Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modelling the emergence of influenza drug resistance: The roles of surface proteins, the immune response and antiviral mechanisms.

Identifieur interne : 000397 ( PubMed/Curation ); précédent : 000396; suivant : 000398

Modelling the emergence of influenza drug resistance: The roles of surface proteins, the immune response and antiviral mechanisms.

Auteurs : Hana M. Dobrovolny [États-Unis] ; Catherine A A. Beauchemin [Canada]

Source :

RBID : pubmed:28700622

Descripteurs français

English descriptors

Abstract

The emergence of influenza drug resistance has become of particular interest as current planning for an influenza pandemic involves using massive amounts of antiviral drugs. We use semi-stochastic simulations to examine the emergence of drug resistant mutants during the course of a single infection within a patient in the presence and absence of antiviral therapy. We specifically examine three factors and their effect on the emergence of drug-resistant mutants: antiviral mechanism, the immune response, and surface proteins. We find that adamantanes, because they act at the start of the replication cycle to prevent infection, are less likely to produce drug-resistant mutants than NAIs, which act at the end of the replication cycle. A mismatch between surface proteins and internal RNA results in drug-resistant mutants being less likely to emerge, and emerging later in the infection because the mismatch gives antivirals a second chance to prevent propagation of the mutation. The immune response subdues slow growing infections, further reducing the probability that a drug resistant mutant will emerge and yield a drug-resistant infection. These findings improve our understanding of the factors that contribute to the emergence of drug resistance during the course of a single influenza infection.

