Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Immune Escape Variants of H9N2 Influenza Viruses Containing Deletions at the Hemagglutinin Receptor Binding Site Retain Fitness In Vivo and Display Enhanced Zoonotic Characteristics.

Identifieur interne : 000422 ( PubMed/Curation ); précédent : 000421; suivant : 000423

Immune Escape Variants of H9N2 Influenza Viruses Containing Deletions at the Hemagglutinin Receptor Binding Site Retain Fitness In Vivo and Display Enhanced Zoonotic Characteristics.

Auteurs : Thomas P. Peacock [Royaume-Uni] ; Donald J. Benton [Royaume-Uni] ; Joe James [Royaume-Uni] ; Jean-Remy Sadeyen [Royaume-Uni] ; Pengxiang Chang [Royaume-Uni] ; Joshua E. Sealy [Royaume-Uni] ; Juliet E. Bryant [Viêt Nam] ; Stephen R. Martin [Royaume-Uni] ; Holly Shelton [Royaume-Uni] ; Wendy S. Barclay [Royaume-Uni] ; Munir Iqbal [Royaume-Uni]

Source :

RBID : pubmed:28468875

Descripteurs français

English descriptors

Abstract

H9N2 avian influenza viruses are enzootic in poultry across Asia and North Africa, where they pose a threat to human health as both zoonotic agents and potential pandemic candidates. Poultry vaccination against H9N2 viruses has been employed in many regions; however, vaccine effectiveness is frequently compromised due to antigenic drift arising from amino acid substitutions in the major influenza virus antigen hemagglutinin (HA). Using selection with HA-specific monoclonal antibodies, we previously identified H9N2 antibody escape mutants that contained deletions of amino acids in the 220 loop of the HA receptor binding sites (RBSs). Here we analyzed the impact of these deletions on virus zoonotic infection characteristics and fitness. We demonstrated that mutant viruses with RBS deletions are able to escape polyclonal antiserum binding and are able to infect and be transmitted between chickens. We showed that the deletion mutants have increased binding to human-like receptors and greater replication in primary human airway cells; however, the mutant HAs also displayed reduced pH and thermal stability. In summary, we infer that variant influenza viruses with deletions in the 220 loop could arise in the field due to immune selection pressure; however, due to reduced HA stability, we conclude that these viruses are unlikely to be transmitted from human to human by the airborne route, a prerequisite for pandemic emergence. Our findings underscore the complex interplay between antigenic drift and viral fitness for avian influenza viruses as well as the challenges of predicting which viral variants may pose the greatest threats for zoonotic and pandemic emergence.IMPORTANCE Avian influenza viruses, such as H9N2, cause disease in poultry as well as occasionally infecting humans and are therefore considered viruses with pandemic potential. Many countries have introduced vaccination of poultry to try to control the disease burden; however, influenza viruses are able to rapidly evolve to escape immune pressure in a process known as "antigenic drift." Previously, we experimentally generated antigenic-drift variants in the laboratory, and here, we test our "drifted" viruses to assess their zoonotic infection characteristics and transmissibility in chickens. We found that the drifted viruses were able to infect and be transmitted between chickens and showed increased binding to human-like receptors. However, the drift mutant viruses displayed reduced stability, and we predict that they are unlikely to be transmitted from human to human and cause an influenza pandemic. These results demonstrate the complex relationship between antigenic drift and the potential of avian influenza viruses to infect humans.

