Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Microneedle vaccination with stabilized recombinant influenza virus hemagglutinin induces improved protective immunity.

Identifieur interne : 001119 ( PubMed/Corpus ); précédent : 001118; suivant : 001120

Microneedle vaccination with stabilized recombinant influenza virus hemagglutinin induces improved protective immunity.

Auteurs : William C. Weldon ; Maria P. Martin ; Vladimir Zarnitsyn ; Baozhong Wang ; Dimitrios Koutsonanos ; Ioanna Skountzou ; Mark R. Prausnitz ; Richard W. Compans

Source :

RBID : pubmed:21288996

English descriptors

Abstract

The emergence of the swine-origin 2009 influenza pandemic illustrates the need for improved vaccine production and delivery strategies. Skin-based immunization represents an attractive alternative to traditional hypodermic needle vaccination routes. Microneedles (MNs) can deliver vaccine to the epidermis and dermis, which are rich in antigen-presenting cells (APC) such as Langerhans cells and dermal dendritic cells. Previous studies using coated or dissolvable microneedles emphasized the use of inactivated influenza virus or virus-like particles as skin-based vaccines. However, most currently available influenza vaccines consist of solubilized viral protein antigens. Here we test the hypothesis that a recombinant subunit influenza vaccine can be delivered to the skin by coated microneedles and can induce protective immunity. We found that mice vaccinated via MN delivery with a stabilized recombinant trimeric soluble hemagglutinin (sHA) derived from A/Aichi/2/68 (H3) virus had significantly higher immune responses than did mice vaccinated with unmodified sHA. These mice were fully protected against a lethal challenge with influenza virus. Analysis of postchallenge lung titers showed that MN-immunized mice had completely cleared the virus from their lungs, in contrast to mice given the same vaccine by a standard subcutaneous route. In addition, we observed a higher ratio of antigen-specific Th1 cells in trimeric sHA-vaccinated mice and a greater mucosal antibody response. Our data therefore demonstrate the improved efficacy of a skin-based recombinant subunit influenza vaccine and emphasize the advantage of this route of vaccination for a protein subunit vaccine.

