La maladie de Parkinson en France (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantitative immunogold evidence that glutamate is a neurotransmitter in afferent synaptic terminals within the isthmo-optic nucleus of the pigeon centrifugal visual system

Identifieur interne : 001489 ( Istex/Corpus ); précédent : 001488; suivant : 001490

Quantitative immunogold evidence that glutamate is a neurotransmitter in afferent synaptic terminals within the isthmo-optic nucleus of the pigeon centrifugal visual system

Auteurs : Dom Miceli ; Jacques Repérant ; Jean-Paul Rio ; Jean Désilets ; Monique Médina

Source :

RBID : ISTEX:80EC10732A9863B90356AB25C6BE4CE6C3850C17

English descriptors

Abstract

A quantitative electron microscopic analysis of glutamate (GLU) immunoreactivity using the post-embedding immunogold technique was carried out within the isthmo-optic nucleus (ION) of the pigeon centrifugal visual system (CVS). Measurements were performed in each of eight different categories of axon terminals, including those that were GABA-immunoreactive (-ir), considered representing control profiles and identified using a single or double-label immunocytochemical procedure. The results demonstrated that the glutamate immunogold particle densities for both mitochondrial and vesicular pools and for total surface area of bouton profiles were significantly higher in P1a, P1b and P2b terminals and not significantly different in P4 and P5 terminals compared to those recorded in control GABA-ir terminals (P2a, P2c, P3). Moreover, the values measured in GLU-ir positive profiles were all significantly higher than in either P4 or P5 terminals. The results suggest that tectal neurons, which provide the main input to the ION cells, are either inhibitory GABA-ir possibly associated with P2c and/or P3 terminals or excitatory GLU-ir via P1a, P1b and P2b terminals. Such differential effects of tectal afferents may be the basis for the modulation of centrifugal activity and consequently of end target retinal ganglion cell responses. The data are relevant to hypotheses implicating the avian CVS in mechanisms of selective enhancement of visual attention to either novel or meaningful stimuli within the visual field.

Url:
DOI: 10.1016/S0006-8993(00)02316-7

Links to Exploration step

ISTEX:80EC10732A9863B90356AB25C6BE4CE6C3850C17

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantitative immunogold evidence that glutamate is a neurotransmitter in afferent synaptic terminals within the isthmo-optic nucleus of the pigeon centrifugal visual system</title>
<author>
<name sortKey="Miceli, Dom" sort="Miceli, Dom" uniqKey="Miceli D" first="Dom" last="Miceli">Dom Miceli</name>
<affiliation>
<mods:affiliation>Laboratoire de Neuropsychologie expérimentale et comparée, Université du Québec, Trois-Rivières, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reperant, Jacques" sort="Reperant, Jacques" uniqKey="Reperant J" first="Jacques" last="Repérant">Jacques Repérant</name>
<affiliation>
<mods:affiliation>Laboratoire de Neuropsychologie expérimentale et comparée, Université du Québec, Trois-Rivières, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rio, Jean Paul" sort="Rio, Jean Paul" uniqKey="Rio J" first="Jean-Paul" last="Rio">Jean-Paul Rio</name>
<affiliation>
<mods:affiliation>E-mail: rio@infobiogen.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire de Neuromorphologie, Développement, Evolution, INSERM U 106, Hôpital de la Salpêtrière, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Desilets, Jean" sort="Desilets, Jean" uniqKey="Desilets J" first="Jean" last="Désilets">Jean Désilets</name>
<affiliation>
<mods:affiliation>Laboratoire de Neuropsychologie expérimentale et comparée, Université du Québec, Trois-Rivières, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Medina, Monique" sort="Medina, Monique" uniqKey="Medina M" first="Monique" last="Médina">Monique Médina</name>
<affiliation>
<mods:affiliation>Laboratoire d’Anatomie comparée, MNHN, Paris, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:80EC10732A9863B90356AB25C6BE4CE6C3850C17</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1016/S0006-8993(00)02316-7</idno>
<idno type="url">https://api.istex.fr/document/80EC10732A9863B90356AB25C6BE4CE6C3850C17/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001489</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001489</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Quantitative immunogold evidence that glutamate is a neurotransmitter in afferent synaptic terminals within the isthmo-optic nucleus of the pigeon centrifugal visual system</title>
<author>
<name sortKey="Miceli, Dom" sort="Miceli, Dom" uniqKey="Miceli D" first="Dom" last="Miceli">Dom Miceli</name>
<affiliation>
<mods:affiliation>Laboratoire de Neuropsychologie expérimentale et comparée, Université du Québec, Trois-Rivières, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reperant, Jacques" sort="Reperant, Jacques" uniqKey="Reperant J" first="Jacques" last="Repérant">Jacques Repérant</name>
<affiliation>
<mods:affiliation>Laboratoire de Neuropsychologie expérimentale et comparée, Université du Québec, Trois-Rivières, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rio, Jean Paul" sort="Rio, Jean Paul" uniqKey="Rio J" first="Jean-Paul" last="Rio">Jean-Paul Rio</name>
<affiliation>
<mods:affiliation>E-mail: rio@infobiogen.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire de Neuromorphologie, Développement, Evolution, INSERM U 106, Hôpital de la Salpêtrière, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Desilets, Jean" sort="Desilets, Jean" uniqKey="Desilets J" first="Jean" last="Désilets">Jean Désilets</name>
<affiliation>
<mods:affiliation>Laboratoire de Neuropsychologie expérimentale et comparée, Université du Québec, Trois-Rivières, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Medina, Monique" sort="Medina, Monique" uniqKey="Medina M" first="Monique" last="Médina">Monique Médina</name>
<affiliation>
<mods:affiliation>Laboratoire d’Anatomie comparée, MNHN, Paris, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Brain Research</title>
<title level="j" type="abbrev">BRES</title>
<idno type="ISSN">0006-8993</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">868</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="128">128</biblScope>
<biblScope unit="page" to="134">134</biblScope>
</imprint>
<idno type="ISSN">0006-8993</idno>
</series>
<idno type="istex">80EC10732A9863B90356AB25C6BE4CE6C3850C17</idno>
<idno type="DOI">10.1016/S0006-8993(00)02316-7</idno>
<idno type="PII">S0006-8993(00)02316-7</idno>
<idno type="ArticleID">28406</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-8993</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Afferent synaptic terminals</term>
