Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Novel Vaccination Strategy Mediating the Induction of Lung-Resident Memory CD8 T Cells Confers Heterosubtypic Immunity against Future Pandemic Influenza Virus.

Identifieur interne : 000560 ( PubMed/Curation ); précédent : 000559; suivant : 000561

A Novel Vaccination Strategy Mediating the Induction of Lung-Resident Memory CD8 T Cells Confers Heterosubtypic Immunity against Future Pandemic Influenza Virus.

Auteurs : Yu-Na Lee [États-Unis] ; Young-Tae Lee [États-Unis] ; Min-Chul Kim [Corée du Sud] ; Andrew T. Gewirtz [États-Unis] ; Sang-Moo Kang [États-Unis]

Source :

RBID : pubmed:26864033

Descripteurs français

English descriptors

Abstract

The currently used vaccine strategy to combat influenza A virus (IAV) aims to provide highly specific immunity to circulating seasonal IAV strains. However, the outbreak of 2009 influenza pandemic highlights the danger in this strategy. In this study, we tested the hypothesis that universal vaccination that offers broader but weaker protection would result in cross protective T cell responses after primary IAV infection, which would subsequently provide protective immunity against future pandemic strains. Specifically, we used tandem repeat extracellular domain of M2 (M2e) epitopes on virus-like particles (M2e5x VLP) that induced heterosubtypic immunity by eliciting Abs to a conserved M2e epitope. M2e5x VLP was found to be superior to strain-specific current split vaccine in conferring heterosubtypic cross protection and in equipping the host with cross-protective lung-resident nucleoprotein-specific memory CD8(+) T cell responses to a subsequent secondary infection with a new pandemic potential strain. Immune correlates for subsequent heterosubtypic immunity by M2e5x VLP vaccination were found to be virus-specific CD8(+) T cells secreting IFN-γ and expressing lung-resident memory phenotypic markers CD69(+) and CD103(+) as well as M2e Abs. Hence, vaccination with M2e5x VLP may be developable as a new strategy to combat future pandemic outbreaks.

