Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The post-2009 influenza pandemic era: time to revisit antibody immunodominance.

Identifieur interne : 000219 ( PubMed/Curation ); précédent : 000218; suivant : 000220

The post-2009 influenza pandemic era: time to revisit antibody immunodominance.

Auteurs : Kristien Van Reeth

Source :

RBID : pubmed:30295644

Descripteurs français

English descriptors

Abstract

The current inactivated influenza vaccines rely on the induction of neutralizing antibodies against the head domain of the viral hemagglutinin (HA). The HA head contains five immunodominant antigenic sites, all of which are subject to antigenic drift, thereby limiting vaccine efficacy. Bypassing the immune system's tendency to focus on the most variable regions of the HA may be a step toward more broadly protective influenza vaccines. However, this requires a better understanding of the biological meaning of immunodominance, and of the hierarchy between different antigenic sites. In this issue of the JCI, Liu et al. determined the immunodominance of the five antigenic sites of the HA head in experimentally infected mice, guinea pigs, and ferrets. All three species exhibited different preferences for the five sites of the 2009 pandemic H1N1 strain. Moreover, human subjects exhibited yet a different pattern of immunodominance following immunization with the standard inactivated influenza vaccine. Together, these results have important implications for influenza vaccine design and interpretation of animal models.

DOI: 10.1172/JCI124151
PubMed: 30295644

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30295644

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The post-2009 influenza pandemic era: time to revisit antibody immunodominance.</title>
<author>
<name sortKey="Van Reeth, Kristien" sort="Van Reeth, Kristien" uniqKey="Van Reeth K" first="Kristien" last="Van Reeth">Kristien Van Reeth</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30295644</idno>
<idno type="pmid">30295644</idno>
<idno type="doi">10.1172/JCI124151</idno>
<idno type="wicri:Area/PubMed/Corpus">000219</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000219</idno>
<idno type="wicri:Area/PubMed/Curation">000219</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000219</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The post-2009 influenza pandemic era: time to revisit antibody immunodominance.</title>
<author>
<name sortKey="Van Reeth, Kristien" sort="Van Reeth, Kristien" uniqKey="Van Reeth K" first="Kristien" last="Van Reeth">Kristien Van Reeth</name>
</author>
</analytic>
<series>
<title level="j">The Journal of clinical investigation</title>
<idno type="eISSN">1558-8238</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Antibodies, Viral</term>
<term>Guinea Pigs</term>
<term>Hemagglutinins</term>
<term>Humans</term>
<term>Influenza A Virus, H1N1 Subtype (immunology)</term>
<term>Influenza Vaccines</term>
<term>Influenza, Human</term>
<term>Mice</term>
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Anticorps antiviraux</term>
<term>Cochons d'Inde</term>
<term>Grippe humaine</term>
<term>Humains</term>
<term>Hémagglutinines</term>
<term>Infections à Orthomyxoviridae</term>
<term>Souris</term>
<term>Sous-type H1N1 du virus de la grippe A (immunologie)</term>
<term>Vaccins antigrippaux</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Antibodies, Viral</term>
<term>Hemagglutinins</term>
<term>Influenza Vaccines</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Sous-type H1N1 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Guinea Pigs</term>
<term>Humans</term>
<term>Influenza, Human</term>
<term>Mice</term>
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Anticorps antiviraux</term>
<term>Cochons d'Inde</term>
<term>Grippe humaine</term>
<term>Humains</term>
<term>Hémagglutinines</term>
<term>Infections à Orthomyxoviridae</term>
<term>Souris</term>
<term>Vaccins antigrippaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The current inactivated influenza vaccines rely on the induction of neutralizing antibodies against the head domain of the viral hemagglutinin (HA). The HA head contains five immunodominant antigenic sites, all of which are subject to antigenic drift, thereby limiting vaccine efficacy. Bypassing the immune system's tendency to focus on the most variable regions of the HA may be a step toward more broadly protective influenza vaccines. However, this requires a better understanding of the biological meaning of immunodominance, and of the hierarchy between different antigenic sites. In this issue of the JCI, Liu et al. determined the immunodominance of the five antigenic sites of the HA head in experimentally infected mice, guinea pigs, and ferrets. All three species exhibited different preferences for the five sites of the 2009 pandemic H1N1 strain. Moreover, human subjects exhibited yet a different pattern of immunodominance following immunization with the standard inactivated influenza vaccine. Together, these results have important implications for influenza vaccine design and interpretation of animal models.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">30295644</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>09</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1558-8238</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>128</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2018</Year>
<Month>11</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of clinical investigation</Title>
<ISOAbbreviation>J. Clin. Invest.</ISOAbbreviation>
</Journal>
<ArticleTitle>The post-2009 influenza pandemic era: time to revisit antibody immunodominance.</ArticleTitle>
<Pagination>
<MedlinePgn>4751-4754</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1172/JCI124151</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">124151</ELocationID>
