Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Qualitative analysis of the level of cross-protection between epidemic waves of the 1918-1919 influenza pandemic.

Identifieur interne : 001671 ( PubMed/Corpus ); précédent : 001670; suivant : 001672

Qualitative analysis of the level of cross-protection between epidemic waves of the 1918-1919 influenza pandemic.

Auteurs : D. Rios-Doria ; G. Chowell

Source :

RBID : pubmed:19703472

English descriptors

Abstract

The 1918-1919 influenza pandemic was composed of multiple waves within a period of nine months in several regions of the world. Increasing our understanding of the mechanisms responsible for this multi-wave profile has important public health implications. We model the transmission dynamics of two strains of influenza interacting via cross-immunity to simulate two temporal waves of influenza and explore the impact of the basic reproduction number, as a measure of transmissibility associated to each influenza strain, cross-immunity and the timing of the onset of the second influenza epidemic on the pandemic profile. We use time series of case notifications during the 1918 influenza pandemic in Geneva, Switzerland, for illustration. We calibrate our mathematical model to the initial wave of infection to estimate the basic reproduction number of the first wave and the corresponding timing of onset of the second influenza variant. We use this information to explore the impact of cross-immunity levels on the dynamics of the second wave of influenza. Our results for the 1918 pandemic in Geneva, Switzerland, indicate that a second wave can occur whenever R 01 < 1.5 or when cross-immunity levels are less than 0.58 for our estimated R 02 of 2.4. We also explore qualitatively profiles of two-wave pandemics and compare them with real temporal profiles of the 1918 influenza pandemic in other regions of the world including several Scandinavian cities, New York City, England and Wales, and Sydney, Australia. Pandemic profiles are classified into three broad categories namely "right-handed", "left-handed", and "M-shape". Our results indicate that avoiding a second influenza epidemic is plausible given sufficient levels of cross-protection are attained via natural infection during an early (herald) wave of infection or vaccination campaigns prior to a second wave. Furthermore, interventions aimed at mitigating the first pandemic wave may be counterproductive by increasing the chances of a second wave of infection that could potentially be more virulent than the first.

