La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chimeric CD46/DAF molecules reveal a cryptic functional role for SCR1 of DAF in regulating complement activation

Identifieur interne : 001881 ( Istex/Corpus ); précédent : 001880; suivant : 001882

Chimeric CD46/DAF molecules reveal a cryptic functional role for SCR1 of DAF in regulating complement activation

Auteurs : Dale Christiansen ; Bruce Loveland ; Peter Kyriakou ; Marc Lanteri ; Eric Rubinstein ; Denis Gerlier

Source :

RBID : ISTEX:8F09E47111AE44C0F32A60F48A68E5D6BB932E99

English descriptors

Abstract

Chimeric proteins using membrane cofactor (CD46) and decay accelerating factor (DAF or CD55) were generated to further investigate the functional domains involved in the regulation of human serum complement. Following activation of the classical pathway, the isolated substitution of CD46 SCR III (×3DAF) exhibited a modest regulatory activity comparable to that of CD46. The isolated substitution of CD46 SCR IV (×4DAF), and the combined CD46 SCR III+IV substitutions (×3/4DAF) were essentially as efficient as DAF. No regulation of C3b deposition was observed with the combined CD46 SCR I+II substitutions (×1/2DAF). When tested after activation of the alternative pathway, both the ×3DAF and ×3/4DAF chimeras failed to regulate C3b deposition, while the ×4DAF chimera still displayed some activity. In contrast to that observed following classical pathway activation, the ×1/2DAF chimera exhibited a similar efficiency to wild type CD46 and DAF in controlling C3b deposition. Using SCR specific antibodies, the regulatory activity of the ×1/2DAF chimera against the alternative pathway was mapped to the first three distal SCR (i.e. DAF 1, DAF 2 and CD46 III). These data demonstrate that several combinations of SCR domains from two related complement regulators can result in functional molecules, and reveal a novel and cryptic functional role for DAF SCR1.

Url:
DOI: 10.1016/S0161-5890(01)00002-5

Links to Exploration step

ISTEX:8F09E47111AE44C0F32A60F48A68E5D6BB932E99

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Chimeric CD46/DAF molecules reveal a cryptic functional role for SCR1 of DAF in regulating complement activation</title>
<author>
<name sortKey="Christiansen, Dale" sort="Christiansen, Dale" uniqKey="Christiansen D" first="Dale" last="Christiansen">Dale Christiansen</name>
<affiliation>
<mods:affiliation>Immunité and Infections Virales, V.P.V., CNRS-UCBL UMR 5537, Faculté de Médecine Laennec, 69372 Lyon Cedex 08, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Loveland, Bruce" sort="Loveland, Bruce" uniqKey="Loveland B" first="Bruce" last="Loveland">Bruce Loveland</name>
<affiliation>
<mods:affiliation>The Austin Research Institute, Heidelberg, Vic 3084, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kyriakou, Peter" sort="Kyriakou, Peter" uniqKey="Kyriakou P" first="Peter" last="Kyriakou">Peter Kyriakou</name>
<affiliation>
<mods:affiliation>The Austin Research Institute, Heidelberg, Vic 3084, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lanteri, Marc" sort="Lanteri, Marc" uniqKey="Lanteri M" first="Marc" last="Lanteri">Marc Lanteri</name>
<affiliation>
<mods:affiliation>The Austin Research Institute, Heidelberg, Vic 3084, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rubinstein, Eric" sort="Rubinstein, Eric" uniqKey="Rubinstein E" first="Eric" last="Rubinstein">Eric Rubinstein</name>
<affiliation>
<mods:affiliation>INSERM U268, Hopital Paul Brousse, Villejuif, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gerlier, Denis" sort="Gerlier, Denis" uniqKey="Gerlier D" first="Denis" last="Gerlier">Denis Gerlier</name>
<affiliation>
<mods:affiliation>Immunité and Infections Virales, V.P.V., CNRS-UCBL UMR 5537, Faculté de Médecine Laennec, 69372 Lyon Cedex 08, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Corresponding author. Tel.: +33-4-78778618; fax: +33-4-78778754</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: gerlier@laennec.univ-lyonl.fr</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:8F09E47111AE44C0F32A60F48A68E5D6BB932E99</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S0161-5890(01)00002-5</idno>
<idno type="url">https://api.istex.fr/document/8F09E47111AE44C0F32A60F48A68E5D6BB932E99/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001881</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001881</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Chimeric CD46/DAF molecules reveal a cryptic functional role for SCR1 of DAF in regulating complement activation</title>
<author>
<name sortKey="Christiansen, Dale" sort="Christiansen, Dale" uniqKey="Christiansen D" first="Dale" last="Christiansen">Dale Christiansen</name>
<affiliation>
<mods:affiliation>Immunité and Infections Virales, V.P.V., CNRS-UCBL UMR 5537, Faculté de Médecine Laennec, 69372 Lyon Cedex 08, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Loveland, Bruce" sort="Loveland, Bruce" uniqKey="Loveland B" first="Bruce" last="Loveland">Bruce Loveland</name>
<affiliation>
<mods:affiliation>The Austin Research Institute, Heidelberg, Vic 3084, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kyriakou, Peter" sort="Kyriakou, Peter" uniqKey="Kyriakou P" first="Peter" last="Kyriakou">Peter Kyriakou</name>
<affiliation>
<mods:affiliation>The Austin Research Institute, Heidelberg, Vic 3084, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lanteri, Marc" sort="Lanteri, Marc" uniqKey="Lanteri M" first="Marc" last="Lanteri">Marc Lanteri</name>
<affiliation>
<mods:affiliation>The Austin Research Institute, Heidelberg, Vic 3084, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rubinstein, Eric" sort="Rubinstein, Eric" uniqKey="Rubinstein E" first="Eric" last="Rubinstein">Eric Rubinstein</name>
<affiliation>
<mods:affiliation>INSERM U268, Hopital Paul Brousse, Villejuif, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gerlier, Denis" sort="Gerlier, Denis" uniqKey="Gerlier D" first="Denis" last="Gerlier">Denis Gerlier</name>
<affiliation>
<mods:affiliation>Immunité and Infections Virales, V.P.V., CNRS-UCBL UMR 5537, Faculté de Médecine Laennec, 69372 Lyon Cedex 08, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Corresponding author. Tel.: +33-4-78778618; fax: +33-4-78778754</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: gerlier@laennec.univ-lyonl.fr</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Molecular Immunology</title>
<title level="j" type="abbrev">MIMM</title>
<idno type="ISSN">0161-5890</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">37</biblScope>
<biblScope unit="issue">12–13</biblScope>
<biblScope unit="page" from="687">687</biblScope>
<biblScope unit="page" to="696">696</biblScope>
</imprint>
<idno type="ISSN">0161-5890</idno>
</series>
<idno type="istex">8F09E47111AE44C0F32A60F48A68E5D6BB932E99</idno>
<idno type="DOI">10.1016/S0161-5890(01)00002-5</idno>
