Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evaluating targeted interventions via meta-population models with multi-level mixing.

Identifieur interne : 000495 ( PubMed/Curation ); précédent : 000494; suivant : 000496

Evaluating targeted interventions via meta-population models with multi-level mixing.

Auteurs : Zhilan Feng [États-Unis] ; Andrew N. Hill [États-Unis] ; Aaron T. Curns [États-Unis] ; John W. Glasser

Source :

RBID : pubmed:27671169

Descripteurs français

English descriptors

Abstract

Among the several means by which heterogeneity can be modeled, Levins' (1969) meta-population approach preserves the most analytical tractability, a virtue to the extent that generality is desirable. When model populations are stratified, contacts among their respective sub-populations must be described. Using a simple meta-population model, Feng et al. (2015) showed that mixing among sub-populations, as well as heterogeneity in characteristics affecting sub-population reproduction numbers, must be considered when evaluating public health interventions to prevent or control infectious disease outbreaks. They employed the convex combination of preferential within- and proportional among-group contacts first described by Nold (1980) and subsequently generalized by Jacquez et al. (1988). As the utility of meta-population modeling depends on more realistic mixing functions, the authors added preferential contacts between parents and children and among co-workers (Glasser et al., 2012). Here they further generalize this function by including preferential contacts between grandparents and grandchildren, but omit workplace contacts. They also describe a general multi-level mixing scheme, provide three two-level examples, and apply two of them. In their first application, the authors describe age- and gender-specific patterns in face-to-face conversations (Mossong et al., 2008), proxies for contacts by which respiratory pathogens might be transmitted, that are consistent with everyday experience. This suggests that meta-population models with inter-generational mixing could be employed to evaluate prolonged school-closures, a proposed pandemic mitigation measure that could expose grandparents, and other elderly surrogate caregivers for working parents, to infectious children. In their second application, the authors use a meta-population SEIR model stratified by 7 age groups and 50 states plus the District of Columbia, to compare actual with optimal vaccination during the 2009-2010 influenza pandemic in the United States. They also show that vaccination efforts could have been adjusted month-to-month during the fall of 2009 to ensure maximum impact. Such applications inspire confidence in the reliability of meta-population modeling in support of public health policymaking.

DOI: 10.1016/j.mbs.2016.09.013
PubMed: 27671169

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27671169

Curation

No country items

John W. Glasser
<affiliation>
<nlm:affiliation>National Center for Immunization and Respiratory Diseases, CDC, Atlanta, GA, United States . Electronic address: jglasser@cdc.gov.</nlm:affiliation>
<wicri:noCountry code="subField">United States </wicri:noCountry>
</affiliation>