DOI: 10.1128/JVI.00218-17
PubMed: 28468875

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28468875

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Immune Escape Variants of H9N2 Influenza Viruses Containing Deletions at the Hemagglutinin Receptor Binding Site Retain Fitness
<i>In Vivo</i>
and Display Enhanced Zoonotic Characteristics.</title>
<author>
<name sortKey="Peacock, Thomas P" sort="Peacock, Thomas P" uniqKey="Peacock T" first="Thomas P" last="Peacock">Thomas P. Peacock</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Pirbright Institute, Pirbright, Woking</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Benton, Donald J" sort="Benton, Donald J" uniqKey="Benton D" first="Donald J" last="Benton">Donald J. Benton</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Francis Crick Institute, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Francis Crick Institute, London</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="James, Joe" sort="James, Joe" uniqKey="James J" first="Joe" last="James">Joe James</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Pirbright Institute, Pirbright, Woking</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sadeyen, Jean Remy" sort="Sadeyen, Jean Remy" uniqKey="Sadeyen J" first="Jean-Remy" last="Sadeyen">Jean-Remy Sadeyen</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Pirbright Institute, Pirbright, Woking</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chang, Pengxiang" sort="Chang, Pengxiang" uniqKey="Chang P" first="Pengxiang" last="Chang">Pengxiang Chang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Pirbright Institute, Pirbright, Woking</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sealy, Joshua E" sort="Sealy, Joshua E" uniqKey="Sealy J" first="Joshua E" last="Sealy">Joshua E. Sealy</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Pirbright Institute, Pirbright, Woking</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bryant, Juliet E" sort="Bryant, Juliet E" uniqKey="Bryant J" first="Juliet E" last="Bryant">Juliet E. Bryant</name>
<affiliation wicri:level="1">
<nlm:affiliation>Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, National Hospital of Tropical Diseases, Hanoi, Vietnam.</nlm:affiliation>
<country xml:lang="fr">Viêt Nam</country>
<wicri:regionArea>Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, National Hospital of Tropical Diseases, Hanoi</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Martin, Stephen R" sort="Martin, Stephen R" uniqKey="Martin S" first="Stephen R" last="Martin">Stephen R. Martin</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Francis Crick Institute, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Francis Crick Institute, London</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Shelton, Holly" sort="Shelton, Holly" uniqKey="Shelton H" first="Holly" last="Shelton">Holly Shelton</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Pirbright Institute, Pirbright, Woking</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Barclay, Wendy S" sort="Barclay, Wendy S" uniqKey="Barclay W" first="Wendy S" last="Barclay">Wendy S. Barclay</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Virology, Imperial College London, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Virology, Imperial College London, London</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Iqbal, Munir" sort="Iqbal, Munir" uniqKey="Iqbal M" first="Munir" last="Iqbal">Munir Iqbal</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom munir.iqbal@pirbright.ac.uk.</nlm:affiliation>
<country wicri:rule="url">Royaume-Uni</country>
<wicri:regionArea>The Pirbright Institute, Pirbright, Woking</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28468875</idno>
<idno type="pmid">28468875</idno>
<idno type="doi">10.1128/JVI.00218-17</idno>
<idno type="wicri:Area/PubMed/Corpus">000422</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000422</idno>
<idno type="wicri:Area/PubMed/Curation">000422</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000422</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Immune Escape Variants of H9N2 Influenza Viruses Containing Deletions at the Hemagglutinin Receptor Binding Site Retain Fitness
<i>In Vivo</i>
and Display Enhanced Zoonotic Characteristics.</title>
<author>
<name sortKey="Peacock, Thomas P" sort="Peacock, Thomas P" uniqKey="Peacock T" first="Thomas P" last="Peacock">Thomas P. Peacock</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Pirbright Institute, Pirbright, Woking</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Benton, Donald J" sort="Benton, Donald J" uniqKey="Benton D" first="Donald J" last="Benton">Donald J. Benton</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Francis Crick Institute, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Francis Crick Institute, London</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="James, Joe" sort="James, Joe" uniqKey="James J" first="Joe" last="James">Joe James</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Pirbright Institute, Pirbright, Woking</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sadeyen, Jean Remy" sort="Sadeyen, Jean Remy" uniqKey="Sadeyen J" first="Jean-Remy" last="Sadeyen">Jean-Remy Sadeyen</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Pirbright Institute, Pirbright, Woking</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chang, Pengxiang" sort="Chang, Pengxiang" uniqKey="Chang P" first="Pengxiang" last="Chang">Pengxiang Chang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Pirbright Institute, Pirbright, Woking</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sealy, Joshua E" sort="Sealy, Joshua E" uniqKey="Sealy J" first="Joshua E" last="Sealy">Joshua E. Sealy</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Pirbright Institute, Pirbright, Woking</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bryant, Juliet E" sort="Bryant, Juliet E" uniqKey="Bryant J" first="Juliet E" last="Bryant">Juliet E. Bryant</name>
<affiliation wicri:level="1">
<nlm:affiliation>Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, National Hospital of Tropical Diseases, Hanoi, Vietnam.</nlm:affiliation>