<idno type="PII">S0161-5890(01)00002-5</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0161-5890</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>C3b deposition</term>
<term>CD46</term>
<term>CD55</term>
<term>Membrane cofactor protein</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Chimeric proteins using membrane cofactor (CD46) and decay accelerating factor (DAF or CD55) were generated to further investigate the functional domains involved in the regulation of human serum complement. Following activation of the classical pathway, the isolated substitution of CD46 SCR III (×3DAF) exhibited a modest regulatory activity comparable to that of CD46. The isolated substitution of CD46 SCR IV (×4DAF), and the combined CD46 SCR III+IV substitutions (×3/4DAF) were essentially as efficient as DAF. No regulation of C3b deposition was observed with the combined CD46 SCR I+II substitutions (×1/2DAF). When tested after activation of the alternative pathway, both the ×3DAF and ×3/4DAF chimeras failed to regulate C3b deposition, while the ×4DAF chimera still displayed some activity. In contrast to that observed following classical pathway activation, the ×1/2DAF chimera exhibited a similar efficiency to wild type CD46 and DAF in controlling C3b deposition. Using SCR specific antibodies, the regulatory activity of the ×1/2DAF chimera against the alternative pathway was mapped to the first three distal SCR (i.e. DAF 1, DAF 2 and CD46 III). These data demonstrate that several combinations of SCR domains from two related complement regulators can result in functional molecules, and reveal a novel and cryptic functional role for DAF SCR1.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Dale Christiansen</name>
<affiliations>
<json:string>Immunité and Infections Virales, V.P.V., CNRS-UCBL UMR 5537, Faculté de Médecine Laennec, 69372 Lyon Cedex 08, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Bruce Loveland</name>
<affiliations>
<json:string>The Austin Research Institute, Heidelberg, Vic 3084, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Peter Kyriakou</name>
<affiliations>
<json:string>The Austin Research Institute, Heidelberg, Vic 3084, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Marc Lanteri</name>
<affiliations>
<json:string>The Austin Research Institute, Heidelberg, Vic 3084, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Eric Rubinstein</name>
<affiliations>
<json:string>INSERM U268, Hopital Paul Brousse, Villejuif, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Denis Gerlier</name>
<affiliations>
<json:string>Immunité and Infections Virales, V.P.V., CNRS-UCBL UMR 5537, Faculté de Médecine Laennec, 69372 Lyon Cedex 08, France</json:string>
<json:string>Corresponding author. Tel.: +33-4-78778618; fax: +33-4-78778754</json:string>
<json:string>E-mail: gerlier@laennec.univ-lyonl.fr</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>CD46</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>CD55</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>C3b deposition</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Membrane cofactor protein</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Chimeric proteins using membrane cofactor (CD46) and decay accelerating factor (DAF or CD55) were generated to further investigate the functional domains involved in the regulation of human serum complement. Following activation of the classical pathway, the isolated substitution of CD46 SCR III (×3DAF) exhibited a modest regulatory activity comparable to that of CD46. The isolated substitution of CD46 SCR IV (×4DAF), and the combined CD46 SCR III+IV substitutions (×3/4DAF) were essentially as efficient as DAF. No regulation of C3b deposition was observed with the combined CD46 SCR I+II substitutions (×1/2DAF). When tested after activation of the alternative pathway, both the ×3DAF and ×3/4DAF chimeras failed to regulate C3b deposition, while the ×4DAF chimera still displayed some activity. In contrast to that observed following classical pathway activation, the ×1/2DAF chimera exhibited a similar efficiency to wild type CD46 and DAF in controlling C3b deposition. Using SCR specific antibodies, the regulatory activity of the ×1/2DAF chimera against the alternative pathway was mapped to the first three distal SCR (i.e. DAF 1, DAF 2 and CD46 III). These data demonstrate that several combinations of SCR domains from two related complement regulators can result in functional molecules, and reveal a novel and cryptic functional role for DAF SCR1.</abstract>
<qualityIndicators>
<score>7.448</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>552 x 768 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>4</keywordCount>
<abstractCharCount>1363</abstractCharCount>
<pdfWordCount>6018</pdfWordCount>
<pdfCharCount>36544</pdfCharCount>
<pdfPageCount>10</pdfPageCount>
<abstractWordCount>204</abstractWordCount>
</qualityIndicators>
<title>Chimeric CD46/DAF molecules reveal a cryptic functional role for SCR1 of DAF in regulating complement activation</title>
<pii>
<json:string>S0161-5890(01)00002-5</json:string>
</pii>
<refBibs>
<json:item>
<author>
<json:item>
<name>P. Accardo</name>
</json:item>
<json:item>
<name>P. Sanchez-Corral</name>
</json:item>
<json:item>
<name>O. Criado</name>
</json:item>
<json:item>
<name>E. Garcia</name>
</json:item>
<json:item>
<name>S. Rodriguez de Cordoba</name>
</json:item>
</author>
<host>
<volume>157</volume>
<pages>
<last>4939</last>
<first>4935</first>
</pages>
<author></author>
<title>J. Immunol.</title>
</host>
<title>Binding of human complement component C4b-binding protein (C4bp) to Strectococcus pyogenes involves the C4b-binding site</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.M. Adams</name>
</json:item>
<json:item>
<name>M.C. Brown</name>
</json:item>
<json:item>
<name>M. Nunge</name>
</json:item>
<json:item>
<name>M. Krych</name>
</json:item>
<json:item>
<name>J.P. Atkinson</name>
</json:item>
</author>
<host>
<volume>147</volume>
<pages>
<last>3011</last>
<first>3005</first>
</pages>
<author></author>
<title>J. Immunol.</title>
</host>
<title>Contribution of the repeating domains of membrane cofactor protein (CD46) of the complement system to ligand binding and cofactor activity</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P.N. Barlow</name>
</json:item>
<json:item>
<name>A. Steinkasserer</name>
</json:item>
<json:item>
<name>D.G. Norman</name>
</json:item>
<json:item>
<name>B. Kieffer</name>
</json:item>
<json:item>
<name>A.P. Wiles</name>
</json:item>
<json:item>
<name>R.B. Sim</name>
</json:item>
<json:item>
<name>I.D. Campbell</name>
</json:item>
</author>
<host>
<volume>232</volume>
<pages>
<last>284</last>
<first>268</first>
</pages>
<author></author>
<title>J. Mol. Biol.</title>
</host>
<title>Solution structure of a pair of complement modules by nuclear magnetic resonance</title>
</json:item>
<json:item>
<host>
<author></author>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>A.M. Blom</name>
</json:item>
<json:item>
<name>J. Webb</name>
</json:item>
<json:item>
