Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Role of Matrix Protein 2 Ectodomain in the Development of Universal Influenza Vaccines.

Identifieur interne : 000173 ( PubMed/Curation ); précédent : 000172; suivant : 000174

The Role of Matrix Protein 2 Ectodomain in the Development of Universal Influenza Vaccines.

Auteurs : Xavier Saelens

Source :

RBID : pubmed:30715367

Descripteurs français

English descriptors

Abstract

The influenza A virus matrix protein 2 ectodomain (M2e) is a universal influenza A vaccine candidate. Numerous studies in laboratory mice, but very few in natural influenza A virus hosts, have demonstrated that M2e-based vaccines can provide protection against any influenza A virus challenge. M2e-based immunity is largely accomplished by IgG and early stage clinical studies have demonstrated that the vaccine is safe. Yet M2e is considered a difficult target to develop as a vaccine: it does not offer sterilizing immunity and its mode of action relies on Fcγ receptor-mediated effector mechanisms, most likely in concert with alveolar macrophages. In a human challenge study with an H3N2 virus, treatment with a monoclonal M2e-specific human IgG was associated with a faster recovery compared to placebo treatment. If the universal influenza vaccine field incorporates this antigen into next generation vaccines, M2e could prove its merit when the next influenza pandemic strikes.

DOI: 10.1093/infdis/jiz003
PubMed: 30715367

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30715367

Curation

No country items

Xavier Saelens
<affiliation>
<nlm:affiliation>VIB-UGent Center for Medical Biotechnology, Ghent.</nlm:affiliation>
<wicri:noCountry code="subField">Ghent</wicri:noCountry>
</affiliation>