DOI: 10.4049/jimmunol.1501637
PubMed: 26864033

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26864033

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Novel Vaccination Strategy Mediating the Induction of Lung-Resident Memory CD8 T Cells Confers Heterosubtypic Immunity against Future Pandemic Influenza Virus.</title>
<author>
<name sortKey="Lee, Yu Na" sort="Lee, Yu Na" uniqKey="Lee Y" first="Yu-Na" last="Lee">Yu-Na Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lee, Young Tae" sort="Lee, Young Tae" uniqKey="Lee Y" first="Young-Tae" last="Lee">Young-Tae Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kim, Min Chul" sort="Kim, Min Chul" uniqKey="Kim M" first="Min-Chul" last="Kim">Min-Chul Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do 14089, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do 14089</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gewirtz, Andrew T" sort="Gewirtz, Andrew T" uniqKey="Gewirtz A" first="Andrew T" last="Gewirtz">Andrew T. Gewirtz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kang, Sang Moo" sort="Kang, Sang Moo" uniqKey="Kang S" first="Sang-Moo" last="Kang">Sang-Moo Kang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and skang24@gsu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26864033</idno>
<idno type="pmid">26864033</idno>
<idno type="doi">10.4049/jimmunol.1501637</idno>
<idno type="wicri:Area/PubMed/Corpus">000560</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000560</idno>
<idno type="wicri:Area/PubMed/Curation">000560</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000560</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A Novel Vaccination Strategy Mediating the Induction of Lung-Resident Memory CD8 T Cells Confers Heterosubtypic Immunity against Future Pandemic Influenza Virus.</title>
<author>
<name sortKey="Lee, Yu Na" sort="Lee, Yu Na" uniqKey="Lee Y" first="Yu-Na" last="Lee">Yu-Na Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lee, Young Tae" sort="Lee, Young Tae" uniqKey="Lee Y" first="Young-Tae" last="Lee">Young-Tae Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kim, Min Chul" sort="Kim, Min Chul" uniqKey="Kim M" first="Min-Chul" last="Kim">Min-Chul Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do 14089, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do 14089</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gewirtz, Andrew T" sort="Gewirtz, Andrew T" uniqKey="Gewirtz A" first="Andrew T" last="Gewirtz">Andrew T. Gewirtz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kang, Sang Moo" sort="Kang, Sang Moo" uniqKey="Kang S" first="Sang-Moo" last="Kang">Sang-Moo Kang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and skang24@gsu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of immunology (Baltimore, Md. : 1950)</title>
<idno type="eISSN">1550-6606</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>CD8-Positive T-Lymphocytes (immunology)</term>
<term>CD8-Positive T-Lymphocytes (virology)</term>
<term>Cross Reactions</term>
<term>Female</term>
<term>Humans</term>
<term>Immunodominant Epitopes (administration & dosage)</term>
<term>Immunodominant Epitopes (chemistry)</term>
<term>Immunologic Memory</term>
<term>Influenza Vaccines (immunology)</term>
<term>Influenza, Human (epidemiology)</term>
<term>Influenza, Human (immunology)</term>
<term>Influenza, Human (prevention & control)</term>
<term>Interferon-gamma (metabolism)</term>
<term>Lung (immunology)</term>
<term>Lymphocyte Activation</term>
<term>Mass Vaccination (methods)</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Orthomyxoviridae (immunology)</term>
<term>Orthomyxoviridae Infections (immunology)</term>
<term>Orthomyxoviridae Infections (prevention & control)</term>
<term>Pandemics</term>
<term>Viral Matrix Proteins (administration & dosage)</term>
<term>Viral Matrix Proteins (chemistry)</term>
<term>Virion (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation des lymphocytes</term>
<term>Animaux</term>
<term>Femelle</term>
<term>Grippe humaine ()</term>
<term>Grippe humaine (immunologie)</term>
<term>Grippe humaine (épidémiologie)</term>
<term>Humains</term>
<term>Infections à Orthomyxoviridae ()</term>
<term>Infections à Orthomyxoviridae (immunologie)</term>
<term>Interféron gamma (métabolisme)</term>
<term>Lymphocytes T CD8+ (immunologie)</term>
<term>Lymphocytes T CD8+ (virologie)</term>
<term>Mémoire immunologique</term>
<term>Orthomyxoviridae (immunologie)</term>
<term>Pandémies</term>
<term>Poumon (immunologie)</term>
<term>Protéines de la matrice virale ()</term>
<term>Protéines de la matrice virale (administration et posologie)</term>
<term>Réactions croisées</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Vaccination de masse ()</term>
<term>Vaccins antigrippaux (immunologie)</term>
<term>Virion ()</term>
<term>Épitopes immunodominants ()</term>
<term>Épitopes immunodominants (administration et posologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Immunodominant Epitopes</term>
<term>Viral Matrix Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Immunodominant Epitopes</term>
<term>Viral Matrix Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="administration et posologie" xml:lang="fr">
<term>Protéines de la matrice virale</term>
<term>Épitopes immunodominants</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Virion</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Grippe humaine</term>
<term>Infections à Orthomyxoviridae</term>
<term>Lymphocytes T CD8+</term>
<term>Orthomyxoviridae</term>
<term>Poumon</term>
<term>Vaccins antigrippaux</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>CD8-Positive T-Lymphocytes</term>
<term>Influenza Vaccines</term>
<term>Influenza, Human</term>
<term>Lung</term>
<term>Orthomyxoviridae</term>
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Interferon-gamma</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Mass Vaccination</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Interféron gamma</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Influenza, Human</term>
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Lymphocytes T CD8+</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>CD8-Positive T-Lymphocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Grippe humaine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cross Reactions</term>
<term>Female</term>
<term>Humans</term>
<term>Immunologic Memory</term>
<term>Lymphocyte Activation</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Pandemics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation des lymphocytes</term>
<term>Animaux</term>
<term>Femelle</term>
<term>Grippe humaine</term>
<term>Humains</term>
<term>Infections à Orthomyxoviridae</term>
<term>Mémoire immunologique</term>
<term>Pandémies</term>
<term>Protéines de la matrice virale</term>
<term>Réactions croisées</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Vaccination de masse</term>
<term>Virion</term>