<name>B.O. Villoutreix</name>
</json:item>
<json:item>
<name>B. Dahlback</name>
</json:item>
</author>
<host>
<volume>274</volume>
<pages>
<last>19245</last>
<first>19237</first>
</pages>
<author></author>
<title>J. Biol. Chem.</title>
</host>
<title>A cluster of positively charged amino acids in the C4BP alpha-chain is crucial for C4b binding and factor I cofactor function</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W.G. Brodbeck</name>
</json:item>
<json:item>
<name>D. Liu</name>
</json:item>
<json:item>
<name>J. Sperry</name>
</json:item>
<json:item>
<name>C. Mold</name>
</json:item>
<json:item>
<name>M.E. Medof</name>
</json:item>
</author>
<host>
<volume>156</volume>
<pages>
<last>2533</last>
<first>2528</first>
</pages>
<author></author>
<title>J. Immunol.</title>
</host>
<title>Localisation of classical and alternative pathway regulatory activity within the decay-accelerating factor</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W.G. Brodbeck</name>
</json:item>
<json:item>
<name>C. Mold</name>
</json:item>
<json:item>
<name>J.P. Atkinson</name>
</json:item>
<json:item>
<name>M.E. Medof</name>
</json:item>
</author>
<host>
<volume>165</volume>
<pages>
<last>4006</last>
<first>3999</first>
</pages>
<author></author>
<title>J. Immunol.</title>
</host>
<title>Cooperation between decay-accelerating factor and membrane cofactor protein in protecting cells from autologous complement attack</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.M. Casasnovas</name>
</json:item>
<json:item>
<name>M. Larvie</name>
</json:item>
<json:item>
<name>T. Stehle</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>2922</last>
<first>2911</first>
</pages>
<author></author>
<title>EMBO J.</title>
</host>
<title>Crystal structure of two CD46 domains reveals an extended measles virus-binding surface</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Charreau</name>
</json:item>
<json:item>
<name>S. Menoret</name>
</json:item>
<json:item>
<name>L. Tesson</name>
</json:item>
<json:item>
<name>A. Azimzadeh</name>
</json:item>
<json:item>
<name>M. Audet</name>
</json:item>
<json:item>
<name>P. Wolf</name>
</json:item>
<json:item>
<name>R. Marquet</name>
</json:item>
<json:item>
<name>C. Verbakel</name>
</json:item>
<json:item>
<name>J. Ijzermans</name>
</json:item>
<json:item>
<name>P. Cowan</name>
</json:item>
<json:item>
<name>M. Pearse</name>
</json:item>
<json:item>
<name>A. d'Apice</name>
</json:item>
<json:item>
<name>J.P. Soulillou</name>
</json:item>
<json:item>
<name>I. Anegon</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>630</last>
<first>617</first>
</pages>
<author></author>
<title>Mol. Med.</title>
</host>
<title>Protection against hyperacute xenograft rejection of transgenic rat hearts expressing human decay accelerating factor (DAF) transplanted into primates</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Christiansen</name>
</json:item>
<json:item>
<name>B. Loveland</name>
</json:item>
<json:item>
<name>P. Kyriakou</name>
</json:item>
<json:item>
<name>M. Lanteri</name>
</json:item>
<json:item>
<name>C. Escoffier</name>
</json:item>
<json:item>
<name>D. Gerlier</name>
</json:item>
</author>
<host>
<volume>81</volume>
<pages>
<last>917</last>
<first>911</first>
</pages>
<author></author>
<title>J. Gen. Virol.</title>
</host>
<title>Interaction of CD46 with measles virus: accessory role of CD46 short consensus repeat IV</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K.E. Coyne</name>
</json:item>
<json:item>
<name>S.E. Hall</name>
</json:item>
<json:item>
<name>E.S. Thompson</name>
</json:item>
<json:item>
<name>M.A. Arce</name>
</json:item>
<json:item>
<name>T. Kinoshita</name>
</json:item>
<json:item>
<name>T. Fujita</name>
</json:item>
<json:item>
<name>D.J. Anstree</name>
</json:item>
<json:item>
<name>W. Rosse</name>
</json:item>
<json:item>
<name>D.M. Lublin</name>
</json:item>
</author>
<host>
<volume>149</volume>
<pages>
<last>2913</last>
<first>2906</first>
</pages>
<author></author>
<title>J. Immunol.</title>
</host>
<title>Mapping of epitopes, glycosylation sites, and complement regulatory domains in human decay accelerating factor</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Devaux</name>
</json:item>
<json:item>
<name>D. Christiansen</name>
</json:item>
<json:item>
<name>M. Fontaine</name>
</json:item>
<json:item>
<name>D. Gerlier</name>
</json:item>
</author>
<host>
<volume>29</volume>
<pages>
<last>8</last>
<first>1</first>
</pages>
<author></author>
<title>Eur. J. Immunol.</title>
</host>
<title>Control of C3b and CSb deposition by CD46 (membrane cofactor protein) after alternative but not classical complement activation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Gorter</name>
</json:item>
<json:item>
<name>S. Men</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>581</last>
<first>576</first>
</pages>
<author></author>
<title>Immunol. Today</title>
</host>
<title>Immune evasion of tumour cells using membrane-bound complement regulatory proteins</title>
</json:item>
<json:item>
<author>
<json:item>
<name>O. Gotze</name>
</json:item>
<json:item>
<name>H.J. Muller-Eberhard</name>
</json:item>
</author>
<host>
<volume>134</volume>
<pages>
<last>108</last>
<first>90</first>
</pages>
<author></author>
<title>J. Exp. Med.</title>
</host>
<title>The C3-activator system: an alternative pathway of complement activation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Hourcade</name>
</json:item>
<json:item>
<name>M. Holers</name>
</json:item>
<json:item>
<name>J. Atkinson</name>
</json:item>
</author>
<host>
<volume>45</volume>
<pages>
<last>416</last>
<first>381</first>
</pages>
<author></author>
<title>Adv. Immunol.</title>
</host>
<title>The regulators of complement activation (RCA) gene cluster</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.E. Hourcade</name>
</json:item>
<json:item>
<name>L.M. Wagner</name>
</json:item>
<json:item>
<name>T.J. Oglesby</name>
</json:item>
</author>
<host>
<volume>270</volume>
<pages>
<last>19722</last>
<first>19716</first>
</pages>
<author></author>
<title>J. Biol. Chem.</title>
</host>
<title>Analysis of the short consensus repeats of human complement factor B by site-directed mutagenesis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.C. Hsu</name>
</json:item>
<json:item>
<name>R.E. Dorig</name>
</json:item>
<json:item>
<name>F. Sarangi</name>
</json:item>
<json:item>
<name>A. Marcil</name>
</json:item>
<json:item>
<name>C. Iorio</name>
</json:item>
<json:item>
<name>C.D. Richardson</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<last>6154</last>
<first>6144</first>
</pages>
<author></author>
<title>J. Virol.</title>
</host>
<title>Artificial mutations and natural variations in the CD46 molecules from human and monkey cells define regions important for measles virus binding</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Iwata</name>
</json:item>
<json:item>
<name>T. Seya</name>
</json:item>
<json:item>
<name>Y. Yanagi</name>
</json:item>