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Role of Matrix Protein 2 Ectodomain in the Development of Universal Influenza Vaccines.</title>
<author>
<name sortKey="Saelens, Xavier" sort="Saelens, Xavier" uniqKey="Saelens X" first="Xavier" last="Saelens">Xavier Saelens</name>
<affiliation>
<nlm:affiliation>VIB-UGent Center for Medical Biotechnology, Ghent.</nlm:affiliation>
<wicri:noCountry code="subField">Ghent</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30715367</idno>
<idno type="pmid">30715367</idno>
<idno type="doi">10.1093/infdis/jiz003</idno>
<idno type="wicri:Area/PubMed/Corpus">000173</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000173</idno>
<idno type="wicri:Area/PubMed/Curation">000173</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000173</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Role of Matrix Protein 2 Ectodomain in the Development of Universal Influenza Vaccines.</title>
<author>
<name sortKey="Saelens, Xavier" sort="Saelens, Xavier" uniqKey="Saelens X" first="Xavier" last="Saelens">Xavier Saelens</name>
<affiliation>
<nlm:affiliation>VIB-UGent Center for Medical Biotechnology, Ghent.</nlm:affiliation>
<wicri:noCountry code="subField">Ghent</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of infectious diseases</title>
<idno type="eISSN">1537-6613</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Antibodies, Monoclonal (immunology)</term>
<term>Antibodies, Monoclonal (therapeutic use)</term>
<term>Antibodies, Viral (immunology)</term>
<term>Antibodies, Viral (therapeutic use)</term>
<term>Antigens, Viral (immunology)</term>
<term>Humans</term>
<term>Immunoglobulin G (immunology)</term>
<term>Immunoglobulin G (therapeutic use)</term>
<term>Influenza A Virus, H3N2 Subtype (immunology)</term>
<term>Influenza A Virus, H3N2 Subtype (isolation & purification)</term>
<term>Influenza Vaccines (immunology)</term>
<term>Influenza, Human (epidemiology)</term>
<term>Influenza, Human (prevention & control)</term>
<term>Influenza, Human (virology)</term>
<term>Mice</term>
<term>Open Reading Frames</term>
<term>Orthomyxoviridae Infections (immunology)</term>
<term>Orthomyxoviridae Infections (virology)</term>
<term>Pandemics (prevention & control)</term>
<term>Protein Domains (immunology)</term>
<term>Receptors, IgG (immunology)</term>
<term>Viral Matrix Proteins (chemistry)</term>
<term>Viral Matrix Proteins (genetics)</term>
<term>Viral Matrix Proteins (immunology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Anticorps antiviraux (immunologie)</term>
<term>Anticorps antiviraux (usage thérapeutique)</term>
<term>Anticorps monoclonaux (immunologie)</term>
<term>Anticorps monoclonaux (usage thérapeutique)</term>
<term>Antigènes viraux (immunologie)</term>
<term>Cadres ouverts de lecture</term>
<term>Domaines protéiques (immunologie)</term>
<term>Grippe humaine ()</term>
<term>Grippe humaine (virologie)</term>
<term>Grippe humaine (épidémiologie)</term>
<term>Humains</term>
<term>Immunoglobuline G (immunologie)</term>
<term>Immunoglobuline G (usage thérapeutique)</term>
<term>Infections à Orthomyxoviridae (immunologie)</term>
<term>Infections à Orthomyxoviridae (virologie)</term>
<term>Pandémies ()</term>
<term>Protéines de la matrice virale ()</term>
<term>Protéines de la matrice virale (génétique)</term>
<term>Protéines de la matrice virale (immunologie)</term>
<term>Récepteurs du fragment Fc des IgG (immunologie)</term>
<term>Souris</term>
<term>Sous-type H3N2 du virus de la grippe A (immunologie)</term>
<term>Sous-type H3N2 du virus de la grippe A (isolement et purification)</term>
<term>Vaccins antigrippaux (immunologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Viral Matrix Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Viral Matrix Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Antibodies, Monoclonal</term>
<term>Antibodies, Viral</term>
<term>Antigens, Viral</term>
<term>Immunoglobulin G</term>
<term>Influenza Vaccines</term>
<term>Receptors, IgG</term>
<term>Viral Matrix Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antibodies, Monoclonal</term>
<term>Antibodies, Viral</term>
<term>Immunoglobulin G</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines de la matrice virale</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Anticorps antiviraux</term>
<term>Anticorps monoclonaux</term>
<term>Antigènes viraux</term>
<term>Domaines protéiques</term>
<term>Immunoglobuline G</term>
<term>Infections à Orthomyxoviridae</term>
<term>Protéines de la matrice virale</term>
<term>Récepteurs du fragment Fc des IgG</term>
<term>Sous-type H3N2 du virus de la grippe A</term>
<term>Vaccins antigrippaux</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Influenza A Virus, H3N2 Subtype</term>
<term>Orthomyxoviridae Infections</term>
<term>Protein Domains</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Influenza A Virus, H3N2 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Sous-type H3N2 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Influenza, Human</term>
<term>Pandemics</term>
</keywords>
<keywords scheme="MESH" qualifier="usage thérapeutique" xml:lang="fr">
<term>Anticorps antiviraux</term>
<term>Anticorps monoclonaux</term>
<term>Immunoglobuline G</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Grippe humaine</term>
<term>Infections à Orthomyxoviridae</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Influenza, Human</term>
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Grippe humaine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Mice</term>
<term>Open Reading Frames</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cadres ouverts de lecture</term>
<term>Grippe humaine</term>
<term>Humains</term>
<term>Pandémies</term>
<term>Protéines de la matrice virale</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The influenza A virus matrix protein 2 ectodomain (M2e) is a universal influenza A vaccine candidate. Numerous studies in laboratory mice, but very few in natural influenza A virus hosts, have demonstrated that M2e-based vaccines can provide protection against any influenza A virus challenge. M2e-based immunity is largely accomplished by IgG and early stage clinical studies have demonstrated that the vaccine is safe. Yet M2e is considered a difficult target to develop as a vaccine: it does not offer sterilizing immunity and its mode of action relies on Fcγ receptor-mediated effector mechanisms, most likely in concert with alveolar macrophages. In a human challenge study with an H3N2 virus, treatment with a monoclonal M2e-specific human IgG was associated with a faster recovery compared to placebo treatment. If the universal influenza vaccine field incorporates this antigen into next generation vaccines, M2e could prove its merit when the next influenza pandemic strikes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30715367</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1537-6613</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>219</Volume>
<Issue>Suppl_1</Issue>
<PubDate>
<Year>2019</Year>
<Month>04</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of infectious diseases</Title>
<ISOAbbreviation>J. Infect. Dis.</ISOAbbreviation>
</Journal>
<ArticleTitle>The Role of Matrix Protein 2 Ectodomain in the Development of Universal Influenza Vaccines.</ArticleTitle>
<Pagination>
<MedlinePgn>S68-S74</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/infdis/jiz003</ELocationID>
<Abstract>
<AbstractText>The influenza A virus matrix protein 2 ectodomain (M2e) is a universal influenza A vaccine candidate. Numerous studies in laboratory mice, but very few in natural influenza A virus hosts, have demonstrated that M2e-based vaccines can provide protection against any influenza A virus challenge. M2e-based immunity is largely accomplished by IgG and early stage clinical studies have demonstrated that the vaccine is safe. Yet M2e is considered a difficult target to develop as a vaccine: it does not offer sterilizing immunity and its mode of action relies on Fcγ receptor-mediated effector mechanisms, most likely in concert with alveolar macrophages. In a human challenge study with an H3N2 virus, treatment with a monoclonal M2e-specific human IgG was associated with a faster recovery compared to placebo treatment. If the universal influenza vaccine field incorporates this antigen into next generation vaccines, M2e could prove its merit when the next influenza pandemic strikes.</AbstractText>
<CopyrightInformation>© The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Saelens</LastName>
<ForeName>Xavier</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>VIB-UGent Center for Medical Biotechnology, Ghent.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biomedical Molecular Biology, Ghent University, Belgium.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Microbiology, Ghent University, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Infect Dis</MedlineTA>
<NlmUniqueID>0413675</NlmUniqueID>