DOI: 10.1016/j.jtbi.2009.08.020
PubMed: 19703472

Links to Exploration step

pubmed:19703472

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Qualitative analysis of the level of cross-protection between epidemic waves of the 1918-1919 influenza pandemic.</title>
<author>
<name sortKey="Rios Doria, D" sort="Rios Doria, D" uniqKey="Rios Doria D" first="D" last="Rios-Doria">D. Rios-Doria</name>
<affiliation>
<nlm:affiliation>Mathematical, Computational and Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA. driosdor@asu.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chowell, G" sort="Chowell, G" uniqKey="Chowell G" first="G" last="Chowell">G. Chowell</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19703472</idno>
<idno type="pmid">19703472</idno>
<idno type="doi">10.1016/j.jtbi.2009.08.020</idno>
<idno type="wicri:Area/PubMed/Corpus">001671</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001671</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Qualitative analysis of the level of cross-protection between epidemic waves of the 1918-1919 influenza pandemic.</title>
<author>
<name sortKey="Rios Doria, D" sort="Rios Doria, D" uniqKey="Rios Doria D" first="D" last="Rios-Doria">D. Rios-Doria</name>
<affiliation>
<nlm:affiliation>Mathematical, Computational and Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA. driosdor@asu.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chowell, G" sort="Chowell, G" uniqKey="Chowell G" first="G" last="Chowell">G. Chowell</name>
</author>
</analytic>
<series>
<title level="j">Journal of theoretical biology</title>
<idno type="eISSN">1095-8541</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cross Protection</term>
<term>Disease Outbreaks</term>
<term>Humans</term>
<term>Influenza A virus (genetics)</term>
<term>Influenza A virus (immunology)</term>
<term>Influenza, Human (epidemiology)</term>
<term>Influenza, Human (immunology)</term>
<term>Influenza, Human (transmission)</term>
<term>Influenza, Human (virology)</term>
<term>Mathematics</term>
<term>Models, Biological</term>
<term>Models, Theoretical</term>
<term>Risk Assessment</term>
<term>Switzerland (epidemiology)</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" type="geographic" qualifier="epidemiology" xml:lang="en">
<term>Switzerland</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Influenza A virus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Influenza A virus</term>
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cross Protection</term>
<term>Disease Outbreaks</term>
<term>Humans</term>
<term>Mathematics</term>
<term>Models, Biological</term>
<term>Models, Theoretical</term>
<term>Risk Assessment</term>
<term>Time Factors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The 1918-1919 influenza pandemic was composed of multiple waves within a period of nine months in several regions of the world. Increasing our understanding of the mechanisms responsible for this multi-wave profile has important public health implications. We model the transmission dynamics of two strains of influenza interacting via cross-immunity to simulate two temporal waves of influenza and explore the impact of the basic reproduction number, as a measure of transmissibility associated to each influenza strain, cross-immunity and the timing of the onset of the second influenza epidemic on the pandemic profile. We use time series of case notifications during the 1918 influenza pandemic in Geneva, Switzerland, for illustration. We calibrate our mathematical model to the initial wave of infection to estimate the basic reproduction number of the first wave and the corresponding timing of onset of the second influenza variant. We use this information to explore the impact of cross-immunity levels on the dynamics of the second wave of influenza. Our results for the 1918 pandemic in Geneva, Switzerland, indicate that a second wave can occur whenever R 01 < 1.5 or when cross-immunity levels are less than 0.58 for our estimated R 02 of 2.4. We also explore qualitatively profiles of two-wave pandemics and compare them with real temporal profiles of the 1918 influenza pandemic in other regions of the world including several Scandinavian cities, New York City, England and Wales, and Sydney, Australia. Pandemic profiles are classified into three broad categories namely "right-handed", "left-handed", and "M-shape". Our results indicate that avoiding a second influenza epidemic is plausible given sufficient levels of cross-protection are attained via natural infection during an early (herald) wave of infection or vaccination campaigns prior to a second wave. Furthermore, interventions aimed at mitigating the first pandemic wave may be counterproductive by increasing the chances of a second wave of infection that could potentially be more virulent than the first.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19703472</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>01</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2009</Year>
<Month>11</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8541</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>261</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2009</Year>
<Month>Dec</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>Journal of theoretical biology</Title>
<ISOAbbreviation>J. Theor. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Qualitative analysis of the level of cross-protection between epidemic waves of the 1918-1919 influenza pandemic.</ArticleTitle>
<Pagination>
<MedlinePgn>584-92</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jtbi.2009.08.020</ELocationID>
<Abstract>
<AbstractText>The 1918-1919 influenza pandemic was composed of multiple waves within a period of nine months in several regions of the world. Increasing our understanding of the mechanisms responsible for this multi-wave profile has important public health implications. We model the transmission dynamics of two strains of influenza interacting via cross-immunity to simulate two temporal waves of influenza and explore the impact of the basic reproduction number, as a measure of transmissibility associated to each influenza strain, cross-immunity and the timing of the onset of the second influenza epidemic on the pandemic profile. We use time series of case notifications during the 1918 influenza pandemic in Geneva, Switzerland, for illustration. We calibrate our mathematical model to the initial wave of infection to estimate the basic reproduction number of the first wave and the corresponding timing of onset of the second influenza variant. We use this information to explore the impact of cross-immunity levels on the dynamics of the second wave of influenza. Our results for the 1918 pandemic in Geneva, Switzerland, indicate that a second wave can occur whenever R 01 < 1.5 or when cross-immunity levels are less than 0.58 for our estimated R 02 of 2.4. We also explore qualitatively profiles of two-wave pandemics and compare them with real temporal profiles of the 1918 influenza pandemic in other regions of the world including several Scandinavian cities, New York City, England and Wales, and Sydney, Australia. Pandemic profiles are classified into three broad categories namely "right-handed", "left-handed", and "M-shape". Our results indicate that avoiding a second influenza epidemic is plausible given sufficient levels of cross-protection are attained via natural infection during an early (herald) wave of infection or vaccination campaigns prior to a second wave. Furthermore, interventions aimed at mitigating the first pandemic wave may be counterproductive by increasing the chances of a second wave of infection that could potentially be more virulent than the first.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rios-Doria</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Mathematical, Computational and Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA. driosdor@asu.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chowell</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>08</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Theor Biol</MedlineTA>
<NlmUniqueID>0376342</NlmUniqueID>
<ISSNLinking>0022-5193</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D056738" MajorTopicYN="Y">Cross Protection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004196" MajorTopicYN="Y">Disease Outbreaks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009980" MajorTopicYN="N">Influenza A virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008433" MajorTopicYN="N">Mathematics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="Y">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018570" MajorTopicYN="N">Risk Assessment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013557" MajorTopicYN="N" Type="Geographic">Switzerland</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>04</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2009</Year>
<Month>08</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>08</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>8</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>8</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>1</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19703472</ArticleId>
<ArticleId IdType="pii">S0022-5193(09)00391-9</ArticleId>
<ArticleId IdType="doi">10.1016/j.jtbi.2009.08.020</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001671 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001671 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19703472
   |texte=   Qualitative analysis of the level of cross-protection between epidemic waves of the 1918-1919 influenza pandemic.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:19703472" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021