Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response.

Identifieur interne : 000278 ( PubMed/Curation ); précédent : 000277; suivant : 000279

T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response.

Auteurs : Leonard Moise [États-Unis] ; Bethany M Biron [États-Unis] ; Christine M. Boyle [États-Unis] ; Nese Kurt Yilmaz [États-Unis] ; Hyesun Jang [États-Unis] ; Celia Schiffer [États-Unis] ; Ted M Ross [États-Unis] ; William D. Martin [États-Unis] ; Anne S. De Groot [États-Unis]

Source :

RBID : pubmed:30015562

Descripteurs français

English descriptors

Abstract

The delayed availability of vaccine during the 2009 H1N1 influenza pandemic created a sense of urgency to better prepare for the next influenza pandemic. Advancements in manufacturing technology, speed and capacity have been achieved but vaccine effectiveness remains a significant challenge. Here, we describe a novel vaccine design strategy called immune engineering in the context of H7N9 influenza vaccine development. The approach combines immunoinformatic and structure modeling methods to promote protective antibody responses against H7N9 hemagglutinin (HA) by engineering whole antigens to carry seasonal influenza HA memory CD4+ T cell epitopes - without perturbing native antigen structure - by galvanizing HA-specific memory helper T cells that support sustained antibody development against the native target HA. The premise for this vaccine concept rests on (i) the significance of CD4+ T cell memory to influenza immunity, (ii) the essential role CD4+ T cells play in development of neutralizing antibodies, (iii) linked specificity of HA-derived CD4+ T cell epitopes to antibody responses, (iv) the structural plasticity of HA and (v) an illustration of improved antibody response to a prototype engineered recombinant H7-HA vaccine. Immune engineering can be applied to development of vaccines against pandemic concerns, including avian influenza, as well as other difficult targets.