<ISSNLinking>0022-1899</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000911">Antibodies, Monoclonal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000914">Antibodies, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000956">Antigens, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007074">Immunoglobulin G</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007252">Influenza Vaccines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C488937">M2 protein, Influenza A virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C509609">M2e-HBc influenza vaccine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017452">Receptors, IgG</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014763">Viral Matrix Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>AIM</CitationSubset>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000911" MajorTopicYN="N">Antibodies, Monoclonal</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000914" MajorTopicYN="N">Antibodies, Viral</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000956" MajorTopicYN="N">Antigens, Viral</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007074" MajorTopicYN="N">Immunoglobulin G</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053122" MajorTopicYN="N">Influenza A Virus, H3N2 Subtype</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007252" MajorTopicYN="N">Influenza Vaccines</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016366" MajorTopicYN="N">Open Reading Frames</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009976" MajorTopicYN="N">Orthomyxoviridae Infections</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017452" MajorTopicYN="N">Receptors, IgG</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014763" MajorTopicYN="N">Viral Matrix Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Fc receptors</Keyword>
<Keyword MajorTopicYN="Y">M2e</Keyword>
<Keyword MajorTopicYN="Y">clinical studies</Keyword>
<Keyword MajorTopicYN="Y">universal influenza vaccine</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>2</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>2</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30715367</ArticleId>
<ArticleId IdType="pii">5304896</ArticleId>
<ArticleId IdType="doi">10.1093/infdis/jiz003</ArticleId>
<ArticleId IdType="pmc">PMC6452325</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 1999 Oct;5(10):1157-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10502819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2001 Jan 20;279(2):439-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11162800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Allergy Clin Immunol. 2001 Aug;108(2):250-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11496242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2002 Feb 15;115(Pt 4):849-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11865040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2002 Aug;83(Pt 8):1851-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12124449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 May 1;69(3):517-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1374685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2004 Aug 13;22(23-24):2993-3003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15297047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2006 Jan 1;193(1):49-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16323131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2007 Mar;13(3):426-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17552096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2007 Aug;27(2):240-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17723216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2008 Jan;38(1):114-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18081037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Oct;82(20):10059-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18701586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Dec;82(23):11869-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18815307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2010 Jun;42(6):732-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19617401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Poult Sci. 2009 Nov;88(11):2244-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19834072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Dec;16(12):1267-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19898475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2010 May;11(5):404-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Sep 17;142(6):902-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20850012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 Jan 15;186(2):1022-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21169548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Intervirology. 2011;54(5):290-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21228535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Jan 18;6(1):e14538</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21267073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mucosal Immunol. 2013 Mar;6(2):276-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22806098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Mar;64(3):1375-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2304147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2012 Nov;122(11):4037-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23041628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(11):e1002998</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23133386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2013 Feb;21(2):485-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23247101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e59081</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23527091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2013 Nov;22(11):1623-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24023039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Jan;88(1):325-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24155388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2014 Apr 1;209(7):986-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24325965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2014 Feb 12;15(2):239-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24528869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1988 Aug;62(8):2762-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2455818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Nov;88(22):13029-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25165113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2015 Apr 1;211(7):1038-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25281755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Dec 17;5:5750</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25517696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Apr;89(7):3700-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25609808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2015 Jun 26;33(29):3398-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25976545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Oct 14;90(1):611-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26468526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Apr 13;6:24402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27072615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Vaccines. 2017 Jan;16(1):55-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27448771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Vaccines. 2017 Feb;16(2):123-136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27653543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2017 Mar 13;91(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28077656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2017 Apr 5;25(4):989-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28215994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mucosal Immunol. 2018 Jan;11(1):273-289</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28295019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):8550-8555</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28739952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Oct 10;8(1):846</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29018261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2018 Jul 2;218(3):378-387</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29617814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1981 Jul 30;112(2):746-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7257189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Sep 5;268(25):19101-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8103052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 1995;13(15):1399-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8578816</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000173 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000173 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:30715367
   |texte=   The Role of Matrix Protein 2 Ectodomain in the Development of Universal Influenza Vaccines.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:30715367" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021