<country xml:lang="fr">Viêt Nam</country>
<wicri:regionArea>Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, National Hospital of Tropical Diseases, Hanoi</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Martin, Stephen R" sort="Martin, Stephen R" uniqKey="Martin S" first="Stephen R" last="Martin">Stephen R. Martin</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Francis Crick Institute, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Francis Crick Institute, London</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Shelton, Holly" sort="Shelton, Holly" uniqKey="Shelton H" first="Holly" last="Shelton">Holly Shelton</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>The Pirbright Institute, Pirbright, Woking</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Barclay, Wendy S" sort="Barclay, Wendy S" uniqKey="Barclay W" first="Wendy S" last="Barclay">Wendy S. Barclay</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Virology, Imperial College London, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Virology, Imperial College London, London</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Iqbal, Munir" sort="Iqbal, Munir" uniqKey="Iqbal M" first="Munir" last="Iqbal">Munir Iqbal</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom munir.iqbal@pirbright.ac.uk.</nlm:affiliation>
<country wicri:rule="url">Royaume-Uni</country>
<wicri:regionArea>The Pirbright Institute, Pirbright, Woking</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Binding Sites</term>
<term>Cells, Cultured</term>
<term>Chickens</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus (genetics)</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus (immunology)</term>
<term>Humans</term>
<term>Immune Evasion</term>
<term>Influenza A Virus, H9N2 Subtype (genetics)</term>
<term>Influenza A Virus, H9N2 Subtype (immunology)</term>
<term>Influenza A Virus, H9N2 Subtype (isolation & purification)</term>
<term>Influenza A Virus, H9N2 Subtype (physiology)</term>
<term>Influenza in Birds (transmission)</term>
<term>Influenza in Birds (virology)</term>
<term>Mutation</term>
<term>Sequence Deletion</term>
<term>Virulence</term>
<term>Virus Attachment</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Attachement viral</term>
<term>Cellules cultivées</term>
<term>Délétion de séquence</term>
<term>Glycoprotéine hémagglutinine du virus influenza (génétique)</term>
<term>Glycoprotéine hémagglutinine du virus influenza (immunologie)</term>
<term>Grippe chez les oiseaux (transmission)</term>
<term>Grippe chez les oiseaux (virologie)</term>
<term>Humains</term>
<term>Mutation</term>
<term>Poulets</term>
<term>Réplication virale</term>
<term>Sites de fixation</term>
<term>Sous-type H9N2 du virus de la grippe A (génétique)</term>
<term>Sous-type H9N2 du virus de la grippe A (immunologie)</term>
<term>Sous-type H9N2 du virus de la grippe A (isolement et purification)</term>
<term>Sous-type H9N2 du virus de la grippe A (physiologie)</term>
<term>Virulence</term>
<term>Échappement immunitaire</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Hemagglutinin Glycoproteins, Influenza Virus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Hemagglutinin Glycoproteins, Influenza Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Influenza A Virus, H9N2 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glycoprotéine hémagglutinine du virus influenza</term>
<term>Sous-type H9N2 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Glycoprotéine hémagglutinine du virus influenza</term>
<term>Sous-type H9N2 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Influenza A Virus, H9N2 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Influenza A Virus, H9N2 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Sous-type H9N2 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Sous-type H9N2 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Influenza A Virus, H9N2 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Influenza in Birds</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Grippe chez les oiseaux</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Influenza in Birds</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Binding Sites</term>
<term>Cells, Cultured</term>
<term>Chickens</term>
<term>Humans</term>
<term>Immune Evasion</term>
<term>Mutation</term>
<term>Sequence Deletion</term>
<term>Virulence</term>
<term>Virus Attachment</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="fr">
<term>Animaux</term>
<term>Attachement viral</term>
<term>Cellules cultivées</term>
<term>Délétion de séquence</term>
<term>Grippe chez les oiseaux</term>
<term>Humains</term>
<term>Mutation</term>
<term>Poulets</term>
<term>Réplication virale</term>
<term>Sites de fixation</term>
<term>Virulence</term>
<term>Échappement immunitaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">H9N2 avian influenza viruses are enzootic in poultry across Asia and North Africa, where they pose a threat to human health as both zoonotic agents and potential pandemic candidates. Poultry vaccination against H9N2 viruses has been employed in many regions; however, vaccine effectiveness is frequently compromised due to antigenic drift arising from amino acid substitutions in the major influenza virus antigen hemagglutinin (HA). Using selection with HA-specific monoclonal antibodies, we previously identified H9N2 antibody escape mutants that contained deletions of amino acids in the 220 loop of the HA receptor binding sites (RBSs). Here we analyzed the impact of these deletions on virus zoonotic infection characteristics and fitness. We demonstrated that mutant viruses with RBS deletions are able to escape polyclonal antiserum binding and are able to infect and be transmitted between chickens. We showed that the deletion mutants have increased binding to human-like receptors and greater replication in primary human airway cells; however, the mutant HAs also displayed reduced pH and thermal stability. In summary, we infer that variant influenza viruses with deletions in the 220 loop could arise in the field due to immune selection pressure; however, due to reduced HA stability, we conclude that these viruses are unlikely to be transmitted from human to human by the airborne route, a prerequisite for pandemic emergence. Our findings underscore the complex interplay between antigenic drift and viral fitness for avian influenza viruses as well as the challenges of predicting which viral variants may pose the greatest threats for zoonotic and pandemic emergence.