DOI: 10.1080/21645515.2018.1495303
PubMed: 30015562

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30015562

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response.</title>
<author>
<name sortKey="Moise, Leonard" sort="Moise, Leonard" uniqKey="Moise L" first="Leonard" last="Moise">Leonard Moise</name>
<affiliation wicri:level="1">
<nlm:affiliation>a EpiVax, Inc ., Providence , RI , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a EpiVax, Inc ., Providence , RI </wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="M Biron, Bethany" sort="M Biron, Bethany" uniqKey="M Biron B" first="Bethany" last="M Biron">Bethany M Biron</name>
<affiliation wicri:level="1">
<nlm:affiliation>a EpiVax, Inc ., Providence , RI , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a EpiVax, Inc ., Providence , RI </wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Boyle, Christine M" sort="Boyle, Christine M" uniqKey="Boyle C" first="Christine M" last="Boyle">Christine M. Boyle</name>
<affiliation wicri:level="1">
<nlm:affiliation>a EpiVax, Inc ., Providence , RI , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a EpiVax, Inc ., Providence , RI </wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kurt Yilmaz, Nese" sort="Kurt Yilmaz, Nese" uniqKey="Kurt Yilmaz N" first="Nese" last="Kurt Yilmaz">Nese Kurt Yilmaz</name>
<affiliation wicri:level="1">
<nlm:affiliation>d Department of Biochemistry and Molecular Pharmacology , UMass Medical School , Worcester , MA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>d Department of Biochemistry and Molecular Pharmacology , UMass Medical School , Worcester , MA </wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jang, Hyesun" sort="Jang, Hyesun" uniqKey="Jang H" first="Hyesun" last="Jang">Hyesun Jang</name>
<affiliation wicri:level="1">
<nlm:affiliation>e Center for Vaccines and Immunology , University of Georgia , Athens , GA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>e Center for Vaccines and Immunology , University of Georgia , Athens , GA </wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schiffer, Celia" sort="Schiffer, Celia" uniqKey="Schiffer C" first="Celia" last="Schiffer">Celia Schiffer</name>
<affiliation wicri:level="1">
<nlm:affiliation>d Department of Biochemistry and Molecular Pharmacology , UMass Medical School , Worcester , MA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>d Department of Biochemistry and Molecular Pharmacology , UMass Medical School , Worcester , MA </wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="M Ross, Ted" sort="M Ross, Ted" uniqKey="M Ross T" first="Ted" last="M Ross">Ted M Ross</name>
<affiliation wicri:level="1">
<nlm:affiliation>e Center for Vaccines and Immunology , University of Georgia , Athens , GA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>e Center for Vaccines and Immunology , University of Georgia , Athens , GA </wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Martin, William D" sort="Martin, William D" uniqKey="Martin W" first="William D" last="Martin">William D. Martin</name>
<affiliation wicri:level="1">
<nlm:affiliation>a EpiVax, Inc ., Providence , RI , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a EpiVax, Inc ., Providence , RI </wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="De Groot, Anne S" sort="De Groot, Anne S" uniqKey="De Groot A" first="Anne S" last="De Groot">Anne S. De Groot</name>
<affiliation wicri:level="1">
<nlm:affiliation>a EpiVax, Inc ., Providence , RI , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a EpiVax, Inc ., Providence , RI </wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30015562</idno>
<idno type="pmid">30015562</idno>
<idno type="doi">10.1080/21645515.2018.1495303</idno>
<idno type="wicri:Area/PubMed/Corpus">000278</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000278</idno>
<idno type="wicri:Area/PubMed/Curation">000278</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000278</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response.</title>
<author>
<name sortKey="Moise, Leonard" sort="Moise, Leonard" uniqKey="Moise L" first="Leonard" last="Moise">Leonard Moise</name>
<affiliation wicri:level="1">
<nlm:affiliation>a EpiVax, Inc ., Providence , RI , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a EpiVax, Inc ., Providence , RI </wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="M Biron, Bethany" sort="M Biron, Bethany" uniqKey="M Biron B" first="Bethany" last="M Biron">Bethany M Biron</name>
<affiliation wicri:level="1">
<nlm:affiliation>a EpiVax, Inc ., Providence , RI , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a EpiVax, Inc ., Providence , RI </wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Boyle, Christine M" sort="Boyle, Christine M" uniqKey="Boyle C" first="Christine M" last="Boyle">Christine M. Boyle</name>
<affiliation wicri:level="1">
<nlm:affiliation>a EpiVax, Inc ., Providence , RI , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a EpiVax, Inc ., Providence , RI </wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kurt Yilmaz, Nese" sort="Kurt Yilmaz, Nese" uniqKey="Kurt Yilmaz N" first="Nese" last="Kurt Yilmaz">Nese Kurt Yilmaz</name>
<affiliation wicri:level="1">
<nlm:affiliation>d Department of Biochemistry and Molecular Pharmacology , UMass Medical School , Worcester , MA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>d Department of Biochemistry and Molecular Pharmacology , UMass Medical School , Worcester , MA </wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jang, Hyesun" sort="Jang, Hyesun" uniqKey="Jang H" first="Hyesun" last="Jang">Hyesun Jang</name>
<affiliation wicri:level="1">
<nlm:affiliation>e Center for Vaccines and Immunology , University of Georgia , Athens , GA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>e Center for Vaccines and Immunology , University of Georgia , Athens , GA </wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schiffer, Celia" sort="Schiffer, Celia" uniqKey="Schiffer C" first="Celia" last="Schiffer">Celia Schiffer</name>
<affiliation wicri:level="1">
<nlm:affiliation>d Department of Biochemistry and Molecular Pharmacology , UMass Medical School , Worcester , MA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>d Department of Biochemistry and Molecular Pharmacology , UMass Medical School , Worcester , MA </wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="M Ross, Ted" sort="M Ross, Ted" uniqKey="M Ross T" first="Ted" last="M Ross">Ted M Ross</name>
<affiliation wicri:level="1">
<nlm:affiliation>e Center for Vaccines and Immunology , University of Georgia , Athens , GA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>e Center for Vaccines and Immunology , University of Georgia , Athens , GA </wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Martin, William D" sort="Martin, William D" uniqKey="Martin W" first="William D" last="Martin">William D. Martin</name>