DOI: 10.1371/journal.pone.0180582
PubMed: 28700622

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28700622

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modelling the emergence of influenza drug resistance: The roles of surface proteins, the immune response and antiviral mechanisms.</title>
<author>
<name sortKey="Dobrovolny, Hana M" sort="Dobrovolny, Hana M" uniqKey="Dobrovolny H" first="Hana M" last="Dobrovolny">Hana M. Dobrovolny</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Beauchemin, Catherine A A" sort="Beauchemin, Catherine A A" uniqKey="Beauchemin C" first="Catherine A A" last="Beauchemin">Catherine A A. Beauchemin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physics, Ryerson University, Toronto, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Physics, Ryerson University, Toronto, ON</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28700622</idno>
<idno type="pmid">28700622</idno>
<idno type="doi">10.1371/journal.pone.0180582</idno>
<idno type="wicri:Area/PubMed/Corpus">000397</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000397</idno>
<idno type="wicri:Area/PubMed/Curation">000397</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000397</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Modelling the emergence of influenza drug resistance: The roles of surface proteins, the immune response and antiviral mechanisms.</title>
<author>
<name sortKey="Dobrovolny, Hana M" sort="Dobrovolny, Hana M" uniqKey="Dobrovolny H" first="Hana M" last="Dobrovolny">Hana M. Dobrovolny</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Beauchemin, Catherine A A" sort="Beauchemin, Catherine A A" uniqKey="Beauchemin C" first="Catherine A A" last="Beauchemin">Catherine A A. Beauchemin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physics, Ryerson University, Toronto, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Physics, Ryerson University, Toronto, ON</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antiviral Agents (pharmacology)</term>
<term>Antiviral Agents (therapeutic use)</term>
<term>Drug Resistance, Viral (drug effects)</term>
<term>Drug Resistance, Viral (immunology)</term>
<term>Genetic Fitness</term>
<term>Humans</term>
<term>Influenza, Human (drug therapy)</term>
<term>Influenza, Human (immunology)</term>
<term>Influenza, Human (virology)</term>
<term>Membrane Proteins (metabolism)</term>
<term>Models, Theoretical</term>
<term>Mutation (genetics)</term>
<term>Treatment Outcome</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antiviraux (pharmacologie)</term>
<term>Antiviraux (usage thérapeutique)</term>
<term>Aptitude génétique</term>
<term>Grippe humaine (immunologie)</term>
<term>Grippe humaine (traitement médicamenteux)</term>
<term>Grippe humaine (virologie)</term>
<term>Humains</term>
<term>Modèles théoriques</term>
<term>Mutation (génétique)</term>
<term>Protéines membranaires (métabolisme)</term>
<term>Résistance virale aux médicaments ()</term>
<term>Résistance virale aux médicaments (immunologie)</term>
<term>Résultat thérapeutique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Membrane Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antiviral Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Drug Resistance, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Grippe humaine</term>
<term>Résistance virale aux médicaments</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Drug Resistance, Viral</term>
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines membranaires</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antiviraux</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Grippe humaine</term>
</keywords>
<keywords scheme="MESH" qualifier="usage thérapeutique" xml:lang="fr">
<term>Antiviraux</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Grippe humaine</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genetic Fitness</term>
<term>Humans</term>
<term>Models, Theoretical</term>
<term>Treatment Outcome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Aptitude génétique</term>
<term>Humains</term>
<term>Modèles théoriques</term>
<term>Résistance virale aux médicaments</term>
<term>Résultat thérapeutique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The emergence of influenza drug resistance has become of particular interest as current planning for an influenza pandemic involves using massive amounts of antiviral drugs. We use semi-stochastic simulations to examine the emergence of drug resistant mutants during the course of a single infection within a patient in the presence and absence of antiviral therapy. We specifically examine three factors and their effect on the emergence of drug-resistant mutants: antiviral mechanism, the immune response, and surface proteins. We find that adamantanes, because they act at the start of the replication cycle to prevent infection, are less likely to produce drug-resistant mutants than NAIs, which act at the end of the replication cycle. A mismatch between surface proteins and internal RNA results in drug-resistant mutants being less likely to emerge, and emerging later in the infection because the mismatch gives antivirals a second chance to prevent propagation of the mutation. The immune response subdues slow growing infections, further reducing the probability that a drug resistant mutant will emerge and yield a drug-resistant infection. These findings improve our understanding of the factors that contribute to the emergence of drug resistance during the course of a single influenza infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28700622</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Modelling the emergence of influenza drug resistance: The roles of surface proteins, the immune response and antiviral mechanisms.</ArticleTitle>
<Pagination>
<MedlinePgn>e0180582</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0180582</ELocationID>
<Abstract>
<AbstractText>The emergence of influenza drug resistance has become of particular interest as current planning for an influenza pandemic involves using massive amounts of antiviral drugs. We use semi-stochastic simulations to examine the emergence of drug resistant mutants during the course of a single infection within a patient in the presence and absence of antiviral therapy. We specifically examine three factors and their effect on the emergence of drug-resistant mutants: antiviral mechanism, the immune response, and surface proteins. We find that adamantanes, because they act at the start of the replication cycle to prevent infection, are less likely to produce drug-resistant mutants than NAIs, which act at the end of the replication cycle. A mismatch between surface proteins and internal RNA results in drug-resistant mutants being less likely to emerge, and emerging later in the infection because the mismatch gives antivirals a second chance to prevent propagation of the mutation. The immune response subdues slow growing infections, further reducing the probability that a drug resistant mutant will emerge and yield a drug-resistant infection. These findings improve our understanding of the factors that contribute to the emergence of drug resistance during the course of a single influenza infection.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dobrovolny</LastName>
<ForeName>Hana M</ForeName>
<Initials>HM</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-3592-6770</Identifier>
<AffiliationInfo>
<Affiliation>Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Physics, Ryerson University, Toronto, ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Beauchemin</LastName>
<ForeName>Catherine A A</ForeName>
<Initials>CAA</Initials>
<AffiliationInfo>
<Affiliation>Department of Physics, Ryerson University, Toronto, ON, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Interdisciplinary Theoretical Science (iTHES) Research Group at RIKEN, Wako, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>07</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024882" MajorTopicYN="N">Drug Resistance, Viral</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056084" MajorTopicYN="N">Genetic Fitness</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="Y">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>02</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>06</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>7</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28700622</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0180582</ArticleId>
<ArticleId IdType="pii">PONE-D-17-07604</ArticleId>