<b>IMPORTANCE</b>
Avian influenza viruses, such as H9N2, cause disease in poultry as well as occasionally infecting humans and are therefore considered viruses with pandemic potential. Many countries have introduced vaccination of poultry to try to control the disease burden; however, influenza viruses are able to rapidly evolve to escape immune pressure in a process known as "antigenic drift." Previously, we experimentally generated antigenic-drift variants in the laboratory, and here, we test our "drifted" viruses to assess their zoonotic infection characteristics and transmissibility in chickens. We found that the drifted viruses were able to infect and be transmitted between chickens and showed increased binding to human-like receptors. However, the drift mutant viruses displayed reduced stability, and we predict that they are unlikely to be transmitted from human to human and cause an influenza pandemic. These results demonstrate the complex relationship between antigenic drift and the potential of avian influenza viruses to infect humans.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28468875</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>07</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>91</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2017</Year>
<Month>07</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Immune Escape Variants of H9N2 Influenza Viruses Containing Deletions at the Hemagglutinin Receptor Binding Site Retain Fitness
<i>In Vivo</i>
and Display Enhanced Zoonotic Characteristics.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00218-17</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00218-17</ELocationID>
<Abstract>
<AbstractText>H9N2 avian influenza viruses are enzootic in poultry across Asia and North Africa, where they pose a threat to human health as both zoonotic agents and potential pandemic candidates. Poultry vaccination against H9N2 viruses has been employed in many regions; however, vaccine effectiveness is frequently compromised due to antigenic drift arising from amino acid substitutions in the major influenza virus antigen hemagglutinin (HA). Using selection with HA-specific monoclonal antibodies, we previously identified H9N2 antibody escape mutants that contained deletions of amino acids in the 220 loop of the HA receptor binding sites (RBSs). Here we analyzed the impact of these deletions on virus zoonotic infection characteristics and fitness. We demonstrated that mutant viruses with RBS deletions are able to escape polyclonal antiserum binding and are able to infect and be transmitted between chickens. We showed that the deletion mutants have increased binding to human-like receptors and greater replication in primary human airway cells; however, the mutant HAs also displayed reduced pH and thermal stability. In summary, we infer that variant influenza viruses with deletions in the 220 loop could arise in the field due to immune selection pressure; however, due to reduced HA stability, we conclude that these viruses are unlikely to be transmitted from human to human by the airborne route, a prerequisite for pandemic emergence. Our findings underscore the complex interplay between antigenic drift and viral fitness for avian influenza viruses as well as the challenges of predicting which viral variants may pose the greatest threats for zoonotic and pandemic emergence.
<b>IMPORTANCE</b>
Avian influenza viruses, such as H9N2, cause disease in poultry as well as occasionally infecting humans and are therefore considered viruses with pandemic potential. Many countries have introduced vaccination of poultry to try to control the disease burden; however, influenza viruses are able to rapidly evolve to escape immune pressure in a process known as "antigenic drift." Previously, we experimentally generated antigenic-drift variants in the laboratory, and here, we test our "drifted" viruses to assess their zoonotic infection characteristics and transmissibility in chickens. We found that the drifted viruses were able to infect and be transmitted between chickens and showed increased binding to human-like receptors. However, the drift mutant viruses displayed reduced stability, and we predict that they are unlikely to be transmitted from human to human and cause an influenza pandemic. These results demonstrate the complex relationship between antigenic drift and the potential of avian influenza viruses to infect humans.</AbstractText>
<CopyrightInformation>Copyright © 2017 Peacock et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Peacock</LastName>
<ForeName>Thomas P</ForeName>
<Initials>TP</Initials>
<AffiliationInfo>
<Affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Virology, Imperial College London, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Benton</LastName>
<ForeName>Donald J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>The Francis Crick Institute, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>James</LastName>
<ForeName>Joe</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Virology, Imperial College London, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sadeyen</LastName>
<ForeName>Jean-Remy</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Pengxiang</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sealy</LastName>
<ForeName>Joshua E</ForeName>
<Initials>JE</Initials>
<AffiliationInfo>
<Affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Royal Veterinary College, University of London, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bryant</LastName>
<ForeName>Juliet E</ForeName>
<Initials>JE</Initials>
<AffiliationInfo>
<Affiliation>Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, National Hospital of Tropical Diseases, Hanoi, Vietnam.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martin</LastName>
<ForeName>Stephen R</ForeName>
<Initials>SR</Initials>