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evaluating targeted interventions via meta-population models with multi-level mixing.</title>
<author>
<name sortKey="Feng, Zhilan" sort="Feng, Zhilan" uniqKey="Feng Z" first="Zhilan" last="Feng">Zhilan Feng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mathematics, Purdue University, West Lafayette, IN, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mathematics, Purdue University, West Lafayette, IN</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hill, Andrew N" sort="Hill, Andrew N" uniqKey="Hill A" first="Andrew N" last="Hill">Andrew N. Hill</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, CDC, Atlanta, GA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, CDC, Atlanta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Curns, Aaron T" sort="Curns, Aaron T" uniqKey="Curns A" first="Aaron T" last="Curns">Aaron T. Curns</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Center for Immunization and Respiratory Diseases, CDC, Atlanta, GA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Center for Immunization and Respiratory Diseases, CDC, Atlanta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Glasser, John W" sort="Glasser, John W" uniqKey="Glasser J" first="John W" last="Glasser">John W. Glasser</name>
<affiliation>
<nlm:affiliation>National Center for Immunization and Respiratory Diseases, CDC, Atlanta, GA, United States . Electronic address: jglasser@cdc.gov.</nlm:affiliation>
<wicri:noCountry code="subField">United States </wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27671169</idno>
<idno type="pmid">27671169</idno>
<idno type="doi">10.1016/j.mbs.2016.09.013</idno>
<idno type="wicri:Area/PubMed/Corpus">000495</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000495</idno>
<idno type="wicri:Area/PubMed/Curation">000495</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000495</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evaluating targeted interventions via meta-population models with multi-level mixing.</title>
<author>
<name sortKey="Feng, Zhilan" sort="Feng, Zhilan" uniqKey="Feng Z" first="Zhilan" last="Feng">Zhilan Feng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mathematics, Purdue University, West Lafayette, IN, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mathematics, Purdue University, West Lafayette, IN</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hill, Andrew N" sort="Hill, Andrew N" uniqKey="Hill A" first="Andrew N" last="Hill">Andrew N. Hill</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, CDC, Atlanta, GA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, CDC, Atlanta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Curns, Aaron T" sort="Curns, Aaron T" uniqKey="Curns A" first="Aaron T" last="Curns">Aaron T. Curns</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Center for Immunization and Respiratory Diseases, CDC, Atlanta, GA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Center for Immunization and Respiratory Diseases, CDC, Atlanta, GA</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Glasser, John W" sort="Glasser, John W" uniqKey="Glasser J" first="John W" last="Glasser">John W. Glasser</name>
<affiliation>
<nlm:affiliation>National Center for Immunization and Respiratory Diseases, CDC, Atlanta, GA, United States . Electronic address: jglasser@cdc.gov.</nlm:affiliation>
<wicri:noCountry code="subField">United States </wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mathematical biosciences</title>
<idno type="eISSN">1879-3134</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Communicable Disease Control (methods)</term>
<term>Humans</term>
<term>Influenza, Human (prevention & control)</term>
<term>Influenza, Human (transmission)</term>
<term>Models, Theoretical</term>
<term>Multilevel Analysis</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse multiniveaux</term>
<term>Contrôle des maladies contagieuses ()</term>
<term>Grippe humaine ()</term>
<term>Grippe humaine (transmission)</term>
<term>Humains</term>
<term>Modèles théoriques</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Communicable Disease Control</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Models, Theoretical</term>
<term>Multilevel Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse multiniveaux</term>
<term>Contrôle des maladies contagieuses</term>
<term>Grippe humaine</term>
<term>Humains</term>
<term>Modèles théoriques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Among the several means by which heterogeneity can be modeled, Levins' (1969) meta-population approach preserves the most analytical tractability, a virtue to the extent that generality is desirable. When model populations are stratified, contacts among their respective sub-populations must be described. Using a simple meta-population model, Feng et al. (2015) showed that mixing among sub-populations, as well as heterogeneity in characteristics affecting sub-population reproduction numbers, must be considered when evaluating public health interventions to prevent or control infectious disease outbreaks. They employed the convex combination of preferential within- and proportional among-group contacts first described by Nold (1980) and subsequently generalized by Jacquez et al. (1988). As the utility of meta-population modeling depends on more realistic mixing functions, the authors added preferential contacts between parents and children and among co-workers (Glasser et al., 2012). Here they further generalize this function by including preferential contacts between grandparents and grandchildren, but omit workplace contacts. They also describe a general multi-level mixing scheme, provide three two-level examples, and apply two of them. In their first application, the authors describe age- and gender-specific patterns in face-to-face conversations (Mossong et al., 2008), proxies for contacts by which respiratory pathogens might be transmitted, that are consistent with everyday experience. This suggests that meta-population models with inter-generational mixing could be employed to evaluate prolonged school-closures, a proposed pandemic mitigation measure that could expose grandparents, and other elderly surrogate caregivers for working parents, to infectious children. In their second application, the authors use a meta-population SEIR model stratified by 7 age groups and 50 states plus the District of Columbia, to compare actual with optimal vaccination during the 2009-2010 influenza pandemic in the United States. They also show that vaccination efforts could have been adjusted month-to-month during the fall of 2009 to ensure maximum impact. Such applications inspire confidence in the reliability of meta-population modeling in support of public health policymaking.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27671169</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>10</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-3134</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>287</Volume>
<PubDate>
<Year>2017</Year>
<Month>05</Month>
</PubDate>
</JournalIssue>
<Title>Mathematical biosciences</Title>