<term>Centrifugal visual system</term>
<term>Electron microscopy</term>
<term>Glutamate immunoreactivity</term>
<term>Isthmo-optic nucleus</term>
<term>Pigeon</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A quantitative electron microscopic analysis of glutamate (GLU) immunoreactivity using the post-embedding immunogold technique was carried out within the isthmo-optic nucleus (ION) of the pigeon centrifugal visual system (CVS). Measurements were performed in each of eight different categories of axon terminals, including those that were GABA-immunoreactive (-ir), considered representing control profiles and identified using a single or double-label immunocytochemical procedure. The results demonstrated that the glutamate immunogold particle densities for both mitochondrial and vesicular pools and for total surface area of bouton profiles were significantly higher in P1a, P1b and P2b terminals and not significantly different in P4 and P5 terminals compared to those recorded in control GABA-ir terminals (P2a, P2c, P3). Moreover, the values measured in GLU-ir positive profiles were all significantly higher than in either P4 or P5 terminals. The results suggest that tectal neurons, which provide the main input to the ION cells, are either inhibitory GABA-ir possibly associated with P2c and/or P3 terminals or excitatory GLU-ir via P1a, P1b and P2b terminals. Such differential effects of tectal afferents may be the basis for the modulation of centrifugal activity and consequently of end target retinal ganglion cell responses. The data are relevant to hypotheses implicating the avian CVS in mechanisms of selective enhancement of visual attention to either novel or meaningful stimuli within the visual field.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Dom Miceli</name>
<affiliations>
<json:string>Laboratoire de Neuropsychologie expérimentale et comparée, Université du Québec, Trois-Rivières, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jacques Repérant</name>
<affiliations>
<json:string>Laboratoire de Neuropsychologie expérimentale et comparée, Université du Québec, Trois-Rivières, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jean-Paul Rio</name>
<affiliations>
<json:string>E-mail: rio@infobiogen.fr</json:string>
<json:string>Laboratoire de Neuromorphologie, Développement, Evolution, INSERM U 106, Hôpital de la Salpêtrière, Paris, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jean Désilets</name>
<affiliations>
<json:string>Laboratoire de Neuropsychologie expérimentale et comparée, Université du Québec, Trois-Rivières, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Monique Médina</name>
<affiliations>
<json:string>Laboratoire d’Anatomie comparée, MNHN, Paris, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Centrifugal visual system</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Isthmo-optic nucleus</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Afferent synaptic terminals</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Glutamate immunoreactivity</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Pigeon</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Electron microscopy</value>
</json:item>
</subject>
<articleId>
<json:string>28406</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Short communication</json:string>
</originalGenre>
<abstract>A quantitative electron microscopic analysis of glutamate (GLU) immunoreactivity using the post-embedding immunogold technique was carried out within the isthmo-optic nucleus (ION) of the pigeon centrifugal visual system (CVS). Measurements were performed in each of eight different categories of axon terminals, including those that were GABA-immunoreactive (-ir), considered representing control profiles and identified using a single or double-label immunocytochemical procedure. The results demonstrated that the glutamate immunogold particle densities for both mitochondrial and vesicular pools and for total surface area of bouton profiles were significantly higher in P1a, P1b and P2b terminals and not significantly different in P4 and P5 terminals compared to those recorded in control GABA-ir terminals (P2a, P2c, P3). Moreover, the values measured in GLU-ir positive profiles were all significantly higher than in either P4 or P5 terminals. The results suggest that tectal neurons, which provide the main input to the ION cells, are either inhibitory GABA-ir possibly associated with P2c and/or P3 terminals or excitatory GLU-ir via P1a, P1b and P2b terminals. Such differential effects of tectal afferents may be the basis for the modulation of centrifugal activity and consequently of end target retinal ganglion cell responses. The data are relevant to hypotheses implicating the avian CVS in mechanisms of selective enhancement of visual attention to either novel or meaningful stimuli within the visual field.</abstract>
<qualityIndicators>
<score>6.965</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>598 x 792 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>6</keywordCount>
<abstractCharCount>1525</abstractCharCount>
<pdfWordCount>4337</pdfWordCount>
<pdfCharCount>28148</pdfCharCount>
<pdfPageCount>7</pdfPageCount>
<abstractWordCount>219</abstractWordCount>
</qualityIndicators>
<title>Quantitative immunogold evidence that glutamate is a neurotransmitter in afferent synaptic terminals within the isthmo-optic nucleus of the pigeon centrifugal visual system</title>
<pii>
<json:string>S0006-8993(00)02316-7</json:string>
</pii>
<refBibs>
<json:item>
<author>
<json:item>
<name>P. Angaut</name>
</json:item>
<json:item>
<name>J. Repérant</name>
</json:item>
</author>
<host>
<volume>67</volume>
<pages>
<last>78</last>
<first>63</first>
</pages>
<author></author>
<title>Arch. Anat. Micros. Morph. Exp.</title>
</host>
<title>A light and electron microscopic study of the nucleus isthmo-opticus in the pigeon</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Bagnoli</name>
</json:item>
<json:item>
<name>G. Fontanesi</name>
</json:item>
<json:item>
<name>R. Alesci</name>
</json:item>
<json:item>
<name>J.T. Erichsen</name>
</json:item>
</author>
<host>
<volume>318</volume>
<pages>
<last>414</last>
<first>392</first>
</pages>
<author></author>
<title>J. Comp. Neurol.</title>
</host>
<title>Distribution of neuropeptide Y, substance P, and choline acetyltransferase in the developing visual system of the pigeon and effects of unilateral retina removal</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Brüning</name>
</json:item>
</author>
<host>
<volume>334</volume>
<pages>
<last>208</last>
<first>192</first>
</pages>
<author></author>
<title>J. Comp. Neurol.</title>
</host>
<title>Localization of NADPH-diaphorase in the brain of the chicken</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Challet</name>