DOI: 10.1128/CVI.00435-10
PubMed: 21288996

Links to Exploration step

pubmed:21288996

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Microneedle vaccination with stabilized recombinant influenza virus hemagglutinin induces improved protective immunity.</title>
<author>
<name sortKey="Weldon, William C" sort="Weldon, William C" uniqKey="Weldon W" first="William C" last="Weldon">William C. Weldon</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martin, Maria P" sort="Martin, Maria P" uniqKey="Martin M" first="Maria P" last="Martin">Maria P. Martin</name>
</author>
<author>
<name sortKey="Zarnitsyn, Vladimir" sort="Zarnitsyn, Vladimir" uniqKey="Zarnitsyn V" first="Vladimir" last="Zarnitsyn">Vladimir Zarnitsyn</name>
</author>
<author>
<name sortKey="Wang, Baozhong" sort="Wang, Baozhong" uniqKey="Wang B" first="Baozhong" last="Wang">Baozhong Wang</name>
</author>
<author>
<name sortKey="Koutsonanos, Dimitrios" sort="Koutsonanos, Dimitrios" uniqKey="Koutsonanos D" first="Dimitrios" last="Koutsonanos">Dimitrios Koutsonanos</name>
</author>
<author>
<name sortKey="Skountzou, Ioanna" sort="Skountzou, Ioanna" uniqKey="Skountzou I" first="Ioanna" last="Skountzou">Ioanna Skountzou</name>
</author>
<author>
<name sortKey="Prausnitz, Mark R" sort="Prausnitz, Mark R" uniqKey="Prausnitz M" first="Mark R" last="Prausnitz">Mark R. Prausnitz</name>
</author>
<author>
<name sortKey="Compans, Richard W" sort="Compans, Richard W" uniqKey="Compans R" first="Richard W" last="Compans">Richard W. Compans</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21288996</idno>
<idno type="pmid">21288996</idno>
<idno type="doi">10.1128/CVI.00435-10</idno>
<idno type="wicri:Area/PubMed/Corpus">001119</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001119</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Microneedle vaccination with stabilized recombinant influenza virus hemagglutinin induces improved protective immunity.</title>
<author>
<name sortKey="Weldon, William C" sort="Weldon, William C" uniqKey="Weldon W" first="William C" last="Weldon">William C. Weldon</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martin, Maria P" sort="Martin, Maria P" uniqKey="Martin M" first="Maria P" last="Martin">Maria P. Martin</name>
</author>
<author>
<name sortKey="Zarnitsyn, Vladimir" sort="Zarnitsyn, Vladimir" uniqKey="Zarnitsyn V" first="Vladimir" last="Zarnitsyn">Vladimir Zarnitsyn</name>
</author>
<author>
<name sortKey="Wang, Baozhong" sort="Wang, Baozhong" uniqKey="Wang B" first="Baozhong" last="Wang">Baozhong Wang</name>
</author>
<author>
<name sortKey="Koutsonanos, Dimitrios" sort="Koutsonanos, Dimitrios" uniqKey="Koutsonanos D" first="Dimitrios" last="Koutsonanos">Dimitrios Koutsonanos</name>
</author>
<author>
<name sortKey="Skountzou, Ioanna" sort="Skountzou, Ioanna" uniqKey="Skountzou I" first="Ioanna" last="Skountzou">Ioanna Skountzou</name>
</author>
<author>
<name sortKey="Prausnitz, Mark R" sort="Prausnitz, Mark R" uniqKey="Prausnitz M" first="Mark R" last="Prausnitz">Mark R. Prausnitz</name>
</author>
<author>
<name sortKey="Compans, Richard W" sort="Compans, Richard W" uniqKey="Compans R" first="Richard W" last="Compans">Richard W. Compans</name>
</author>
</analytic>
<series>
<title level="j">Clinical and vaccine immunology : CVI</title>
<idno type="eISSN">1556-679X</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Disease Models, Animal</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus (administration & dosage)</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus (immunology)</term>
<term>Immunity, Mucosal</term>
<term>Influenza A virus (immunology)</term>
<term>Influenza Vaccines (administration & dosage)</term>
<term>Influenza Vaccines (immunology)</term>
<term>Injections, Intradermal (methods)</term>
<term>Lung (virology)</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Orthomyxoviridae Infections (immunology)</term>
<term>Orthomyxoviridae Infections (prevention & control)</term>
<term>Survival Analysis</term>
<term>Th1 Cells (immunology)</term>
<term>Vaccination (methods)</term>
<term>Vaccines, Subunit (administration & dosage)</term>
<term>Vaccines, Subunit (immunology)</term>
<term>Vaccines, Synthetic (administration & dosage)</term>
<term>Vaccines, Synthetic (immunology)</term>
<term>Viral Load</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Hemagglutinin Glycoproteins, Influenza Virus</term>
<term>Influenza Vaccines</term>
<term>Vaccines, Subunit</term>
<term>Vaccines, Synthetic</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Hemagglutinin Glycoproteins, Influenza Virus</term>
<term>Influenza Vaccines</term>
<term>Vaccines, Subunit</term>
<term>Vaccines, Synthetic</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Influenza A virus</term>
<term>Orthomyxoviridae Infections</term>
<term>Th1 Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Injections, Intradermal</term>
<term>Vaccination</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Disease Models, Animal</term>
<term>Immunity, Mucosal</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Survival Analysis</term>