<ArticleId IdType="pmc">PMC5503263</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Math Biosci. 2013 Jun;243(2):163-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23524247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Virol. 2004 Oct;31(2):84-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15364262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e57088</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23468916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2012 Apr 7;9(69):648-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21865253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 May 1;90(9):4171-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2008 May 22;275(1639):1163-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18270154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jul 09;8(7):e68235</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23874556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2015 Sep 14;7(9):4929-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26389935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2007 Jan;7(1):21-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17182341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2012 Nov;66(11):3462-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23106710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1992 Sep;66(9):5542-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1501289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2007 Jul 22;274(1619):1675-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17507331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007 Dec 12;2(12):e1305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18074029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2012 Mar;56(3):1208-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22203589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2014 Apr 17;10(4):e1003568</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24743564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 May 20;10(5):e0126115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25992792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2003 Apr;51(4):977-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2015 Oct 7;382:259-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26188087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Oct;86(19):10651-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22837199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2006 Jan 28;367(9507):303-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16443037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2008 Sep;52(9):3284-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18625765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1989 Feb 13;244(1):57-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2924909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1986 Oct;103(4):1179-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2429970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Infect Microbiol. 2016 Jun 14;6:60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27379214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2009 Mar 11;301(10):1034-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19255110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 1999 Oct 6;282(13):1240-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10517426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2007 Sep 7;248(1):179-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17582443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2011 Feb;49(2):715-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21106781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Nov;84(21):11219-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1984 Jan;98(1):308-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6707094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Feb;88(3):1652-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24257597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yale J Biol Med. 2009 Dec;82(4):153-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20027280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2004 Nov 1;190(9):1627-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15478068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Mar 24;6(3):e14767</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21455300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2005 Feb;49(2):556-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15673732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2012 Jun;205(11):1642-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22448006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Apr 03;10(4):e1004065</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24699865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Sep;84(18):9427-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20631138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Jpn J Infect Dis. 2004 Dec;57(6):236-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15623947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Oct;86(19):10558-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22811535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2011 Mar;66(3):466-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21172786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antivir Ther. 2006;11(8):971-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17302366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2009 Jun;15(6):966-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19523305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Aug;80(15):7590-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16840338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antivir Ther. 2011;16(5):775-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21817200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2007 Oct 22;4(16):893-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17609176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Aug 20;460(7258):1021-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19672242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2011 Dec;1(6):574-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22440915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Genet Evol. 2015 Jul;33:47-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25891282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Mar;80(5):2380-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16474144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2007 Dec;3(12):e240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18069885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1985 Apr 15;142(1):68-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2997982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2012;8(6):e1002588</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22761567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1988 May;62(5):1508-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3282079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1994 Mar;68(3):1812-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8107243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2000 Mar 4;355(9206):827-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10711940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2010 Apr;48(4):1085-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20129961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Nov 23;5(11):e13811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21124892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2009 Jan 7;256(1):117-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2012 Nov;96(2):91-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22982118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2013;9(2):e1002912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23408880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Mar;70(3):1818-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8627706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2012 Oct;2(5):538-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22986085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2002 Dec;46(12):3809-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12435681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2008 Sep 21;254(2):439-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18653201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2010 Sep;168(1-2):63-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20433869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2013 Jun;67(6):1815-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23730772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2002 Aug;55(2):307-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12103431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2001 Feb 15;183(4):523-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11170976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2005 Oct;49(10):4075-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16189083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Math Biol. 2016 Jan;72 (1-2):343-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25925242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Aug;84(16):8042-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20519385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2010 Aug;54(8):3442-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20498316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2006 Dec 15;43(12):1555-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17109288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2002 Oct 15;186(8):1074-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12355356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2009 Aug;143(2):147-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19481124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 1996 Jan 24-31;275(4):295-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8544269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jan 09;7:40210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28067324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2006 Feb 22;295(8):891-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16456087</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000397 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000397 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:28700622
   |texte=   Modelling the emergence of influenza drug resistance: The roles of surface proteins, the immune response and antiviral mechanisms.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:28700622" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021