</json:item>
<json:item>
<name>D. Miceli</name>
</json:item>
<json:item>
<name>J. Pierre</name>
</json:item>
<json:item>
<name>J. Repérant</name>
</json:item>
<json:item>
<name>G. Massicotte</name>
</json:item>
<json:item>
<name>M. Herbin</name>
</json:item>
<json:item>
<name>N.P. Vesselkin</name>
</json:item>
</author>
<host>
<volume>193</volume>
<pages>
<last>227</last>
<first>209</first>
</pages>
<author></author>
<title>Anat. Embryol.</title>
</host>
<title>Distribution of serotonin-immunoreactivity in the brain of the pigeon (Columba livia)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W.M. Cowan</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>118</last>
<first>112</first>
</pages>
<author></author>
<title>Brit. Med. Bull.</title>
</host>
<title>Centrifugal fibers to the avian retina</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Cozzi</name>
</json:item>
<json:item>
<name>R. Massa</name>
</json:item>
<json:item>
<name>G.C. Panzica</name>
</json:item>
</author>
<host>
<volume>287</volume>
<pages>
<last>112</last>
<first>101</first>
</pages>
<author></author>
<title>Cell Tiss. Res.</title>
</host>
<title>The NADPH-diaphorase-containing system in the brain of the budgerigar (Melopsittacus undulatus)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W.J. Crossland</name>
</json:item>
</author>
<host>
<pages>
<last>286</last>
<first>267</first>
</pages>
<author></author>
<title>Neural Mechanisms of Behavior in the Pigeon</title>
</host>
<title>Identification of tectal synaptic terminals in the avian isthmo-optic nucleus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Erecinska</name>
</json:item>
<json:item>
<name>I.A. Silver</name>
</json:item>
</author>
<host>
<volume>35</volume>
<pages>
<last>296</last>
<first>245</first>
</pages>
<author></author>
<title>Prog. Neurobiol.</title>
</host>
<title>Metabolism and role of glutamate in mammalian brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Galifret</name>
</json:item>
<json:item>
<name>F. Condé-Courtine</name>
</json:item>
<json:item>
<name>J. Repérant</name>
</json:item>
<json:item>
<name>J. Servière</name>
</json:item>
</author>
<host>
<volume>3</volume>
<pages>
<last>200</last>
<first>185</first>
</pages>
<author></author>
<title>Vis. Res. Suppl.</title>
</host>
<title>Centrifugal control in the visual system of the pigeon</title>
</json:item>
<json:item>
<author>
<json:item>
<name>O. Güntürkün</name>
</json:item>
<json:item>
<name>H.J. Karten</name>
</json:item>
</author>
<host>
<volume>314</volume>
<pages>
<last>749</last>
<first>721</first>
</pages>
<author></author>
<title>J. Comp. Neurol.</title>
</host>
<title>An immunocytochemical analysis of the lateral geniculate complex in the pigeon (Columba livia)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>U. Hahmann</name>
</json:item>
<json:item>
<name>O. Güntürkün</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>233</last>
<first>225</first>
</pages>
<author></author>
<title>Vis. Neurosci.</title>
</host>
<title>Visual discrimination deficits after lesions of the centrifugal visual system in pigeons (Columba livia)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A.L. Holden</name>
</json:item>
</author>
<host>
<volume>4</volume>
<pages>
<last>495</last>
<first>493</first>
</pages>
<author></author>
<title>Vis. Neurosci.</title>
</host>
<title>Centrifugal pathways to the retina: which way does the ‘searchlight’ point?</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.D. Johnson</name>
</json:item>
<json:item>
<name>M.L. Epstein</name>
</json:item>
</author>
<host>
<volume>46</volume>
<pages>
<last>976</last>
<first>968</first>
</pages>
<author></author>
<title>J. Neurochem.</title>
</host>
<title>Monoclonal antibodies and polyvalent antiserum to chicken choline acetyltransferase</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N.B. Kenigfest</name>
</json:item>
<json:item>
<name>J. Repérant</name>
</json:item>
<json:item>
<name>J.-P. Rio</name>
</json:item>
<json:item>
<name>M.G. Belekhova</name>
</json:item>
<json:item>
<name>R. Ward</name>
</json:item>
<json:item>
<name>N.P. Vesselkin</name>
</json:item>
<json:item>
<name>D. Miceli</name>
</json:item>
<json:item>
<name>M. Herbin</name>
</json:item>
</author>
<host>
<volume>391</volume>
<pages>
<last>490</last>
<first>470</first>
</pages>
<author></author>
<title>J. Comp. Neurol.</title>
</host>
<title>Retinal and cortical afferents to the dorsal lateral geniculate nucleus of the turtle, Emys orbicularis: a combined axonal tracing, glutamate and GABA immunocytochemical electron microscopic study</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Kvamme</name>
</json:item>
<json:item>
<name>I.A. Torgner</name>
</json:item>
<json:item>
<name>B. Roberg</name>
</json:item>
</author>
<host>
<volume>266</volume>
<pages>
<last>13192</last>
<first>13185</first>
</pages>
<author></author>
<title>J. Biol. Chem.</title>
</host>
<title>Evidence indicating that pig renal phosphate-activated glutaminase has a functionally predominant external localization in the inner mitochondrial membrane</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.L. Li</name>
</json:item>
<json:item>
<name>Q. Xiao</name>
</json:item>
<json:item>
<name>Y.X. Fu</name>
</json:item>
<json:item>
<name>S.R. Wang</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>415</last>
<first>411</first>
</pages>
<author></author>
<title>Vis. Neurosci.</title>
</host>
<title>Centrifugal innervation modulates visual activity of tectal cells in pigeon</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W.C. Li</name>
</json:item>
<json:item>
<name>J. Hu</name>
</json:item>
<json:item>
<name>S.R. Wang</name>
</json:item>
</author>
<host>
<volume>49</volume>
<pages>
<last>208</last>
<first>203</first>
</pages>
<author></author>
<title>Brain Res. Bull.</title>
</host>
<title>Tectal afferents monosynaptically activate neurons in the pigeon isthmo-optic nucleus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.I. McGill</name>
</json:item>
<json:item>
<name>T.P.S. Powell</name>
</json:item>
<json:item>
<name>W.M. Cowan</name>
</json:item>
</author>
<host>
<volume>100</volume>
<pages>
<last>33</last>
<first>5</first>
</pages>
<author></author>
<title>J. Anat. (London)</title>
</host>
<title>The retinal representation upon the optic tectum and isthmo-optic nucleus in the pigeon</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.I. McGill</name>
</json:item>
<json:item>
<name>T.P.S. Powell</name>
</json:item>
<json:item>
<name>W.M. Cowan</name>
</json:item>
</author>
<host>
<volume>100</volume>
<pages>
<last>49</last>
<first>35</first>
</pages>
<author></author>
<title>J. Anat. (London)</title>
</host>