<AffiliationInfo>
<Affiliation>The Francis Crick Institute, London, United Kingdom.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shelton</LastName>
<ForeName>Holly</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-5776-0735</Identifier>
<AffiliationInfo>
<Affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barclay</LastName>
<ForeName>Wendy S</ForeName>
<Initials>WS</Initials>
<AffiliationInfo>
<Affiliation>Department of Virology, Imperial College London, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Iqbal</LastName>
<ForeName>Munir</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>The Pirbright Institute, Pirbright, Woking, United Kingdom munir.iqbal@pirbright.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/L018853/1</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BBS/E/I/00001708</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BB/K002465/1</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>U117570592</GrantID>
<Acronym>MRC_</Acronym>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>U117512723</GrantID>
<Acronym>MRC_</Acronym>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BBS/E/00001759</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BBS/E/I/00007031</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>U117585868</GrantID>
<Acronym>MRC_</Acronym>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>06</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019267">Hemagglutinin Glycoproteins, Influenza Virus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002645" MajorTopicYN="N">Chickens</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019267" MajorTopicYN="N">Hemagglutinin Glycoproteins, Influenza Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057131" MajorTopicYN="Y">Immune Evasion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053127" MajorTopicYN="N">Influenza A Virus, H9N2 Subtype</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005585" MajorTopicYN="N">Influenza in Birds</DescriptorName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="Y">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017384" MajorTopicYN="N">Sequence Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053585" MajorTopicYN="N">Virus Attachment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="Y">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">H9N2</Keyword>
<Keyword MajorTopicYN="Y">antigenic drift</Keyword>
<Keyword MajorTopicYN="Y">avian influenza virus</Keyword>
<Keyword MajorTopicYN="Y">hemagglutinin</Keyword>
<Keyword MajorTopicYN="Y">pandemic</Keyword>
<Keyword MajorTopicYN="Y">receptor binding site</Keyword>
<Keyword MajorTopicYN="Y">zoonotic</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>02</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>04</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>7</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28468875</ArticleId>
<ArticleId IdType="pii">JVI.00218-17</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00218-17</ArticleId>
<ArticleId IdType="pmc">PMC5487547</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Virology. 2016 Jan 15;488:225-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26655240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013 Feb;9(2):e1003151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23459660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Apr;89(8):4504-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25653452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1983 Jul 7-13;304(5921):76-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6191220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(3):363-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19247286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Apr 10;157(2):329-339</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24725402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Sep 02;6(9):e1001081</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20824086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Genes. 2013 Apr;46(2):255-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23271448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Apr 07;6(4):e18577</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21490925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Microbes Infect. 2016 Apr 20;5:e35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27094903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trop Anim Health Prod. 2015 Aug;47(6):1195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26055889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 May;81(10):5181-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17344280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2000 Feb 15;267(2):279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10662623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Jun 21;340(6139):1463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23641058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2014;385:137-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25048542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Dis. 2007 Mar;51(1 Suppl):290-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17494569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Apr 08;12(4):e1005526</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27057693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2015 Apr 07;6(2):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25852160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Genet Med. 2009 Jan 16;3(1):143-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19565022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Nov 10;5:15928</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26552719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21474-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23236176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Oct;81(20):11139-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17686867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1986 Feb;149(1):27-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3946080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2011 