<json:item>
<name>J.M. Pesando</name>
</json:item>
<json:item>
<name>P.M. Johnson</name>
</json:item>
<json:item>
<name>M. Okabe</name>
</json:item>
<json:item>
<name>S. Ueda</name>
</json:item>
<json:item>
<name>H. Ariga</name>
</json:item>
<json:item>
<name>S. Nagasawa</name>
</json:item>
</author>
<host>
<volume>270</volume>
<pages>
<last>15152</last>
<first>15148</first>
</pages>
<author></author>
<title>J. Biol. Chem.</title>
</host>
<title>Diversity of sites for measles virus binding and for inactivation of complement C3b and C4b on membrane cofactor protein CD46</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R.W. Johnstone</name>
</json:item>
<json:item>
<name>B.E. Loveland</name>
</json:item>
<json:item>
<name>I.F.C. McKenzie</name>
</json:item>
</author>
<host>
<volume>79</volume>
<pages>
<last>347</last>
<first>341</first>
</pages>
<author></author>
<title>Immunology</title>
</host>
<title>Identification and quantification of complement regulator CD46 on normal human tissues</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Kinoshita</name>
</json:item>
<json:item>
<name>M.E. Medof</name>
</json:item>
<json:item>
<name>R. Silber</name>
</json:item>
<json:item>
<name>V. Nussenweig</name>
</json:item>
</author>
<host>
<volume>162</volume>
<pages>
<last>92</last>
<first>75</first>
</pages>
<author></author>
<title>J. Exp. Med.</title>
</host>
<title>Distribution of decay-accelerating factor in the peripheral blood of normal individuals and patients with paroxysmal nocturnal hemoglobinurea</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Kojima</name>
</json:item>
<json:item>
<name>K. Iwata</name>
</json:item>
<json:item>
<name>T. Seya</name>
</json:item>
<json:item>
<name>M. Matsumoto</name>
</json:item>
<json:item>
<name>H. Ariga</name>
</json:item>
<json:item>
<name>J.P. Atkinson</name>
</json:item>
<json:item>
<name>S. Nagasawa</name>
</json:item>
</author>
<host>
<volume>151</volume>
<pages>
<last>1527</last>
<first>1519</first>
</pages>
<author></author>
<title>J. Immunol.</title>
</host>
<title>Membrane cofactor protein (CD46) protects cells predominantly from alternative complement pathway-mediated C3-fragment deposition and cytolysis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Krych-Goldberg</name>
</json:item>
<json:item>
<name>R.E. Hauhart</name>
</json:item>
<json:item>
<name>V.B. Subramanian</name>
</json:item>
<json:item>
<name>B.M. Yurcisin, 2nd</name>
</json:item>
<json:item>
<name>D.L. Crimmins</name>
</json:item>
<json:item>
<name>D.E. Hourcade</name>
</json:item>
<json:item>
<name>J.P. Atkinson</name>
</json:item>
</author>
<host>
<volume>274</volume>
<pages>
<last>31168</last>
<first>31160</first>
</pages>
<author></author>
<title>J. Biol. Chem.</title>
</host>
<title>Decay accelerating activity of complement receptor type 1 (CD35). Two active sites are required for dissociating CS convertases</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Kuhn</name>
</json:item>
<json:item>
<name>P.F. Zipfel</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>2387</last>
<first>2383</first>
</pages>
<author></author>
<title>Eur. J. Immunol.</title>
</host>
<title>Mapping of the domains required for decay acceleration activity of the human factor H-like protein 1 and factor H</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Kuhn</name>
</json:item>
<json:item>
<name>C. Skerka</name>
</json:item>
<json:item>
<name>P.F. Zipfel</name>
</json:item>
</author>
<host>
<volume>155</volume>
<pages>
<last>5670</last>
<first>5663</first>
</pages>
<author></author>
<title>J. Immunol.</title>
</host>
<title>Mapping of the complement regulatory domains in the human factor H-like protein 1 and in factor H1</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Kutter-Kondo</name>
</json:item>
<json:item>
<name>M.E. Medof</name>
</json:item>
<json:item>
<name>W. Brodbeck</name>
</json:item>
<json:item>
<name>M. Shoham</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>1149</last>
<first>1143</first>
</pages>
<author></author>
<title>Prot. Eng.</title>
</host>
<title>Molecular modeling and mechanism of action of decay accelerating factor</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Lindahl</name>
</json:item>
<json:item>
<name>U. Sjobring</name>
</json:item>
<json:item>
<name>E. Johnsson</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>51</last>
<first>44</first>
</pages>
<author></author>
<title>Curr. Opin. Immunol.</title>
</host>
<title>Human complement regulators: a major target for pathogenic microorganisms</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.K. Liszewski</name>
</json:item>
<json:item>
<name>M.K. Leung</name>
</json:item>
<json:item>
<name>J.P. Atkinson</name>
</json:item>
</author>
<host>
<volume>161</volume>
<pages>
<last>3718</last>
<first>3711</first>
</pages>
<author></author>
<title>J. Immunol.</title>
</host>
<title>Membrane cofactor protein: importance of N- and O-glycosylation for complement regulatory function</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.K. Liszewski</name>
</json:item>
<json:item>
<name>M. Leung</name>
</json:item>
<json:item>
<name>W. Cui</name>
</json:item>
<json:item>
<name>V.B. Subramanian</name>
</json:item>
<json:item>
<name>J. Parkinson</name>
</json:item>
<json:item>
<name>P.N. Barlow</name>
</json:item>
<json:item>
<name>M. Manchester</name>
</json:item>
<json:item>
<name>J.P. Atkinson</name>
</json:item>
</author>
<host>
<volume>275</volume>
<pages>
<last>37701</last>
<first>37692</first>
</pages>
<author></author>
<title>J. Biol. Chem.</title>
</host>
<title>Dissecting sites important for complement regulatory activity in membrane cofactor protein (MCP, CD46).</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Lozahic</name>
</json:item>
<json:item>
<name>D. Christiansen</name>
</json:item>
<json:item>
<name>D. Manié</name>
</json:item>
<json:item>
<name>D. Gerlier</name>
</json:item>
<json:item>
<name>M. Billard</name>
</json:item>
<json:item>
<name>C. Boucheix</name>
</json:item>
<json:item>
<name>E. Rubinstein</name>
</json:item>
</author>
<host>
<volume>30</volume>
<pages>
<last>907</last>
<first>900</first>
</pages>
<author></author>
<title>Eur. J. Immunol.</title>
</host>
<title>CD46 (membrane cofactor protein) associates with multiple ß integrins and tetraspanins</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.E. Medof</name>
</json:item>
<json:item>
<name>T. Kinoshita</name>
</json:item>
<json:item>
<name>V. Nussenzweig</name>
</json:item>
</author>
<host>
<volume>160</volume>
<pages>
<last>1578</last>
<first>1558</first>
</pages>
<author></author>
<title>J. Exp. Med.</title>
</host>
<title>Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M.E. Medof</name>
</json:item>
<json:item>
<name>E.I. Walter</name>
</json:item>
<json:item>
<name>J.L. Rutgers</name>
</json:item>
<json:item>
<name>D.M. Knowles</name>
</json:item>
<json:item>
<name>V. Nussenzweig</name>
</json:item>
</author>
<host>
<volume>165</volume>
<pages>
<last>864</last>