<title>The organisation of the projection of the centrifugal fibres to the retina in the pigeon</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Medina</name>
</json:item>
<json:item>
<name>A. Reiner</name>
</json:item>
</author>
<host>
<volume>342</volume>
<pages>
<last>537</last>
<first>497</first>
</pages>
<author></author>
<title>J. Comp. Neurol.</title>
</host>
<title>Distribution of choline acetyltransferase immunoreactivity in the pigeon brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Medina</name>
</json:item>
<json:item>
<name>J. Repérant</name>
</json:item>
<json:item>
<name>D. Miceli</name>
</json:item>
<json:item>
<name>C. Bertrand</name>
</json:item>
<json:item>
<name>M. Bennis</name>
</json:item>
</author>
<host>
<volume>72</volume>
<pages>
<last>95</last>
<first>75</first>
</pages>
<author></author>
<title>J. Chem. Neuroanat.</title>
</host>
<title>An immunohistochemical study of putative neuromodulators and transmitters in the centrifugal visual system of the quail (Coturnix japonica)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Miceli</name>
</json:item>
<json:item>
<name>R. Bakivati</name>
</json:item>
<json:item>
<name>J. Repérant</name>
</json:item>
</author>
<host>
<volume>34</volume>
<pages>
<first>1171</first>
</pages>
<author></author>
<title>ARVO Ann. Meet. USA, Inv. Ophth. Vis. Sci.</title>
</host>
<title>A combined serotonin immunofluorescent and retrograde transneuronal tracing study of afferent projections upon the avian centrifugal visual system</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Miceli</name>
</json:item>
<json:item>
<name>J. Repérant</name>
</json:item>
<json:item>
<name>L. Marchand</name>
</json:item>
<json:item>
<name>J.-P. Rio</name>
</json:item>
</author>
<host>
<volume>601</volume>
<pages>
<last>298</last>
<first>289</first>
</pages>
<author></author>
<title>Brain Res.</title>
</host>
<title>Retrograde transneuronal transport of the fluorescent dye rhodamine β isothiocyanate from the primary and centrifugal visual systems in the pigeon</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Miceli</name>
</json:item>
<json:item>
<name>J. Repérant</name>
</json:item>
<json:item>
<name>J.-P. Rio</name>
</json:item>
<json:item>
<name>M. Medina</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>441</last>
<first>425</first>
</pages>
<author></author>
<title>Vis. Neurosci.</title>
</host>
<title>GABA immunoreactivity in the nucleus isthmo-opticus of the centrifugal visual system in the pigeon: a light and electron microscopic study</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Miceli</name>
</json:item>
<json:item>
<name>J. Repérant</name>
</json:item>
<json:item>
<name>R. Bakivati</name>
</json:item>
<json:item>
<name>J.-P. Rio</name>
</json:item>
<json:item>
<name>M. Volle</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>224</last>
<first>213</first>
</pages>
<author></author>
<title>Vis. Neurosci.</title>
</host>
<title>Brainstem afferents upon retinal projecting isthmo-optic and ectopic neurons of the pigeon centrifugal visual system demonstrated by rhodamine β isothiocyanate</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Miceli</name>
</json:item>
<json:item>
<name>J. Repérant</name>
</json:item>
<json:item>
<name>J. Désilets</name>
</json:item>
<json:item>
<name>J.-P. Rio</name>
</json:item>
</author>
<host>
<volume>40</volume>
<pages>
<first>643</first>
</pages>
<author></author>
<title>ARVO Meet. USA, Inv. Ophth. Vis. Sci.</title>
</host>
<title>An electron microscopical immunocytochemical study of tectal GABA and glutamate afferent projections upon the centrifugal visual system in the pigeon</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Miceli</name>
</json:item>
<json:item>
<name>J. Repérant</name>
</json:item>
<json:item>
<name>C. Bertrand</name>
</json:item>
<json:item>
<name>J.-P. Rio</name>
</json:item>
</author>
<host>
<volume>98</volume>
<pages>
<last>210</last>
<first>203</first>
</pages>
<author></author>
<title>Behav. Brain Res.</title>
</host>
<title>Functional anatomy of the avian centrifugal visual system</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F.A. Miles</name>
</json:item>
</author>
<host>
<volume>48</volume>
<pages>
<last>129</last>
<first>115</first>
</pages>
<author></author>
<title>Brain Res.</title>
</host>
<title>Centrifugal control of the avian retina. III: Effects of electrical stimulation of the isthmo-optic tract on the receptive field properties of retinal ganglion cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V.M. Montero</name>
</json:item>
<json:item>
<name>R.J. Wenthold</name>
</json:item>
</author>
<host>
<volume>31</volume>
<pages>
<last>647</last>
<first>639</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>Quantitative immunogold analysis reveals high glutamate levels in retinal and cortical synaptic terminals in the lateral geniculate nucleus of the macaque</title>
</json:item>
<json:item>
<author>
<json:item>
<name>O.P. Ottersen</name>
</json:item>
</author>
<host>
<volume>69</volume>
<pages>
<last>174</last>
<first>167</first>
</pages>
<author></author>
<title>Exp. Brain Res.</title>
</host>
<title>Postembedding light and electron microscopic immunocytochemistry of aminoacids. Description of a new model system allowing identical conditions for specifically testing and tissue processing</title>
</json:item>
<json:item>
<author>
<json:item>
<name>O.P. Ottersen</name>
</json:item>
</author>
<host>
<volume>180</volume>
<pages>
<last>15</last>
<first>1</first>
</pages>
<author></author>
<title>Anat. Embryol.</title>
</host>
<title>Quantitative electron microscopic immunocytochemistry of neuroactive aminoacids</title>
</json:item>
<json:item>
<author>
<json:item>
<name>O.P. Ottersen</name>
</json:item>
<json:item>
<name>J. Storm-Mathisen</name>
</json:item>
</author>
<host>
<pages>
<last>138</last>
<first>131</first>
</pages>
<author></author>
<title>Excitatory Aminoacid Transmission. Neurological Neurobiology</title>
</host>
<title>Immunocytochemistry visualization of glutamate and aspartate</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Palaiologos</name>
</json:item>
<json:item>
<name>L. Hertz</name>
</json:item>
<json:item>
<name>A. Schousboe</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>366</last>
<first>359</first>
</pages>
<author></author>
<title>Neurochem. Res.</title>
</host>
<title>Role of aspartate aminotransferase and mitochondrial dicarboxylase transport for release of endogenously and exogenously supplied neurotransmitter in glutamatergic neurons</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.C. Panzica</name>
</json:item>
<json:item>
<name>R. Arévalo</name>
</json:item>
<json:item>
<name>F. Sanchez</name>
</json:item>
<json:item>
<name>J.R. Alonso</name>
</json:item>
<json:item>
<name>N. Aste</name>
</json:item>
<json:item>