Jan;92(Pt 1):36-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20861321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12084-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21730147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Sep;74(18):8502-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10954551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20248-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1636-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26811446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Jan;88(1):66-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24131710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Aug 05;6(8):e1001034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20700447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 22;336(6088):1534-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22723413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Res. 2012 Apr 10;43:28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22489675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Morb Mortal Wkly Rep. 2004 Jul 2;53(25):547-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15229411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 May 5;106(18):7565-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19380727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2015;1282:57-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25720471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2016 Aug 15;13(1):140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27527708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Feb;84(3):1527-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19923184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 May 27;105(21):7558-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18508975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2008 Dec;89(Pt 12):3102-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19008399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2014 Oct 30;2:e655</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25374791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2015 Aug 15;212(4):562-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25712969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jan 07;6:18745</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26738561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2005 Nov;43(11):5760-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16272514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ Open. 2014 Jan 17;4(1):e004189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24441057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Aug 29;12 (8):e1005856</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27571422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Aug;85(16):8413-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21680519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2014 Nov 26;2(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25428960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2007 Dec;88(Pt 12):3209-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2015 Oct;87(10):1641-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25965534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1987 May;6(5):1459-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3608984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Nov 20;10(11):e1004508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25411973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):548-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25548189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Nov;89(21):10724-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26246579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 02;486(7403):420-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22722205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Oct 30;326(5953):734-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19900932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1988 Dec;167(2):414-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3264429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2015;1282:51-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25720470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Microbes Infect. 2017 Mar 22;6(3):e11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28325922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Jan 20;90(7):3794-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26792744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2002 Sep;40(9):3256-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12202562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Pathol. 2016 Dec;45(6):630-639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27215697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Aug;78(15):8372-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15254209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2016 Oct;97(10 ):2516-2527</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27558742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Oct 1;526(7571):122-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26416728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Dis. 2003;47(3 Suppl):828-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14575072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Jun 11;4(6):e5788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19517011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Dec;7(12):e1002398</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22144894</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000422 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000422 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:28468875
   |texte=   Immune Escape Variants of H9N2 Influenza Viruses Containing Deletions at the Hemagglutinin Receptor Binding Site Retain Fitness In Vivo and Display Enhanced Zoonotic Characteristics.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:28468875" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021