<affiliation wicri:level="1">
<nlm:affiliation>a EpiVax, Inc ., Providence , RI , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a EpiVax, Inc ., Providence , RI </wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="De Groot, Anne S" sort="De Groot, Anne S" uniqKey="De Groot A" first="Anne S" last="De Groot">Anne S. De Groot</name>
<affiliation wicri:level="1">
<nlm:affiliation>a EpiVax, Inc ., Providence , RI , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a EpiVax, Inc ., Providence , RI </wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Human vaccines & immunotherapeutics</title>
<idno type="eISSN">2164-554X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>CD4-Positive T-Lymphocytes (immunology)</term>
<term>Computational Biology</term>
<term>Epitopes, T-Lymphocyte (chemistry)</term>
<term>Epitopes, T-Lymphocyte (genetics)</term>
<term>Epitopes, T-Lymphocyte (immunology)</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus (chemistry)</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus (genetics)</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus (immunology)</term>
<term>Humans</term>
<term>Influenza A Virus, H7N9 Subtype (genetics)</term>
<term>Influenza A Virus, H7N9 Subtype (immunology)</term>
<term>Influenza Vaccines (administration & dosage)</term>
<term>Influenza Vaccines (genetics)</term>
<term>Influenza Vaccines (immunology)</term>
<term>Models, Biological</term>
<term>Models, Molecular</term>
<term>Vaccines, Synthetic (administration & dosage)</term>
<term>Vaccines, Synthetic (genetics)</term>
<term>Vaccines, Synthetic (immunology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Biologie informatique</term>
<term>Déterminants antigéniques des lymphocytes T ()</term>
<term>Déterminants antigéniques des lymphocytes T (génétique)</term>
<term>Déterminants antigéniques des lymphocytes T (immunologie)</term>
<term>Glycoprotéine hémagglutinine du virus influenza ()</term>
<term>Glycoprotéine hémagglutinine du virus influenza (génétique)</term>
<term>Glycoprotéine hémagglutinine du virus influenza (immunologie)</term>
<term>Humains</term>
<term>Lymphocytes T CD4+ (immunologie)</term>
<term>Modèles biologiques</term>
<term>Modèles moléculaires</term>
<term>Sous-type H7N9 du virus de la grippe A (génétique)</term>
<term>Sous-type H7N9 du virus de la grippe A (immunologie)</term>
<term>Vaccins antigrippaux (administration et posologie)</term>
<term>Vaccins antigrippaux (génétique)</term>
<term>Vaccins antigrippaux (immunologie)</term>
<term>Vaccins synthétiques (administration et posologie)</term>
<term>Vaccins synthétiques (génétique)</term>
<term>Vaccins synthétiques (immunologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Influenza Vaccines</term>
<term>Vaccines, Synthetic</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Epitopes, T-Lymphocyte</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Epitopes, T-Lymphocyte</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus</term>
<term>Influenza Vaccines</term>
<term>Vaccines, Synthetic</term>
</keywords>
<keywords scheme="MESH" qualifier="administration et posologie" xml:lang="fr">
<term>Vaccins antigrippaux</term>
<term>Vaccins synthétiques</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Influenza A Virus, H7N9 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Déterminants antigéniques des lymphocytes T</term>
<term>Glycoprotéine hémagglutinine du virus influenza</term>
<term>Sous-type H7N9 du virus de la grippe A</term>
<term>Vaccins antigrippaux</term>
<term>Vaccins synthétiques</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Déterminants antigéniques des lymphocytes T</term>
<term>Glycoprotéine hémagglutinine du virus influenza</term>
<term>Lymphocytes T CD4+</term>
<term>Sous-type H7N9 du virus de la grippe A</term>
<term>Vaccins antigrippaux</term>
<term>Vaccins synthétiques</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>CD4-Positive T-Lymphocytes</term>
<term>Epitopes, T-Lymphocyte</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus</term>
<term>Influenza A Virus, H7N9 Subtype</term>
<term>Influenza Vaccines</term>
<term>Vaccines, Synthetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Computational Biology</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Models, Molecular</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Biologie informatique</term>
<term>Déterminants antigéniques des lymphocytes T</term>
<term>Glycoprotéine hémagglutinine du virus influenza</term>
<term>Humains</term>
<term>Modèles biologiques</term>
<term>Modèles moléculaires</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The delayed availability of vaccine during the 2009 H1N1 influenza pandemic created a sense of urgency to better prepare for the next influenza pandemic. Advancements in manufacturing technology, speed and capacity have been achieved but vaccine effectiveness remains a significant challenge. Here, we describe a novel vaccine design strategy called immune engineering in the context of H7N9 influenza vaccine development. The approach combines immunoinformatic and structure modeling methods to promote protective antibody responses against H7N9 hemagglutinin (HA) by engineering whole antigens to carry seasonal influenza HA memory CD4
<sup>+</sup>
T cell epitopes - without perturbing native antigen structure - by galvanizing HA-specific memory helper T cells that support sustained antibody development against the native target HA. The premise for this vaccine concept rests on (i) the significance of CD4
<sup>+</sup>
T cell memory to influenza immunity, (ii) the essential role CD4
<sup>+</sup>
T cells play in development of neutralizing antibodies, (iii) linked specificity of HA-derived CD4
<sup>+</sup>
T cell epitopes to antibody responses, (iv) the structural plasticity of HA and (v) an illustration of improved antibody response to a prototype engineered recombinant H7-HA vaccine. Immune engineering can be applied to development of vaccines against pandemic concerns, including avian influenza, as well as other difficult targets.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30015562</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>05</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2164-554X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Human vaccines & immunotherapeutics</Title>
<ISOAbbreviation>Hum Vaccin Immunother</ISOAbbreviation>
</Journal>
<ArticleTitle>T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response.</ArticleTitle>
<Pagination>
<MedlinePgn>2203-2207</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/21645515.2018.1495303</ELocationID>
<Abstract>