<name>C. Viglietti-Panzica</name>
</json:item>
<json:item>
<name>J. Aijon</name>
</json:item>
<json:item>
<name>R. Vazquez</name>
</json:item>
</author>
<host>
<volume>342</volume>
<pages>
<last>114</last>
<first>97</first>
</pages>
<author></author>
<title>J. Comp. Neurol.</title>
</host>
<title>Topographical distribution of reduced nicotinamide adenine dinucleotide phosphate-diaphorase in the brain of the japanese quail</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Repérant</name>
</json:item>
<json:item>
<name>D. Miceli</name>
</json:item>
<json:item>
<name>N.P. Vesselkin</name>
</json:item>
<json:item>
<name>S. Molotchnikoff</name>
</json:item>
</author>
<host>
<volume>118</volume>
<pages>
<last>171</last>
<first>115</first>
</pages>
<author></author>
<title>Int. Rev. Cytol.</title>
</host>
<title>The centrifugal visual system of vertebrates: a century-old search reviewed</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Repérant</name>
</json:item>
<json:item>
<name>J.-P. Rio</name>
</json:item>
<json:item>
<name>R. Ward</name>
</json:item>
<json:item>
<name>M. Wasowicz</name>
</json:item>
<json:item>
<name>D. Miceli</name>
</json:item>
<json:item>
<name>M. Medina</name>
</json:item>
<json:item>
<name>J. Pierre</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>280</last>
<first>267</first>
</pages>
<author></author>
<title>J. Chem. Neuroanat.</title>
</host>
<title>Enrichment of glutamate-like immunoreactivity in the retinotectal terminals of the viper Vipera aspis: an electron microscope quantitative immunogold study</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L.J. Rogers</name>
</json:item>
<json:item>
<name>F.A. Miles</name>
</json:item>
</author>
<host>
<volume>48</volume>
<pages>
<last>156</last>
<first>147</first>
</pages>
<author></author>
<title>Brain Res.</title>
</host>
<title>Centrifugal control of the avian retina. V. Effects of lesions of the isthmo-optic nucleus and visual behaviour</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Somogyi</name>
</json:item>
<json:item>
<name>A.J. Hodgson</name>
</json:item>
</author>
<host>
<volume>33</volume>
<pages>
<last>257</last>
<first>249</first>
</pages>
<author></author>
<title>J. Histochem. Cytochem.</title>
</host>
<title>Antiserum to γ-aminobutyric acid. III: Demonstration of GABA in Golgi-impregnated neurons and in conventional electron microscopic sections of cat striate cortex</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Somogyi</name>
</json:item>
<json:item>
<name>K. Halasz</name>
</json:item>
<json:item>
<name>J. Somogyi</name>
</json:item>
<json:item>
<name>J. Storm-Mathisen</name>
</json:item>
<json:item>
<name>O.P. Ottersen</name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<last>1050</last>
<first>1045</first>
</pages>
<author></author>
<title>Neuroscience</title>
</host>
<title>Quantification of immunogold labelling reveals enrichment of glutamate in mossy and parallel fiber terminals in cat cerebellum</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E.M. Sorenson</name>
</json:item>
<json:item>
<name>D. Parkinson</name>
</json:item>
<json:item>
<name>J.L. Dahl</name>
</json:item>
<json:item>
<name>V.A. Chiappinelli</name>
</json:item>
</author>
<host>
<volume>281</volume>
<pages>
<last>657</last>
<first>641</first>
</pages>
<author></author>
<title>J. Comp. Neurol.</title>
</host>
<title>Immunohistochemical localization of choline acetyltransferase in the chicken mesencephalon</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Storm-Mathisen</name>
</json:item>
<json:item>
<name>O.P. Ottersen</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<last>1743</last>
<first>1733</first>
</pages>
<author></author>
<title>J. Histochem. Cytochem.</title>
</host>
<title>Immunocytochemistry of glutamate at the synaptic level</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Uchiyama</name>
</json:item>
</author>
<host>
<volume>3</volume>
<pages>
<last>206</last>
<first>183</first>
</pages>
<author></author>
<title>Vis. Neurosci.</title>
</host>
<title>Centrifugal pathways to the retina: influence of the optic tectum</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Uchiyama</name>
</json:item>
<json:item>
<name>R.B. Barlow</name>
</json:item>
</author>
<host>
<volume>34</volume>
<pages>
<last>2194</last>
<first>2189</first>
</pages>
<author></author>
<title>Vis. Res.</title>
</host>
<title>Centrifugal inputs enhance responses of retinal ganglion cells in the Japanese quail without changing their spatial coding properties</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Uchiyama</name>
</json:item>
<json:item>
<name>S. Nakamura</name>
</json:item>
<json:item>
<name>T. Imazono</name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<last>423</last>
<first>417</first>
</pages>
<author></author>
<title>Vis. Neurosci.</title>
</host>
<title>Long range competition among the neurons projecting centrifugally to the quail retina</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Ward</name>
</json:item>
<json:item>
<name>J. Repérant</name>
</json:item>
<json:item>
<name>D. Miceli</name>
</json:item>
</author>
<host>
<pages>
<last>76</last>
<first>61</first>
</pages>
<author></author>
<title>The Changing Visual System</title>
</host>
<title>The centrifugal visual system: what can comparative studies tell us about its evolution and possible function</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Weidner</name>
</json:item>
<json:item>
<name>J. Repérant</name>
</json:item>
<json:item>
<name>A.-M. Desroches</name>
</json:item>
<json:item>
<name>D. Miceli</name>
</json:item>
<json:item>
<name>N.P. Vesselkin</name>
</json:item>
</author>
<host>
<volume>436</volume>
<pages>
<last>160</last>
<first>153</first>
</pages>
<author></author>
<title>Brain Res.</title>
</host>
<title>Nuclear origin of the centrifugal visual pathway in birds of prey</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. Woodson</name>
</json:item>
<json:item>
<name>A. Reiner</name>
</json:item>
<json:item>
<name>K. Anderson</name>
</json:item>
<json:item>
<name>H.J. Karten</name>
</json:item>
</author>
<host>
<volume>305</volume>
<pages>
<last>488</last>
<first>470</first>
</pages>
<author></author>
<title>J. Comp. Neurol.</title>
</host>
<title>Distribution, laminar location and morphology of tectal neurons projecting to the isthmo-optic nucleus and the nucleus isthmi, pars parvocellularis in the pigeon (Columba livia) and chick (Gallus domesticus): a retrograde labeling study</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Yamada</name>
</json:item>
<json:item>
<name>Y. Sano</name>
</json:item>
</author>
<host>
<volume>2</volume>
<pages>
<last>36</last>
<first>21</first>
</pages>
<author></author>
<title>Biol. Amines</title>
</host>