<term>Épitopes immunodominants</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The currently used vaccine strategy to combat influenza A virus (IAV) aims to provide highly specific immunity to circulating seasonal IAV strains. However, the outbreak of 2009 influenza pandemic highlights the danger in this strategy. In this study, we tested the hypothesis that universal vaccination that offers broader but weaker protection would result in cross protective T cell responses after primary IAV infection, which would subsequently provide protective immunity against future pandemic strains. Specifically, we used tandem repeat extracellular domain of M2 (M2e) epitopes on virus-like particles (M2e5x VLP) that induced heterosubtypic immunity by eliciting Abs to a conserved M2e epitope. M2e5x VLP was found to be superior to strain-specific current split vaccine in conferring heterosubtypic cross protection and in equipping the host with cross-protective lung-resident nucleoprotein-specific memory CD8(+) T cell responses to a subsequent secondary infection with a new pandemic potential strain. Immune correlates for subsequent heterosubtypic immunity by M2e5x VLP vaccination were found to be virus-specific CD8(+) T cells secreting IFN-γ and expressing lung-resident memory phenotypic markers CD69(+) and CD103(+) as well as M2e Abs. Hence, vaccination with M2e5x VLP may be developable as a new strategy to combat future pandemic outbreaks. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26864033</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>08</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1550-6606</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>196</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2016</Year>
<Month>Mar</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of immunology (Baltimore, Md. : 1950)</Title>
<ISOAbbreviation>J. Immunol.</ISOAbbreviation>
</Journal>
<ArticleTitle>A Novel Vaccination Strategy Mediating the Induction of Lung-Resident Memory CD8 T Cells Confers Heterosubtypic Immunity against Future Pandemic Influenza Virus.</ArticleTitle>
<Pagination>
<MedlinePgn>2637-45</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4049/jimmunol.1501637</ELocationID>
<Abstract>
<AbstractText>The currently used vaccine strategy to combat influenza A virus (IAV) aims to provide highly specific immunity to circulating seasonal IAV strains. However, the outbreak of 2009 influenza pandemic highlights the danger in this strategy. In this study, we tested the hypothesis that universal vaccination that offers broader but weaker protection would result in cross protective T cell responses after primary IAV infection, which would subsequently provide protective immunity against future pandemic strains. Specifically, we used tandem repeat extracellular domain of M2 (M2e) epitopes on virus-like particles (M2e5x VLP) that induced heterosubtypic immunity by eliciting Abs to a conserved M2e epitope. M2e5x VLP was found to be superior to strain-specific current split vaccine in conferring heterosubtypic cross protection and in equipping the host with cross-protective lung-resident nucleoprotein-specific memory CD8(+) T cell responses to a subsequent secondary infection with a new pandemic potential strain. Immune correlates for subsequent heterosubtypic immunity by M2e5x VLP vaccination were found to be virus-specific CD8(+) T cells secreting IFN-γ and expressing lung-resident memory phenotypic markers CD69(+) and CD103(+) as well as M2e Abs. Hence, vaccination with M2e5x VLP may be developable as a new strategy to combat future pandemic outbreaks. </AbstractText>
<CopyrightInformation>Copyright © 2016 by The American Association of Immunologists, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Yu-Na</ForeName>
<Initials>YN</Initials>
<AffiliationInfo>
<Affiliation>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Young-Tae</ForeName>
<Initials>YT</Initials>
<AffiliationInfo>
<Affiliation>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Min-Chul</ForeName>
<Initials>MC</Initials>
<AffiliationInfo>
<Affiliation>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do 14089, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gewirtz</LastName>
<ForeName>Andrew T</ForeName>
<Initials>AT</Initials>
<AffiliationInfo>
<Affiliation>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kang</LastName>
<ForeName>Sang-Moo</ForeName>
<Initials>SM</Initials>
<AffiliationInfo>
<Affiliation>Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and skang24@gsu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HHSN272201300006C</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI093772</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI119366</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AI119366</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI105170</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI105170</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HHSN272201300006C</GrantID>
<Agency>PHS HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI093772</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>02</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Immunol</MedlineTA>
<NlmUniqueID>2985117R</NlmUniqueID>
<ISSNLinking>0022-1767</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016056">Immunodominant Epitopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007252">Influenza Vaccines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C488937">M2 protein, Influenza A virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014763">Viral Matrix Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>82115-62-6</RegistryNumber>
<NameOfSubstance UI="D007371">Interferon-gamma</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>AIM</CitationSubset>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018414" MajorTopicYN="N">CD8-Positive T-Lymphocytes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003429" MajorTopicYN="N">Cross Reactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016056" MajorTopicYN="N">Immunodominant Epitopes</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="Y">administration & dosage</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007156" MajorTopicYN="N">Immunologic Memory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007252" MajorTopicYN="N">Influenza Vaccines</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007371" MajorTopicYN="N">Interferon-gamma</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008213" MajorTopicYN="N">Lymphocyte Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032541" MajorTopicYN="N">Mass Vaccination</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009975" MajorTopicYN="N">Orthomyxoviridae</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009976" MajorTopicYN="N">Orthomyxoviridae Infections</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014763" MajorTopicYN="N">Viral Matrix Proteins</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="Y">administration & dosage</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014771" MajorTopicYN="N">Virion</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>07</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>01</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26864033</ArticleId>
<ArticleId IdType="pii">jimmunol.1501637</ArticleId>
<ArticleId IdType="doi">10.4049/jimmunol.1501637</ArticleId>
<ArticleId IdType="pmc">PMC4779729</ArticleId>