<ISOAbbreviation>Math Biosci</ISOAbbreviation>
</Journal>
<ArticleTitle>Evaluating targeted interventions via meta-population models with multi-level mixing.</ArticleTitle>
<Pagination>
<MedlinePgn>93-104</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0025-5564(16)30188-2</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.mbs.2016.09.013</ELocationID>
<Abstract>
<AbstractText>Among the several means by which heterogeneity can be modeled, Levins' (1969) meta-population approach preserves the most analytical tractability, a virtue to the extent that generality is desirable. When model populations are stratified, contacts among their respective sub-populations must be described. Using a simple meta-population model, Feng et al. (2015) showed that mixing among sub-populations, as well as heterogeneity in characteristics affecting sub-population reproduction numbers, must be considered when evaluating public health interventions to prevent or control infectious disease outbreaks. They employed the convex combination of preferential within- and proportional among-group contacts first described by Nold (1980) and subsequently generalized by Jacquez et al. (1988). As the utility of meta-population modeling depends on more realistic mixing functions, the authors added preferential contacts between parents and children and among co-workers (Glasser et al., 2012). Here they further generalize this function by including preferential contacts between grandparents and grandchildren, but omit workplace contacts. They also describe a general multi-level mixing scheme, provide three two-level examples, and apply two of them. In their first application, the authors describe age- and gender-specific patterns in face-to-face conversations (Mossong et al., 2008), proxies for contacts by which respiratory pathogens might be transmitted, that are consistent with everyday experience. This suggests that meta-population models with inter-generational mixing could be employed to evaluate prolonged school-closures, a proposed pandemic mitigation measure that could expose grandparents, and other elderly surrogate caregivers for working parents, to infectious children. In their second application, the authors use a meta-population SEIR model stratified by 7 age groups and 50 states plus the District of Columbia, to compare actual with optimal vaccination during the 2009-2010 influenza pandemic in the United States. They also show that vaccination efforts could have been adjusted month-to-month during the fall of 2009 to ensure maximum impact. Such applications inspire confidence in the reliability of meta-population modeling in support of public health policymaking.</AbstractText>
<CopyrightInformation>Published by Elsevier Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Zhilan</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Mathematics, Purdue University, West Lafayette, IN, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hill</LastName>
<ForeName>Andrew N</ForeName>
<Initials>AN</Initials>
<AffiliationInfo>
<Affiliation>National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, CDC, Atlanta, GA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Curns</LastName>
<ForeName>Aaron T</ForeName>
<Initials>AT</Initials>
<AffiliationInfo>
<Affiliation>National Center for Immunization and Respiratory Diseases, CDC, Atlanta, GA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Glasser</LastName>
<ForeName>John W</ForeName>
<Initials>JW</Initials>
<AffiliationInfo>
<Affiliation>National Center for Immunization and Respiratory Diseases, CDC, Atlanta, GA, United States . Electronic address: jglasser@cdc.gov.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CC999999</GrantID>
<Agency>Intramural CDC HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>09</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Math Biosci</MedlineTA>
<NlmUniqueID>0103146</NlmUniqueID>
<ISSNLinking>0025-5564</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003140" MajorTopicYN="N">Communicable Disease Control</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="Y">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055361" MajorTopicYN="Y">Multilevel Analysis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Designing or evaluating public health interventions</Keyword>
<Keyword MajorTopicYN="Y">Meta-population modeling</Keyword>
<Keyword MajorTopicYN="Y">Mixing functions</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>03</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>09</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>09</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27671169</ArticleId>
<ArticleId IdType="pii">S0025-5564(16)30188-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.mbs.2016.09.013</ArticleId>
<ArticleId IdType="pmc">PMC5723927</ArticleId>
<ArticleId IdType="mid">NIHMS922681</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2016 May;16(5):599-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26852723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Math Biosci. 2002 Nov-Dec;180:29-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12387915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2012 Sep;12(9):696-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22738894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2008 Sep;8(9):737-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18728636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IMA J Math Appl Med Biol. 1991;8(1):1-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1875096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2014 Apr 30;281(1785):20140268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24789897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2008 Apr 1;167(7):775-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18230677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemics. 2015 Mar;10:63-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25843386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e48187</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23118949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2008 Mar 25;5(3):e74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18366252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Math Biosci. 2012 Jan;235(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22037144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2008 Nov 1;168(9):1082-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18801889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Nov 17;438(7066):355-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16292310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2015 Dec 7;386:177-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26375548</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000495 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000495 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:27671169
   |texte=   Evaluating targeted interventions via meta-population models with multi-level mixing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:27671169" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021