<title>Immunohistochemical studies on the serotonin neuron system in the brain of the chicken (Gallus domesticus). II: The distribution of the nerve fibers</title>
</json:item>
</refBibs>
<genre>
<json:string>brief-communication</json:string>
</genre>
<host>
<volume>868</volume>
<pii>
<json:string>S0006-8993(00)X0272-7</json:string>
</pii>
<pages>
<last>134</last>
<first>128</first>
</pages>
<issn>
<json:string>0006-8993</json:string>
</issn>
<issue>1</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Brain Research</title>
<publicationDate>2000</publicationDate>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>neurosciences</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>neurology & neurosurgery</json:string>
</scienceMetrix>
</categories>
<publicationDate>2000</publicationDate>
<copyrightDate>2000</copyrightDate>
<doi>
<json:string>10.1016/S0006-8993(00)02316-7</json:string>
</doi>
<id>80EC10732A9863B90356AB25C6BE4CE6C3850C17</id>
<score>0.11649449</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/80EC10732A9863B90356AB25C6BE4CE6C3850C17/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/80EC10732A9863B90356AB25C6BE4CE6C3850C17/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/80EC10732A9863B90356AB25C6BE4CE6C3850C17/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Quantitative immunogold evidence that glutamate is a neurotransmitter in afferent synaptic terminals within the isthmo-optic nucleus of the pigeon centrifugal visual system</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©2000 Elsevier Science B.V.</p>
</availability>
<date>2000</date>
</publicationStmt>
<notesStmt>
<note type="content">Section title: Short communication</note>
<note type="content">Fig. 1: Electron micrographs of glutamate-immunoreactive (A–C) and -immunonegative (D) axon terminals within the pigeon ION. (A) Large-sized P1a axon terminal with a clear axoplasm. The synaptic vesicles are oval to rounded-shaped. This establishes an asymmetrical contact (arrow) on a dendritic profile. (B) Small-sized P1b axon terminal. As for P1a type, the synaptic vesicles are rounded, but more minute. Note that the synaptic zone is longer than in P1a (arrows) and also asymmetrical. The arrowhead points to a dense-core vesicle. (C) P2b axon terminal with a clear-medium-dense axoplasm, containing numerous pleomorphic synaptic vesicles, and making a symmetrical contact (arrow) on a large dendritic profile. (D) Characteristic P2c axon terminal, containing a dense population of pleomorphic synaptic vesicles, and a long-sized synaptic zone (arrow), with a symmetrical contact on a proximal dendrite of a centrifugal neuron. Scale bars: 0.5 μm.</note>
<note type="content">Fig. 2: Examples of single glutamate (A–C) and double GABA-glutamate (D) immunolabeling in the pigeon ION. (A) The upper left shows a GLU-ir P1a axon terminal contacting a long spine-like profile (arrow). This micrograph also illustrates a P3 axon terminal with rounded-shaped synaptic vesicles, establishing an asymmetrical contact (arrow) upon dendrite of an ION centrifugal neuron. Note the presence of dense-core vesicles (arrowhead). (B) Another large P1a axon terminal is close to a P4 GLU-immunonegative bouton with a clear axoplasm in which the synaptic vesicles are dense. The synaptic zone is long and asymmetrical (arrow). Note the presence of a clear-cut postsynaptic differentiation. (C) The left part of the micrograph is occupied by a P5 axon terminal. The axoplasm is clear and contains a mixture of small rounded synaptic vesicles and numerous large dense-core vesicles. No glutamate immunoreactivity is present. Another P1b axon terminal lies in the upper right part of the micrograph. (D) P2a axon terminal characterized by pleomorphic synaptic vesicles which make a symmetrical synaptic contact (arrow) on a large dendritic profile of an ION centrifugal neuron. Whereas the bouton is GABA-immunoreactive, the postsynaptic dendrite is densely GLU-ir. Scale bars: 0.5 μm.</note>
<note type="content">Table 1: Glutamate immunogold labeling</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Quantitative immunogold evidence that glutamate is a neurotransmitter in afferent synaptic terminals within the isthmo-optic nucleus of the pigeon centrifugal visual system</title>
<author xml:id="author-1">
<persName>
<forename type="first">Dom</forename>
<surname>Miceli</surname>
</persName>
<affiliation>Laboratoire de Neuropsychologie expérimentale et comparée, Université du Québec, Trois-Rivières, Canada</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Jacques</forename>
<surname>Repérant</surname>
</persName>
<affiliation>Laboratoire de Neuropsychologie expérimentale et comparée, Université du Québec, Trois-Rivières, Canada</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Jean-Paul</forename>
<surname>Rio</surname>
</persName>
<email>rio@infobiogen.fr</email>
<note type="correspondence">
<p>Corresponding author. Tel.: +33-11-4216-2678; fax: +33-4570-9990</p>
</note>
<affiliation>Laboratoire de Neuromorphologie, Développement, Evolution, INSERM U 106, Hôpital de la Salpêtrière, Paris, France</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Jean</forename>
<surname>Désilets</surname>
</persName>
<affiliation>Laboratoire de Neuropsychologie expérimentale et comparée, Université du Québec, Trois-Rivières, Canada</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Monique</forename>
<surname>Médina</surname>
</persName>
<affiliation>Laboratoire d’Anatomie comparée, MNHN, Paris, France</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Brain Research</title>
<title level="j" type="abbrev">BRES</title>
<idno type="pISSN">0006-8993</idno>
<idno type="PII">S0006-8993(00)X0272-7</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000"></date>
<biblScope unit="volume">868</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="128">128</biblScope>
<biblScope unit="page" to="134">134</biblScope>
</imprint>
</monogr>
<idno type="istex">80EC10732A9863B90356AB25C6BE4CE6C3850C17</idno>
<idno type="DOI">10.1016/S0006-8993(00)02316-7</idno>
<idno type="PII">S0006-8993(00)02316-7</idno>