<first>848</first>
</pages>
<author></author>
<title>J. Exp. Med.</title>
</host>
<title>Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Mikata</name>
</json:item>
<json:item>
<name>S. Miyagawa</name>
</json:item>
<json:item>
<name>A. Fukui</name>
</json:item>
<json:item>
<name>Y. Murakami</name>
</json:item>
<json:item>
<name>R. Shirakura</name>
</json:item>
<json:item>
<name>H. Matsuda</name>
</json:item>
<json:item>
<name>M. Hatanaka</name>
</json:item>
<json:item>
<name>M. Matsumoto</name>
</json:item>
<json:item>
<name>T. Seya</name>
</json:item>
<json:item>
<name>K. Suzuki</name>
</json:item>
<json:item>
<name>S. Nagasawa</name>
</json:item>
</author>
<host>
<volume>35</volume>
<pages>
<last>544</last>
<first>537</first>
</pages>
<author></author>
<title>Mol. Immunol.</title>
</host>
<title>A monomeric human C4b-462 binding protein (C4bp) more efficiently inactivates C3b than natural C4bp: participation of C463 terminal domains in factor I-cofactor activity</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Mossakowska</name>
</json:item>
<json:item>
<name>I. Dodd</name>
</json:item>
<json:item>
<name>W. Pindar</name>
</json:item>
<json:item>
<name>R.A.G. Smith</name>
</json:item>
</author>
<host>
<volume>29</volume>
<pages>
<last>1965</last>
<first>1955</first>
</pages>
<author></author>
<title>Eur. J. Immunol.</title>
</host>
<title>Structure-activity relationship within the N-terminal short consensus repeats (SCR) of human CR1 (C3b/C4b receptor, CD35): SCR 3 plays a critical role in inhibition of the classical and alternative pathways of complement activation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Mumenthaler</name>
</json:item>
<json:item>
<name>U. Schneider</name>
</json:item>
<json:item>
<name>C.J. Buchholz</name>
</json:item>
<json:item>
<name>D. Koller</name>
</json:item>
<json:item>
<name>W. Braun</name>
</json:item>
<json:item>
<name>R. Catteneo</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>597</last>
<first>588</first>
</pages>
<author></author>
<title>Prot. Sci.</title>
</host>
<title>A 3-D model for the measles virus receptor CD46 based on homology modeling, Monte Carlo simulations, and hemagglutinin binding studies</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Naniche</name>
</json:item>
<json:item>
<name>G. Varior-Krishnan</name>
</json:item>
<json:item>
<name>F. Cervoni</name>
</json:item>
<json:item>
<name>T.F. Wild</name>
</json:item>
<json:item>
<name>B. Rossi</name>
</json:item>
<json:item>
<name>C. Rabourdin-Combe</name>
</json:item>
<json:item>
<name>D. Gerlier</name>
</json:item>
</author>
<host>
<volume>67</volume>
<pages>
<last>6032</last>
<first>6025</first>
</pages>
<author></author>
<title>J. Virol.</title>
</host>
<title>Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Naniche</name>
</json:item>
<json:item>
<name>T.F. Wild</name>
</json:item>
<json:item>
<name>C. Rabourdin-Combe</name>
</json:item>
<json:item>
<name>D. Gerlier</name>
</json:item>
</author>
<host>
<volume>73</volume>
<pages>
<last>2624</last>
<first>2617</first>
</pages>
<author></author>
<title>J. Gen. Virol.</title>
</host>
<title>A monoclonal antibody recognizes a human cell surface glycoprotein involved in measles virus binding</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T.J. Oglesby</name>
</json:item>
<json:item>
<name>C.J. Allen</name>
</json:item>
<json:item>
<name>M.K. Liszewski</name>
</json:item>
<json:item>
<name>D.J. White</name>
</json:item>
<json:item>
<name>J.P. Atkinson</name>
</json:item>
</author>
<host>
<volume>175</volume>
<pages>
<last>1551</last>
<first>1547</first>
</pages>
<author></author>
<title>J. Exp. Med.</title>
</host>
<title>Membrane cofactor protein (CD46) protects cells from complement- mediated attack by an intrinsic mechanism</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.M. Pérez de la Lastra</name>
</json:item>
<json:item>
<name>C.L. Harris</name>
</json:item>
<json:item>
<name>S.J. Hinchliffe</name>
</json:item>
<json:item>
<name>D.S. Holt</name>
</json:item>
<json:item>
<name>N.K. Rushmere</name>
</json:item>
<json:item>
<name>B.P. Morgan</name>
</json:item>
</author>
<host>
<volume>165</volume>
<pages>
<last>2573</last>
<first>2563</first>
</pages>
<author></author>
<title>J. Immunol.</title>
</host>
<title>Pigs express multiple forms of decay-accelerating factor (CDS5), all of which contain only three short consensus repeats</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Rey-Campos</name>
</json:item>
<json:item>
<name>P. Rubinstein</name>
</json:item>
<json:item>
<name>S. Rodriguez-de-Cordoba</name>
</json:item>
</author>
<host>
<volume>167</volume>
<pages>
<last>669</last>
<first>664</first>
</pages>
<author></author>
<title>J. Exp. Med.</title>
</host>
<title>A physical map of the human regulator of complement activation gene cluster linking the complement genes CR1, CR2, DAF, and C4BP</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F. Santoro</name>
</json:item>
<json:item>
<name>P.E. Kennedy</name>
</json:item>
<json:item>
<name>G. Locatelli</name>
</json:item>
<json:item>
<name>M.S. Malnati</name>
</json:item>
<json:item>
<name>E.A. Berger</name>
</json:item>
<json:item>
<name>P. Lusso</name>
</json:item>
</author>
<host>
<volume>99</volume>
<pages>
<last>827</last>
<first>817</first>
</pages>
<author></author>
<title>Cell</title>
</host>
<title>CD46 is a cellular receptor for human herpesvirus 6</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Seya</name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>305</last>
<first>295</first>
</pages>
<author></author>
<title>Microbiol. Immunol.</title>
</host>
<title>Human regulator of complement activation (RCA) gene family proteins and their relationship to microbial infection</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Seya</name>
</json:item>
<json:item>
<name>L.L. Ballard</name>
</json:item>
<json:item>
<name>N.S. Bora</name>
</json:item>
<json:item>
<name>V. Kumar</name>
</json:item>
<json:item>
<name>W. Cui</name>
</json:item>
<json:item>
<name>J.P. Atkinson</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>1294</last>
<first>1289</first>
</pages>
<author></author>
<title>Eur. J. Immunol.</title>
</host>
<title>Distribution of membrane cofactor protein of complement on human peripheral blood cells. An altered form is found on granulocytes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Seya</name>
</json:item>
<json:item>
<name>T. Hara</name>
</json:item>
<json:item>
<name>M. Matsumoto</name>
</json:item>
<json:item>
<name>H. Akedo</name>
</json:item>
</author>
<host>
<volume>145</volume>
<pages>
<last>245</last>
<first>238</first>
</pages>
<author></author>
<title>J. Immunol.</title>
</host>
<title>Quantitative analysis of membrane cofactor protein (MCP) of complement: high expression of MCP on human leukemia cell lines, which is downregulated during cell differentiation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F.A. Spring</name>
</json:item>
<json:item>