<AbstractText>The delayed availability of vaccine during the 2009 H1N1 influenza pandemic created a sense of urgency to better prepare for the next influenza pandemic. Advancements in manufacturing technology, speed and capacity have been achieved but vaccine effectiveness remains a significant challenge. Here, we describe a novel vaccine design strategy called immune engineering in the context of H7N9 influenza vaccine development. The approach combines immunoinformatic and structure modeling methods to promote protective antibody responses against H7N9 hemagglutinin (HA) by engineering whole antigens to carry seasonal influenza HA memory CD4
<sup>+</sup>
T cell epitopes - without perturbing native antigen structure - by galvanizing HA-specific memory helper T cells that support sustained antibody development against the native target HA. The premise for this vaccine concept rests on (i) the significance of CD4
<sup>+</sup>
T cell memory to influenza immunity, (ii) the essential role CD4
<sup>+</sup>
T cells play in development of neutralizing antibodies, (iii) linked specificity of HA-derived CD4
<sup>+</sup>
T cell epitopes to antibody responses, (iv) the structural plasticity of HA and (v) an illustration of improved antibody response to a prototype engineered recombinant H7-HA vaccine. Immune engineering can be applied to development of vaccines against pandemic concerns, including avian influenza, as well as other difficult targets.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Moise</LastName>
<ForeName>Leonard</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0002-4410-865X</Identifier>
<AffiliationInfo>
<Affiliation>a EpiVax, Inc ., Providence , RI , USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>c Department of Cell and Molecular Biology , University of Rhode Island , Providence , RI , USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>M Biron</LastName>
<ForeName>Bethany</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">0000-0001-9390-230X</Identifier>
<AffiliationInfo>
<Affiliation>a EpiVax, Inc ., Providence , RI , USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boyle</LastName>
<ForeName>Christine M</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>a EpiVax, Inc ., Providence , RI , USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kurt Yilmaz</LastName>
<ForeName>Nese</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>d Department of Biochemistry and Molecular Pharmacology , UMass Medical School , Worcester , MA , USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jang</LastName>
<ForeName>Hyesun</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>e Center for Vaccines and Immunology , University of Georgia , Athens , GA , USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schiffer</LastName>
<ForeName>Celia</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>d Department of Biochemistry and Molecular Pharmacology , UMass Medical School , Worcester , MA , USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>M Ross</LastName>
<ForeName>Ted</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">0000-0003-1947-7469</Identifier>
<AffiliationInfo>
<Affiliation>e Center for Vaccines and Immunology , University of Georgia , Athens , GA , USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>f Department of Infectious Diseases , University of Georgia , Athens , GA , USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martin</LastName>
<ForeName>William D</ForeName>
<Initials>WD</Initials>
<AffiliationInfo>
<Affiliation>a EpiVax, Inc ., Providence , RI , USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>De Groot</LastName>
<ForeName>Anne S</ForeName>
<Initials>AS</Initials>
<Identifier Source="ORCID">0000-0001-5911-1459</Identifier>
<AffiliationInfo>
<Affiliation>a EpiVax, Inc ., Providence , RI , USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>c Department of Cell and Molecular Biology , University of Rhode Island , Providence , RI , USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Hum Vaccin Immunother</MedlineTA>
<NlmUniqueID>101572652</NlmUniqueID>
<ISSNLinking>2164-5515</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018984">Epitopes, T-Lymphocyte</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019267">Hemagglutinin Glycoproteins, Influenza Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007252">Influenza Vaccines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014614">Vaccines, Synthetic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C109963">hemagglutinin, avian influenza A virus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015496" MajorTopicYN="N">CD4-Positive T-Lymphocytes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018984" MajorTopicYN="N">Epitopes, T-Lymphocyte</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019267" MajorTopicYN="N">Hemagglutinin Glycoproteins, Influenza Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064766" MajorTopicYN="N">Influenza A Virus, H7N9 Subtype</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007252" MajorTopicYN="N">Influenza Vaccines</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014614" MajorTopicYN="N">Vaccines, Synthetic</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">H7N9</Keyword>
<Keyword MajorTopicYN="Y">T cell</Keyword>
<Keyword MajorTopicYN="Y">T cell epitope</Keyword>
<Keyword MajorTopicYN="Y">epitope prediction</Keyword>
<Keyword MajorTopicYN="Y">hemagglutinin</Keyword>
<Keyword MajorTopicYN="Y">immunoinformatics</Keyword>
<Keyword MajorTopicYN="Y">influenza</Keyword>
<Keyword MajorTopicYN="Y">molecular modeling</Keyword>
<Keyword MajorTopicYN="Y">pandemic</Keyword>
<Keyword MajorTopicYN="Y">structure-based vaccine design</Keyword>
<Keyword MajorTopicYN="Y">vaccine</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>5</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30015562</ArticleId>
<ArticleId IdType="doi">10.1080/21645515.2018.1495303</ArticleId>