<idno type="ArticleID">28406</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2000</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>A quantitative electron microscopic analysis of glutamate (GLU) immunoreactivity using the post-embedding immunogold technique was carried out within the isthmo-optic nucleus (ION) of the pigeon centrifugal visual system (CVS). Measurements were performed in each of eight different categories of axon terminals, including those that were GABA-immunoreactive (-ir), considered representing control profiles and identified using a single or double-label immunocytochemical procedure. The results demonstrated that the glutamate immunogold particle densities for both mitochondrial and vesicular pools and for total surface area of bouton profiles were significantly higher in P1a, P1b and P2b terminals and not significantly different in P4 and P5 terminals compared to those recorded in control GABA-ir terminals (P2a, P2c, P3). Moreover, the values measured in GLU-ir positive profiles were all significantly higher than in either P4 or P5 terminals. The results suggest that tectal neurons, which provide the main input to the ION cells, are either inhibitory GABA-ir possibly associated with P2c and/or P3 terminals or excitatory GLU-ir via P1a, P1b and P2b terminals. Such differential effects of tectal afferents may be the basis for the modulation of centrifugal activity and consequently of end target retinal ganglion cell responses. The data are relevant to hypotheses implicating the avian CVS in mechanisms of selective enhancement of visual attention to either novel or meaningful stimuli within the visual field.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Centrifugal visual system</term>
</item>
<item>
<term>Isthmo-optic nucleus</term>
</item>
<item>
<term>Afferent synaptic terminals</term>
</item>
<item>
<term>Glutamate immunoreactivity</term>
</item>
<item>
<term>Pigeon</term>
</item>
<item>
<term>Electron microscopy</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2000">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/80EC10732A9863B90356AB25C6BE4CE6C3850C17/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="sco" xml:lang="en">
<item-info>
<jid>BRES</jid>
<aid>28406</aid>
<ce:pii>S0006-8993(00)02316-7</ce:pii>
<ce:doi>10.1016/S0006-8993(00)02316-7</ce:doi>
<ce:copyright type="full-transfer" year="2000">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:dochead>
<ce:textfn>Short communication</ce:textfn>
</ce:dochead>
<ce:title>Quantitative immunogold evidence that glutamate is a neurotransmitter in afferent synaptic terminals within the isthmo-optic nucleus of the pigeon centrifugal visual system</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Dom</ce:given-name>
<ce:surname>Miceli</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup loc="post">a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Jacques</ce:given-name>
<ce:surname>Repérant</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup loc="post">a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="AFF2">
<ce:sup loc="post">b</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="AFF3">
<ce:sup loc="post">c</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Jean-Paul</ce:given-name>
<ce:surname>Rio</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup loc="post">b</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:e-address type="email">rio@infobiogen.fr</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>Jean</ce:given-name>
<ce:surname>Désilets</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup loc="post">a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Monique</ce:given-name>
<ce:surname>Médina</ce:surname>
<ce:cross-ref refid="AFF3">
<ce:sup loc="post">c</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Laboratoire de Neuropsychologie expérimentale et comparée, Université du Québec, Trois-Rivières, Canada</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>Laboratoire de Neuromorphologie, Développement, Evolution, INSERM U 106, Hôpital de la Salpêtrière, Paris, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF3">
<ce:label>c</ce:label>
<ce:textfn>Laboratoire d’Anatomie comparée, MNHN, Paris, France</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel.: +33-11-4216-2678; fax: +33-4570-9990</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-accepted day="21" month="3" year="2000"></ce:date-accepted>
<ce:abstract class="author">
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para view="all" id="simple-para.0025">A quantitative electron microscopic analysis of glutamate (GLU) immunoreactivity using the post-embedding immunogold technique was carried out within the isthmo-optic nucleus (ION) of the pigeon centrifugal visual system (CVS). Measurements were performed in each of eight different categories of axon terminals, including those that were GABA-immunoreactive (-ir), considered representing control profiles and identified using a single or double-label immunocytochemical procedure. The results demonstrated that the glutamate immunogold particle densities for both mitochondrial and vesicular pools and for total surface area of bouton profiles were significantly higher in P1a, P1b and P2b terminals and not significantly different in P4 and P5 terminals compared to those recorded in control GABA-ir terminals (P2a, P2c, P3). Moreover, the values measured in GLU-ir positive profiles were all significantly higher than in either P4 or P5 terminals. The results suggest that tectal neurons, which provide the main input to the ION cells, are either inhibitory GABA-ir possibly associated with P2c and/or P3 terminals or excitatory GLU-ir via P1a, P1b and P2b terminals. Such differential effects of tectal afferents may be the basis for the modulation of centrifugal activity and consequently of end target retinal ganglion cell responses. The data are relevant to hypotheses implicating the avian CVS in mechanisms of selective enhancement of visual attention to either novel or meaningful stimuli within the visual field.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Centrifugal visual system</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Isthmo-optic nucleus</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Afferent synaptic terminals</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Glutamate immunoreactivity</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Pigeon</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Electron microscopy</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Quantitative immunogold evidence that glutamate is a neurotransmitter in afferent synaptic terminals within the isthmo-optic nucleus of the pigeon centrifugal visual system</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Quantitative immunogold evidence that glutamate is a neurotransmitter in afferent synaptic terminals within the isthmo-optic nucleus of the pigeon centrifugal visual system</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dom</namePart>
<namePart type="family">Miceli</namePart>
<affiliation>Laboratoire de Neuropsychologie expérimentale et comparée, Université du Québec, Trois-Rivières, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacques</namePart>
<namePart type="family">Repérant</namePart>
<affiliation>Laboratoire de Neuropsychologie expérimentale et comparée, Université du Québec, Trois-Rivières, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean-Paul</namePart>