<name>P.A. Judson</name>
</json:item>
<json:item>
<name>G.L. Daniels</name>
</json:item>
<json:item>
<name>S.F. Parsons</name>
</json:item>
<json:item>
<name>G. Mallinson</name>
</json:item>
<json:item>
<name>D.J. Anstee</name>
</json:item>
</author>
<host>
<volume>62</volume>
<pages>
<last>313</last>
<first>307</first>
</pages>
<author></author>
<title>Immunology</title>
</host>
<title>A human cell surface glycoprotein that carries Cromer-related blood group antigens on erythrocytes and is also expressed on leucocytes and platelets</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V.B. Subramanian</name>
</json:item>
<json:item>
<name>L. Clemenza</name>
</json:item>
<json:item>
<name>M. Krych</name>
</json:item>
<json:item>
<name>J.P. Atkinson</name>
</json:item>
</author>
<host>
<volume>157</volume>
<pages>
<last>1247</last>
<first>1242</first>
</pages>
<author></author>
<title>J. Immunol.</title>
</host>
<title>Substitution of two amino acids confers C3b binding to the C4b binding site of CR1 (CD35). Analysis based on ligand binding by chimpanzee erythrocyte complement receptor</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B.R. Thorley</name>
</json:item>
<json:item>
<name>J. Milland</name>
</json:item>
<json:item>
<name>D. Christiansen</name>
</json:item>
<json:item>
<name>B. McInnes</name>
</json:item>
<json:item>
<name>I. Moeller</name>
</json:item>
<json:item>
<name>P. Rivailler</name>
</json:item>
<json:item>
<name>B. Horvat</name>
</json:item>
<json:item>
<name>C. Rabourdin-Combe</name>
</json:item>
<json:item>
<name>D. Gerlier</name>
</json:item>
<json:item>
<name>I.F.C. McKenzie</name>
</json:item>
<json:item>
<name>B.E. Loveland</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>734</last>
<first>726</first>
</pages>
<author></author>
<title>Eur. J. Immunol.</title>
</host>
<title>Transgenic expression of a CD46 (membrane cofactor protein) minigene: studies of xenotransplantation and measles virus infection</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T.F. Wild</name>
</json:item>
<json:item>
<name>D. Naniche</name>
</json:item>
<json:item>
<name>C. Rabourdin-Combe</name>
</json:item>
<json:item>
<name>D. Gerlier</name>
</json:item>
<json:item>
<name>E. Malvoisin</name>
</json:item>
<json:item>
<name>V. Lecouturier</name>
</json:item>
<json:item>
<name>R. Buckland</name>
</json:item>
</author>
<host>
<volume>44</volume>
<pages>
<last>270</last>
<first>267</first>
</pages>
<author></author>
<title>Vet. Microbiol.</title>
</host>
<title>Mode of entry of morbilliviruses</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Xu</name>
</json:item>
<json:item>
<name>D. Mao</name>
</json:item>
<json:item>
<name>V.M. Holers</name>
</json:item>
<json:item>
<name>B. Palanca</name>
</json:item>
<json:item>
<name>A.M. Cheng</name>
</json:item>
<json:item>
<name>H. Molina</name>
</json:item>
</author>
<host>
<volume>287</volume>
<pages>
<last>501</last>
<first>498</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>A critical role for murine complement regulator Crry in fetomaternal tolerance</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Xu</name>
</json:item>
<json:item>
<name>J.E. Volanakis</name>
</json:item>
</author>
<host>
<volume>158</volume>
<pages>
<last>5965</last>
<first>5958</first>
</pages>
<author></author>
<title>J. Immunol.</title>
</host>
<title>Contribution of the complement control protein modules of C2 in C4b binding assessed by analysis of C2/Factor B chimeras</title>
</json:item>
</refBibs>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>37</volume>
<pii>
<json:string>S0161-5890(00)X0081-8</json:string>
</pii>
<pages>
<last>696</last>
<first>687</first>
</pages>
<issn>
<json:string>0161-5890</json:string>
</issn>
<issue>12–13</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Molecular Immunology</title>
<publicationDate>2000</publicationDate>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>immunology</json:string>
<json:string>biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>immunology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1016/S0161-5890(01)00002-5</json:string>
</doi>
<id>8F09E47111AE44C0F32A60F48A68E5D6BB932E99</id>
<score>0.113859355</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/8F09E47111AE44C0F32A60F48A68E5D6BB932E99/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/8F09E47111AE44C0F32A60F48A68E5D6BB932E99/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/8F09E47111AE44C0F32A60F48A68E5D6BB932E99/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Chimeric CD46/DAF molecules reveal a cryptic functional role for SCR1 of DAF in regulating complement activation</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©2001 Elsevier Science Ltd</p>
</availability>
<date>2001</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: C3b deposition derived exclusively following classical pathway activation. Cells were incubated with 67% factor B depleted serum and anti-CHO Ab diluted 1:50 for 30 min at 37°C. C3b deposition was determined by flow cytometry after immunolabelling with the anti-C3b mAb WM1. Results are expressed as the percentage of deposition relative to CHO cells, which was defined as 100%. The data show the means (±S.D.) of three experiments.</note>
<note type="content">Fig. 2: C3b deposition following alternative pathway activation. Cells were incubated with 67% normal human serum and MgCT2/EGTA for 30 min at 37°C. C3b deposition was determined by flow cytometry as described above. Results are expressed as the percentage of deposition relative to CHO cells, which was defined as 100%. The data show the means (±S.D.) of three experiments.</note>
<note type="content">Fig. 3: C3b deposition following antibody pre-incubation and alternative complement activation. (A) CD46 expressing cells, (B) DAF expressing cells or (C) ×1/2DAF expressing cells were preincubated with either anti-CD46 or anti-DAF mAb for 30 min at 4°C, subsequently 67% normal human serum and MgCT2/EGTA were added for 30 min at 37°C and C3b deposition was determined. Relevant antibodies to each cell type are denoted by the grey filled bars, irrelevant antibodies by spotted bars, and the no antibody controls by the empty bars. Target epitopes for each of the mAb are shown in the figure. The data show the means (±S.D.) of three experiments.</note>
<note type="content">Fig. 4: Summary of the functional properties of the chimeric CD46/DAF proteins. The combination of SCR affecting regulation of C3b deposition derived from either the alternative (AP) or classical pathway (CP) is shown by the dotted lines. Note the use of the three proximal SCRs (DAF SCR 1+2 CD46 SCR III) in the case of ×1/2DAF. The regulatory efficiency of each chimeric proteins was summarized according to the arbitrary scale: +++, 0–25% C3b deposition (compared with CHO control); ++ 26–50% C3b deposition; + 51–75% C3b deposition, and 76–100% C3b deposition.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Chimeric CD46/DAF molecules reveal a cryptic functional role for SCR1 of DAF in regulating complement activation</title>