<ArticleId IdType="mid">NIHMS751173</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2004 May 1;172(9):5598-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15100303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 May 7;161(4):737-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25957682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2004 Aug 13;22(23-24):2993-3003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15297047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull World Health Organ. 1972;47(4):449-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4540994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1980 Aug;29(2):650-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7216432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 1983 Jul 7;309(1):13-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6602294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1984 Feb 1;159(2):365-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6198430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 Apr 11;17(7):2870</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2701939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Mar;64(3):1375-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2304147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1991 Jul;183(1):61-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2053297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1991 Oct;65(10):5491-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1895397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1992 Sep 30;187(3):1270-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1417803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stem Cells. 1994 Sep;12(5):456-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7804122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1999 Feb 1;254(1):138-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9927581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1999 Jun 1;162(11):6641-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10352281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2004 Nov;34(11):3091-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15384046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Dec;10(12 Suppl):S82-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2006 Jan 1;193(1):49-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16323131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 Jan 1;176(1):537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16365448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2006 Mar;36(3):770-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16435281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2006 Nov 10;24(44-46):6597-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16814430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Jan 8;25(4):612-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17005299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2007 Dec;18(6):529-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18083548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Feb;82(3):1350-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18032492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2008 Jul;10(9):1024-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18662798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2009 Feb 25;27(9):1440-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19146898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(5):e5538</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19440239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jul 10;325(5937):197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19465683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Aug 28;325(5944):1071; author reply 1072-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19713508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2010;7:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20082709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2010 Apr;12(4):280-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20079871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2010 Jul;91(Pt 7):1743-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20335492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2010 Sep 15;405(1):165-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20580392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2010 Oct 1;202(7):1011-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20715930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2010 Dec 15;51(12):1370-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21067351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2010 Dec;16(12):2019-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21122255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 Jan 15;186(2):1022-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21169548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(1):e14538</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21267073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 May;85(9):4085-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21345961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2011 Aug 15;417(1):57-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21632085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2013 Feb;21(2):485-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23247101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mucosal Immunol. 2013 Mar;6(2):276-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22806098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2013 Apr 1;190(7):3328-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23447683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 Sep;99(3):328-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23811283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2013 Nov 14;39(5):939-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24238342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mucosal Immunol. 2014 May;7(3):501-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24064670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2014 May 30;32(26):3285-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24721533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2014 Jul;22(7):1364-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24590045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunology. 2014 Oct;143(2):300-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24773389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2004 Jul;103(1-2):173-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15163506</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000560 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000560 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:26864033
   |texte=   A Novel Vaccination Strategy Mediating the Induction of Lung-Resident Memory CD8 T Cells Confers Heterosubtypic Immunity against Future Pandemic Influenza Virus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:26864033" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021