<ArticleId IdType="pmc">PMC6183197</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2018 Apr;24(4):746-750</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29553313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014 Jul 08;3:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25006036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2014 Feb;20(2):192-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24447423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2016 Mar;16(3):303-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26673391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2000 Jan 1;164(1):265-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10605020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2012 Jan 29;18(2):274-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22286307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunology. 2015 Sep;146(1):157-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26094691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2015 Jul 1;212(1):86-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25492919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Nov 20;5:5509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25409547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2017 Aug;23(8):1355-1359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28580900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 May 16;368(20):1888-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23577628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Vaccin Immunother. 2013 May;9(5):950-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23807079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Trends. 2017 Mar 22;11(1):120-121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28250340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2014 Oct 1;193(7):3528-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25172499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>F1000Res. 2016 Jan 20;5:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26989476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2017 Sep;25(9):713-728</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28734617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2014 Feb 6;370(6):520-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23614499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 Dec 26;369(26):2564-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24224560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 Jun 13;368(24):2277-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23697469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2006 Feb 20;24(8):1159-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16213065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Biotechnol. 2011;2011:954602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2016 Dec 1;214(11):1717-1727</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27609809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2000 Mar 1;164(5):2338-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10679068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2013 Dec 5;178(1):78-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23726847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2015 May 1;211(9):1408-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25378637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2004 Aug;4(8):499-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15288823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2001 Dec 1;167(11):6082-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11714765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2016 Feb 11;374(6):596-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26863372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2014 Oct 8;312(14):1409-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25291577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng Des Sel. 2012 Oct;25(10):613-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22898588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e23085</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21857999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Dec;85(24):13310-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21976658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2013 May 16;18(20):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23725866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jul 25;499(7459):496-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23787694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2013 Jan 15;207(2):297-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23148285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2018 Feb;25(2):115-121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29396418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 1998;16:201-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9597129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jul 25;499(7459):500-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23823727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1999 Oct 18;190(8):1123-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10523610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2014 Apr 30;6(234):234ra55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24786323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2009 Dec 17;361(25):2424-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19745215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Jan;88(1):314-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24155379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Recomm Rep. 2013 Sep 20;62(RR-07):1-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24048214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Vaccin Immunother. 2015;11(9):2241-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26090577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2004;22:745-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15032595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2012 Mar;142(3):320-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22222093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Environ Res Public Health. 2015 Jan 15;12(1):816-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25599373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2009 Dec 17;361(25):2405-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19745216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2013 Mar 13;5(176):176ra32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Apr 28;7(1):1283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28455520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dev Ctries. 2015 Feb 19;9(2):122-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25699485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2011;29:621-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21314428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2017 Aug;17(8):822-832</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28583578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2015 Mar;38(3):195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25537859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther Methods Clin Dev. 2015 Jun 17;2:15021</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26151066</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000278 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000278 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:30015562
   |texte=   T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:30015562" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021