<author xml:id="author-1">
<persName>
<forename type="first">Dale</forename>
<surname>Christiansen</surname>
</persName>
<affiliation>Immunité and Infections Virales, V.P.V., CNRS-UCBL UMR 5537, Faculté de Médecine Laennec, 69372 Lyon Cedex 08, France</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Bruce</forename>
<surname>Loveland</surname>
</persName>
<affiliation>The Austin Research Institute, Heidelberg, Vic 3084, Australia</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Peter</forename>
<surname>Kyriakou</surname>
</persName>
<affiliation>The Austin Research Institute, Heidelberg, Vic 3084, Australia</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Marc</forename>
<surname>Lanteri</surname>
</persName>
<affiliation>The Austin Research Institute, Heidelberg, Vic 3084, Australia</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Eric</forename>
<surname>Rubinstein</surname>
</persName>
<affiliation>INSERM U268, Hopital Paul Brousse, Villejuif, France</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">Denis</forename>
<surname>Gerlier</surname>
</persName>
<email>gerlier@laennec.univ-lyonl.fr</email>
<affiliation>Immunité and Infections Virales, V.P.V., CNRS-UCBL UMR 5537, Faculté de Médecine Laennec, 69372 Lyon Cedex 08, France</affiliation>
<affiliation>Corresponding author. Tel.: +33-4-78778618; fax: +33-4-78778754</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Molecular Immunology</title>
<title level="j" type="abbrev">MIMM</title>
<idno type="pISSN">0161-5890</idno>
<idno type="PII">S0161-5890(00)X0081-8</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001"></date>
<biblScope unit="volume">37</biblScope>
<biblScope unit="issue">12–13</biblScope>
<biblScope unit="page" from="687">687</biblScope>
<biblScope unit="page" to="696">696</biblScope>
</imprint>
</monogr>
<idno type="istex">8F09E47111AE44C0F32A60F48A68E5D6BB932E99</idno>
<idno type="DOI">10.1016/S0161-5890(01)00002-5</idno>
<idno type="PII">S0161-5890(01)00002-5</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Chimeric proteins using membrane cofactor (CD46) and decay accelerating factor (DAF or CD55) were generated to further investigate the functional domains involved in the regulation of human serum complement. Following activation of the classical pathway, the isolated substitution of CD46 SCR III (×3DAF) exhibited a modest regulatory activity comparable to that of CD46. The isolated substitution of CD46 SCR IV (×4DAF), and the combined CD46 SCR III+IV substitutions (×3/4DAF) were essentially as efficient as DAF. No regulation of C3b deposition was observed with the combined CD46 SCR I+II substitutions (×1/2DAF). When tested after activation of the alternative pathway, both the ×3DAF and ×3/4DAF chimeras failed to regulate C3b deposition, while the ×4DAF chimera still displayed some activity. In contrast to that observed following classical pathway activation, the ×1/2DAF chimera exhibited a similar efficiency to wild type CD46 and DAF in controlling C3b deposition. Using SCR specific antibodies, the regulatory activity of the ×1/2DAF chimera against the alternative pathway was mapped to the first three distal SCR (i.e. DAF 1, DAF 2 and CD46 III). These data demonstrate that several combinations of SCR domains from two related complement regulators can result in functional molecules, and reveal a novel and cryptic functional role for DAF SCR1.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>CD46</term>
</item>
<item>
<term>CD55</term>
</item>
<item>
<term>C3b deposition</term>
</item>
<item>
<term>Membrane cofactor protein</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2001">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/8F09E47111AE44C0F32A60F48A68E5D6BB932E99/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>MIMM</jid>
<aid>974</aid>
<ce:pii>S0161-5890(01)00002-5</ce:pii>
<ce:doi>10.1016/S0161-5890(01)00002-5</ce:doi>
<ce:copyright type="full-transfer" year="2001">Elsevier Science Ltd</ce:copyright>
</item-info>
<head>
<ce:title>Chimeric CD46/DAF molecules reveal a cryptic functional role for SCR1 of DAF in regulating complement activation</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Dale</ce:given-name>
<ce:surname>Christiansen</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Bruce</ce:given-name>
<ce:surname>Loveland</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Peter</ce:given-name>
<ce:surname>Kyriakou</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Marc</ce:given-name>
<ce:surname>Lanteri</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Eric</ce:given-name>
<ce:surname>Rubinstein</ce:surname>
<ce:cross-ref refid="AFF3">
<ce:sup>c</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Denis</ce:given-name>
<ce:surname>Gerlier</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:e-address>gerlier@laennec.univ-lyonl.fr</ce:e-address>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Immunité and Infections Virales, V.P.V., CNRS-UCBL UMR 5537, Faculté de Médecine Laennec, 69372 Lyon Cedex 08, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>The Austin Research Institute, Heidelberg, Vic 3084, Australia</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF3">
<ce:label>c</ce:label>
<ce:textfn>INSERM U268, Hopital Paul Brousse, Villejuif, France</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel.: +33-4-78778618; fax: +33-4-78778754</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="30" month="10" year="2000"></ce:date-received>
<ce:date-accepted day="19" month="12" year="2000"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Chimeric proteins using membrane cofactor (CD46) and decay accelerating factor (DAF or CD55) were generated to further investigate the functional domains involved in the regulation of human serum complement. Following activation of the classical pathway, the isolated substitution of CD46 SCR III (×3DAF) exhibited a modest regulatory activity comparable to that of CD46. The isolated substitution of CD46 SCR IV (×4DAF), and the combined CD46 SCR III+IV substitutions (×3/4DAF) were essentially as efficient as DAF. No regulation of C3b deposition was observed with the combined CD46 SCR I+II substitutions (×1/2DAF). When tested after activation of the alternative pathway, both the ×3DAF and ×3/4DAF chimeras failed to regulate C3b deposition, while the ×4DAF chimera still displayed some activity. In contrast to that observed following classical pathway activation, the ×1/2DAF chimera exhibited a similar efficiency to wild type CD46 and DAF in controlling C3b deposition. Using SCR specific antibodies, the regulatory activity of the ×1/2DAF chimera against the alternative pathway was mapped to the first three distal SCR (i.e. DAF 1, DAF 2 and CD46 III). These data demonstrate that several combinations of SCR domains from two related complement regulators can result in functional molecules, and reveal a novel and cryptic functional role for DAF SCR1.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>CD46</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>CD55</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>C3b deposition</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Membrane cofactor protein</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Chimeric CD46/DAF molecules reveal a cryptic functional role for SCR1 of DAF in regulating complement activation</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Chimeric CD46/DAF molecules reveal a cryptic functional role for SCR1 of DAF in regulating complement activation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dale</namePart>