<Abstract>
<AbstractText>The current inactivated influenza vaccines rely on the induction of neutralizing antibodies against the head domain of the viral hemagglutinin (HA). The HA head contains five immunodominant antigenic sites, all of which are subject to antigenic drift, thereby limiting vaccine efficacy. Bypassing the immune system's tendency to focus on the most variable regions of the HA may be a step toward more broadly protective influenza vaccines. However, this requires a better understanding of the biological meaning of immunodominance, and of the hierarchy between different antigenic sites. In this issue of the JCI, Liu et al. determined the immunodominance of the five antigenic sites of the HA head in experimentally infected mice, guinea pigs, and ferrets. All three species exhibited different preferences for the five sites of the 2009 pandemic H1N1 strain. Moreover, human subjects exhibited yet a different pattern of immunodominance following immunization with the standard inactivated influenza vaccine. Together, these results have important implications for influenza vaccine design and interpretation of animal models.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Van Reeth</LastName>
<ForeName>Kristien</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016420">Comment</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Clin Invest</MedlineTA>
<NlmUniqueID>7802877</NlmUniqueID>
<ISSNLinking>0021-9738</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000914">Antibodies, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006388">Hemagglutinins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007252">Influenza Vaccines</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>AIM</CitationSubset>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentOn">
<RefSource>J Clin Invest. 2018 Nov 1;128(11):4992-4996</RefSource>
<PMID Version="1">30188868</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000914" MajorTopicYN="N">Antibodies, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006168" MajorTopicYN="N">Guinea Pigs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006388" MajorTopicYN="N">Hemagglutinins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053118" MajorTopicYN="N">Influenza A Virus, H1N1 Subtype</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007252" MajorTopicYN="Y">Influenza Vaccines</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="Y">Influenza, Human</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009976" MajorTopicYN="Y">Orthomyxoviridae Infections</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30295644</ArticleId>
<ArticleId IdType="pii">124151</ArticleId>
<ArticleId IdType="doi">10.1172/JCI124151</ArticleId>
<ArticleId IdType="pmc">PMC6205375</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Microbiol Spectr. 2014 Oct;2(5):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26104373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9047-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22615367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Nov 21;346(6212):996-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25414313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2018 Nov 1;128(11):4992-4996</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30188868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pathogens. 2014 Oct 21;3(4):845-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25436508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1982 Dec;31(2 Pt 1):417-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6186384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2017 Apr;18(4):464-473</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28192418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2018 Jul;39(7):549-561</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29789196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2013 Jul 29;210(8):1493-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23857983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2011 Jun 1;3(85):85ra48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21632986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2015 Mar;23(3):142-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25564096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ILAR J. 2015;56(1):44-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25991697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2011 Jan;239(1):167-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21198671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2015;386:301-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25007847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2573-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22308500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2015 Dec 2;7(316):316ra192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26631631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>NPJ Vaccines. 2017;2:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29250437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2011 Jan 17;208(1):181-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21220454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2018 Jul 2;10(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28663208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2017 Apr;18(4):456-463</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28192417</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000219 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000219 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:30295644
   |texte=   The post-2009 influenza pandemic era: time to revisit antibody immunodominance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:30295644" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021