490410602.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="5"></count>
<count type="tableTotal" number="0"></count>
<count type="referenceTotal" number="50"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Exposure of tumor necrosis factor‐α to luminal membrane of bovine brain capillary endothelial cells cocultured with astrocytes induces a delayed increase of permeability and cytoplasmic stress fiber formation of actin</title>
<title type="short" xml:lang="en">Effects of TNF‐α on Blood‐Brain Barrier</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>M. A.</givenNames>
<familyName>Deli</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>L.</givenNames>
<familyName>Descamps</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>M.‐P.</givenNames>
<familyName>Dehouck</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>R.</givenNames>
<familyName>Cecchelli</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>F.</givenNames>
<familyName>Joó</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>C. S.</givenNames>
<familyName>Ábrahám</familyName>
</personName>
</creator>
<creator xml:id="au7" creatorRole="author" affiliationRef="#af3" corresponding="yes">
<personName>
<givenNames>G.</givenNames>
<familyName>Torpier</familyName>
<degrees>Ph.D.</degrees>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="HU" type="organization">
<unparsedAffiliation>Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="HU" type="organization">
<unparsedAffiliation>Department of Pediatrics, Albert Szent‐Györgyi Medical University, Szeged, Hungary</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="FR" type="organization">
<unparsedAffiliation>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">blood‐brain barrier (BBB)</keyword>
<keyword xml:id="kwd2">tumor necrosis factor‐α</keyword>
<keyword xml:id="kwd3">actin</keyword>
<keyword xml:id="kwd4">stress fiber</keyword>
<keyword xml:id="kwd5">vascular permeability</keyword>
<keyword xml:id="kwd6">astrocytes</keyword>
<keyword xml:id="kwd7">endothelial cells</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Tumor necrosis factor‐α (TNF‐α), a proinflammatory cytokine, has long been known to be involved in the pathogenesis of central nervous system infections and of certain neurodegenerative diseases. However, the possible role of the blood‐brain barrier (BBB), the active interface between the blood circulation and brain tissue, remained unknown during these pathological conditions. In our in vitro reconstructed BBB model, 1‐hr exposure of recombinant human TNF‐α (in concentrations of 50, 250, and 500 U/ml, respectively) to the luminal membrane of bovine brain capillary endothelial cells (BBCEC) did not change significantly the transendothelia: flux of either sucrose (m.w. 342 Da), or inulin (m.w. 5 kDa) up to 4 hr (early phase), except for a slight decrease (P< 0.05) in sucrose permeation at 2–4 hr with the highest dose of TNF‐α On the other hand, at 16 hr after the 1‐hr challenge with TNF‐α (delayed phase) at all 3 concentrations, significant increase was induced in the permeability of BBCEC monolayers for both markers. These changes of permeability were accompanied by a selective reorganization of F‐actin filaments into stress fibers, while the intracellular distribution of vimentin remained similar to the control. These results suggest that BBCEC can respond directly to TNF‐α by a delayed increase of permeability and reorganization of actin filaments. ©1995 Wiley‐Liss, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Exposure of tumor necrosis factor‐α to luminal membrane of bovine brain capillary endothelial cells cocultured with astrocytes induces a delayed increase of permeability and cytoplasmic stress fiber formation of actin</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Effects of TNF‐α on Blood‐Brain Barrier</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Exposure of tumor necrosis factor‐α to luminal membrane of bovine brain capillary endothelial cells cocultured with astrocytes induces a delayed increase of permeability and cytoplasmic stress fiber formation of actin</title>
</titleInfo>
<name type="personal">
<namePart type="given">M. A.</namePart>
<namePart type="family">Deli</namePart>
<affiliation>Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L.</namePart>
<namePart type="family">Descamps</namePart>
<affiliation>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.‐P.</namePart>
<namePart type="family">Dehouck</namePart>
<affiliation>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Cecchelli</namePart>
<affiliation>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">F.</namePart>
<namePart type="family">Joó</namePart>
<affiliation>Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C. S.</namePart>
<namePart type="family">Ábrahám</namePart>
<affiliation>Department of Pediatrics, Albert Szent‐Györgyi Medical University, Szeged, Hungary</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Torpier</namePart>
<namePart type="termsOfAddress">Ph.D.</namePart>
<affiliation>INSERM U. 325, Institut Pasteur‐Lille, Lille, France</affiliation>
<affiliation>INSERM U.325, Institut Pasteur‐Lille, 1 Rue A. Calmette, B.P. 245, 59019 Lille, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1995-08-15</dateIssued>
<dateCaptured encoding="w3cdtf">1994-08-15</dateCaptured>
<dateValid encoding="w3cdtf">1994-11-09</dateValid>
<copyrightDate encoding="w3cdtf">1995</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">5</extent>
<extent unit="references">50</extent>
</physicalDescription>
<abstract lang="en">Tumor necrosis factor‐α (TNF‐α), a proinflammatory cytokine, has long been known to be involved in the pathogenesis of central nervous system infections and of certain neurodegenerative diseases. However, the possible role of the blood‐brain barrier (BBB), the active interface between the blood circulation and brain tissue, remained unknown during these pathological conditions. In our in vitro reconstructed BBB model, 1‐hr exposure of recombinant human TNF‐α (in concentrations of 50, 250, and 500 U/ml, respectively) to the luminal membrane of bovine brain capillary endothelial cells (BBCEC) did not change significantly the transendothelia: flux of either sucrose (m.w. 342 Da), or inulin (m.w. 5 kDa) up to 4 hr (early phase), except for a slight decrease (P< 0.05) in sucrose permeation at 2–4 hr with the highest dose of TNF‐α On the other hand, at 16 hr after the 1‐hr challenge with TNF‐α (delayed phase) at all 3 concentrations, significant increase was induced in the permeability of BBCEC monolayers for both markers. These changes of permeability were accompanied by a selective reorganization of F‐actin filaments into stress fibers, while the intracellular distribution of vimentin remained similar to the control. These results suggest that BBCEC can respond directly to TNF‐α by a delayed increase of permeability and reorganization of actin filaments. ©1995 Wiley‐Liss, Inc.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>blood‐brain barrier (BBB)</topic>
<topic>tumor necrosis factor‐α</topic>
<topic>actin</topic>
<topic>stress fiber</topic>
<topic>vascular permeability</topic>
<topic>astrocytes</topic>
<topic>endothelial cells</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Neuroscience Research</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Neurosci. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Article</topic>
</subject>
<identifier type="ISSN">0360-4012</identifier>
<identifier type="eISSN">1097-4547</identifier>
<identifier type="DOI">10.1002/(ISSN)1097-4547</identifier>
<identifier type="PublisherID">JNR</identifier>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>41</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>717</start>
<end>726</end>
<total>10</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">F3F000080C8118D02C67599B7C9BF89E437C012D</identifier>
<identifier type="DOI">10.1002/jnr.490410602</identifier>
<identifier type="ArticleID">JNR490410602</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 1995 Wiley‐Liss, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001946 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001946 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:F3F000080C8118D02C67599B7C9BF89E437C012D
   |texte=   Exposure of tumor necrosis factor‐α to luminal membrane of bovine brain capillary endothelial cells cocultured with astrocytes induces a delayed increase of permeability and cytoplasmic stress fiber formation of actin
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024