<namePart type="family">Christiansen</namePart>
<affiliation>Immunité and Infections Virales, V.P.V., CNRS-UCBL UMR 5537, Faculté de Médecine Laennec, 69372 Lyon Cedex 08, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bruce</namePart>
<namePart type="family">Loveland</namePart>
<affiliation>The Austin Research Institute, Heidelberg, Vic 3084, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Kyriakou</namePart>
<affiliation>The Austin Research Institute, Heidelberg, Vic 3084, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marc</namePart>
<namePart type="family">Lanteri</namePart>
<affiliation>The Austin Research Institute, Heidelberg, Vic 3084, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Rubinstein</namePart>
<affiliation>INSERM U268, Hopital Paul Brousse, Villejuif, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Denis</namePart>
<namePart type="family">Gerlier</namePart>
<affiliation>Immunité and Infections Virales, V.P.V., CNRS-UCBL UMR 5537, Faculté de Médecine Laennec, 69372 Lyon Cedex 08, France</affiliation>
<affiliation>Corresponding author. Tel.: +33-4-78778618; fax: +33-4-78778754</affiliation>
<affiliation>E-mail: gerlier@laennec.univ-lyonl.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Chimeric proteins using membrane cofactor (CD46) and decay accelerating factor (DAF or CD55) were generated to further investigate the functional domains involved in the regulation of human serum complement. Following activation of the classical pathway, the isolated substitution of CD46 SCR III (×3DAF) exhibited a modest regulatory activity comparable to that of CD46. The isolated substitution of CD46 SCR IV (×4DAF), and the combined CD46 SCR III+IV substitutions (×3/4DAF) were essentially as efficient as DAF. No regulation of C3b deposition was observed with the combined CD46 SCR I+II substitutions (×1/2DAF). When tested after activation of the alternative pathway, both the ×3DAF and ×3/4DAF chimeras failed to regulate C3b deposition, while the ×4DAF chimera still displayed some activity. In contrast to that observed following classical pathway activation, the ×1/2DAF chimera exhibited a similar efficiency to wild type CD46 and DAF in controlling C3b deposition. Using SCR specific antibodies, the regulatory activity of the ×1/2DAF chimera against the alternative pathway was mapped to the first three distal SCR (i.e. DAF 1, DAF 2 and CD46 III). These data demonstrate that several combinations of SCR domains from two related complement regulators can result in functional molecules, and reveal a novel and cryptic functional role for DAF SCR1.</abstract>
<note type="content">Fig. 1: C3b deposition derived exclusively following classical pathway activation. Cells were incubated with 67% factor B depleted serum and anti-CHO Ab diluted 1:50 for 30 min at 37°C. C3b deposition was determined by flow cytometry after immunolabelling with the anti-C3b mAb WM1. Results are expressed as the percentage of deposition relative to CHO cells, which was defined as 100%. The data show the means (±S.D.) of three experiments.</note>
<note type="content">Fig. 2: C3b deposition following alternative pathway activation. Cells were incubated with 67% normal human serum and MgCT2/EGTA for 30 min at 37°C. C3b deposition was determined by flow cytometry as described above. Results are expressed as the percentage of deposition relative to CHO cells, which was defined as 100%. The data show the means (±S.D.) of three experiments.</note>
<note type="content">Fig. 3: C3b deposition following antibody pre-incubation and alternative complement activation. (A) CD46 expressing cells, (B) DAF expressing cells or (C) ×1/2DAF expressing cells were preincubated with either anti-CD46 or anti-DAF mAb for 30 min at 4°C, subsequently 67% normal human serum and MgCT2/EGTA were added for 30 min at 37°C and C3b deposition was determined. Relevant antibodies to each cell type are denoted by the grey filled bars, irrelevant antibodies by spotted bars, and the no antibody controls by the empty bars. Target epitopes for each of the mAb are shown in the figure. The data show the means (±S.D.) of three experiments.</note>
<note type="content">Fig. 4: Summary of the functional properties of the chimeric CD46/DAF proteins. The combination of SCR affecting regulation of C3b deposition derived from either the alternative (AP) or classical pathway (CP) is shown by the dotted lines. Note the use of the three proximal SCRs (DAF SCR 1+2 CD46 SCR III) in the case of ×1/2DAF. The regulatory efficiency of each chimeric proteins was summarized according to the arbitrary scale: +++, 0–25% C3b deposition (compared with CHO control); ++ 26–50% C3b deposition; + 51–75% C3b deposition, and 76–100% C3b deposition.</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>CD46</topic>
<topic>CD55</topic>
<topic>C3b deposition</topic>
<topic>Membrane cofactor protein</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Molecular Immunology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>MIMM</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">20000901</dateIssued>
</originInfo>
<identifier type="ISSN">0161-5890</identifier>
<identifier type="PII">S0161-5890(00)X0081-8</identifier>
<part>
<date>20000901</date>
<detail type="volume">
<number>37</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>12–13</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>687</start>
<end>801</end>
</extent>
<extent unit="pages">
<start>687</start>
<end>696</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">8F09E47111AE44C0F32A60F48A68E5D6BB932E99</identifier>
<identifier type="DOI">10.1016/S0161-5890(01)00002-5</identifier>
<identifier type="PII">S0161-5890(01)00002-5</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2001 Elsevier Science Ltd</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science Ltd, ©2001</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001881 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001881 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:8F09E47111AE44C0F32A60F48A68E5D6BB932E99
   |texte=   Chimeric CD46/DAF molecules reveal a cryptic functional role for SCR1 of DAF in regulating complement activation
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024