<namePart type="family">Rio</namePart>
<affiliation>E-mail: rio@infobiogen.fr</affiliation>
<affiliation>Laboratoire de Neuromorphologie, Développement, Evolution, INSERM U 106, Hôpital de la Salpêtrière, Paris, France</affiliation>
<description>Corresponding author. Tel.: +33-11-4216-2678; fax: +33-4570-9990</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean</namePart>
<namePart type="family">Désilets</namePart>
<affiliation>Laboratoire de Neuropsychologie expérimentale et comparée, Université du Québec, Trois-Rivières, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Monique</namePart>
<namePart type="family">Médina</namePart>
<affiliation>Laboratoire d’Anatomie comparée, MNHN, Paris, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="brief-communication" displayLabel="Short communication"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2000</dateIssued>
<copyrightDate encoding="w3cdtf">2000</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">A quantitative electron microscopic analysis of glutamate (GLU) immunoreactivity using the post-embedding immunogold technique was carried out within the isthmo-optic nucleus (ION) of the pigeon centrifugal visual system (CVS). Measurements were performed in each of eight different categories of axon terminals, including those that were GABA-immunoreactive (-ir), considered representing control profiles and identified using a single or double-label immunocytochemical procedure. The results demonstrated that the glutamate immunogold particle densities for both mitochondrial and vesicular pools and for total surface area of bouton profiles were significantly higher in P1a, P1b and P2b terminals and not significantly different in P4 and P5 terminals compared to those recorded in control GABA-ir terminals (P2a, P2c, P3). Moreover, the values measured in GLU-ir positive profiles were all significantly higher than in either P4 or P5 terminals. The results suggest that tectal neurons, which provide the main input to the ION cells, are either inhibitory GABA-ir possibly associated with P2c and/or P3 terminals or excitatory GLU-ir via P1a, P1b and P2b terminals. Such differential effects of tectal afferents may be the basis for the modulation of centrifugal activity and consequently of end target retinal ganglion cell responses. The data are relevant to hypotheses implicating the avian CVS in mechanisms of selective enhancement of visual attention to either novel or meaningful stimuli within the visual field.</abstract>
<note type="content">Section title: Short communication</note>
<note type="content">Fig. 1: Electron micrographs of glutamate-immunoreactive (A–C) and -immunonegative (D) axon terminals within the pigeon ION. (A) Large-sized P1a axon terminal with a clear axoplasm. The synaptic vesicles are oval to rounded-shaped. This establishes an asymmetrical contact (arrow) on a dendritic profile. (B) Small-sized P1b axon terminal. As for P1a type, the synaptic vesicles are rounded, but more minute. Note that the synaptic zone is longer than in P1a (arrows) and also asymmetrical. The arrowhead points to a dense-core vesicle. (C) P2b axon terminal with a clear-medium-dense axoplasm, containing numerous pleomorphic synaptic vesicles, and making a symmetrical contact (arrow) on a large dendritic profile. (D) Characteristic P2c axon terminal, containing a dense population of pleomorphic synaptic vesicles, and a long-sized synaptic zone (arrow), with a symmetrical contact on a proximal dendrite of a centrifugal neuron. Scale bars: 0.5 μm.</note>
<note type="content">Fig. 2: Examples of single glutamate (A–C) and double GABA-glutamate (D) immunolabeling in the pigeon ION. (A) The upper left shows a GLU-ir P1a axon terminal contacting a long spine-like profile (arrow). This micrograph also illustrates a P3 axon terminal with rounded-shaped synaptic vesicles, establishing an asymmetrical contact (arrow) upon dendrite of an ION centrifugal neuron. Note the presence of dense-core vesicles (arrowhead). (B) Another large P1a axon terminal is close to a P4 GLU-immunonegative bouton with a clear axoplasm in which the synaptic vesicles are dense. The synaptic zone is long and asymmetrical (arrow). Note the presence of a clear-cut postsynaptic differentiation. (C) The left part of the micrograph is occupied by a P5 axon terminal. The axoplasm is clear and contains a mixture of small rounded synaptic vesicles and numerous large dense-core vesicles. No glutamate immunoreactivity is present. Another P1b axon terminal lies in the upper right part of the micrograph. (D) P2a axon terminal characterized by pleomorphic synaptic vesicles which make a symmetrical synaptic contact (arrow) on a large dendritic profile of an ION centrifugal neuron. Whereas the bouton is GABA-immunoreactive, the postsynaptic dendrite is densely GLU-ir. Scale bars: 0.5 μm.</note>
<note type="content">Table 1: Glutamate immunogold labeling</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>Centrifugal visual system</topic>
<topic>Isthmo-optic nucleus</topic>
<topic>Afferent synaptic terminals</topic>
<topic>Glutamate immunoreactivity</topic>
<topic>Pigeon</topic>
<topic>Electron microscopy</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Brain Research</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>BRES</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">20000616</dateIssued>
</originInfo>
<identifier type="ISSN">0006-8993</identifier>
<identifier type="PII">S0006-8993(00)X0272-7</identifier>
<part>
<date>20000616</date>
<detail type="volume">
<number>868</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>1</start>
<end>164</end>
</extent>
<extent unit="pages">
<start>128</start>
<end>134</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">80EC10732A9863B90356AB25C6BE4CE6C3850C17</identifier>
<identifier type="DOI">10.1016/S0006-8993(00)02316-7</identifier>
<identifier type="PII">S0006-8993(00)02316-7</identifier>
<identifier type="ArticleID">28406</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2000 Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©2000</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonFranceV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001489 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001489 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonFranceV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:80EC10732A9863B90356AB25C6BE4CE6C3850C17
   |texte=   Quantitative immunogold evidence that glutamate is a neurotransmitter in afferent synaptic terminals within the isthmo-optic nucleus of the pigeon centrifugal visual system
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Wed May 17 19:46:39 2017. Site generation: Mon Mar 4 15:48:15 2024