<term>Viral Load</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The emergence of the swine-origin 2009 influenza pandemic illustrates the need for improved vaccine production and delivery strategies. Skin-based immunization represents an attractive alternative to traditional hypodermic needle vaccination routes. Microneedles (MNs) can deliver vaccine to the epidermis and dermis, which are rich in antigen-presenting cells (APC) such as Langerhans cells and dermal dendritic cells. Previous studies using coated or dissolvable microneedles emphasized the use of inactivated influenza virus or virus-like particles as skin-based vaccines. However, most currently available influenza vaccines consist of solubilized viral protein antigens. Here we test the hypothesis that a recombinant subunit influenza vaccine can be delivered to the skin by coated microneedles and can induce protective immunity. We found that mice vaccinated via MN delivery with a stabilized recombinant trimeric soluble hemagglutinin (sHA) derived from A/Aichi/2/68 (H3) virus had significantly higher immune responses than did mice vaccinated with unmodified sHA. These mice were fully protected against a lethal challenge with influenza virus. Analysis of postchallenge lung titers showed that MN-immunized mice had completely cleared the virus from their lungs, in contrast to mice given the same vaccine by a standard subcutaneous route. In addition, we observed a higher ratio of antigen-specific Th1 cells in trimeric sHA-vaccinated mice and a greater mucosal antibody response. Our data therefore demonstrate the improved efficacy of a skin-based recombinant subunit influenza vaccine and emphasize the advantage of this route of vaccination for a protein subunit vaccine.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21288996</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>07</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1556-679X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2011</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Clinical and vaccine immunology : CVI</Title>
<ISOAbbreviation>Clin. Vaccine Immunol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Microneedle vaccination with stabilized recombinant influenza virus hemagglutinin induces improved protective immunity.</ArticleTitle>
<Pagination>
<MedlinePgn>647-54</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/CVI.00435-10</ELocationID>
<Abstract>
<AbstractText>The emergence of the swine-origin 2009 influenza pandemic illustrates the need for improved vaccine production and delivery strategies. Skin-based immunization represents an attractive alternative to traditional hypodermic needle vaccination routes. Microneedles (MNs) can deliver vaccine to the epidermis and dermis, which are rich in antigen-presenting cells (APC) such as Langerhans cells and dermal dendritic cells. Previous studies using coated or dissolvable microneedles emphasized the use of inactivated influenza virus or virus-like particles as skin-based vaccines. However, most currently available influenza vaccines consist of solubilized viral protein antigens. Here we test the hypothesis that a recombinant subunit influenza vaccine can be delivered to the skin by coated microneedles and can induce protective immunity. We found that mice vaccinated via MN delivery with a stabilized recombinant trimeric soluble hemagglutinin (sHA) derived from A/Aichi/2/68 (H3) virus had significantly higher immune responses than did mice vaccinated with unmodified sHA. These mice were fully protected against a lethal challenge with influenza virus. Analysis of postchallenge lung titers showed that MN-immunized mice had completely cleared the virus from their lungs, in contrast to mice given the same vaccine by a standard subcutaneous route. In addition, we observed a higher ratio of antigen-specific Th1 cells in trimeric sHA-vaccinated mice and a greater mucosal antibody response. Our data therefore demonstrate the improved efficacy of a skin-based recombinant subunit influenza vaccine and emphasize the advantage of this route of vaccination for a protein subunit vaccine.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Weldon</LastName>
<ForeName>William C</ForeName>
<Initials>WC</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martin</LastName>
<ForeName>Maria P</ForeName>
<Initials>MP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zarnitsyn</LastName>
<ForeName>Vladimir</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Baozhong</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Koutsonanos</LastName>
<ForeName>Dimitrios</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Skountzou</LastName>
<ForeName>Ioanna</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Prausnitz</LastName>
<ForeName>Mark R</ForeName>
<Initials>MR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Compans</LastName>
<ForeName>Richard W</ForeName>
<Initials>RW</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>AI074579</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>EB006369</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB006369-03</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U01 EB012495</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB006369-01A1</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB006369-04</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB006369</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U01 EB012495-01</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB006369-02</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U01 AI074579</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>02</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Clin Vaccine Immunol</MedlineTA>
<NlmUniqueID>101252125</NlmUniqueID>
<ISSNLinking>1556-679X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019267">Hemagglutinin Glycoproteins, Influenza Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007252">Influenza Vaccines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D022223">Vaccines, Subunit</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014614">Vaccines, Synthetic</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019267" MajorTopicYN="N">Hemagglutinin Glycoproteins, Influenza Virus</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018928" MajorTopicYN="N">Immunity, Mucosal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009980" MajorTopicYN="N">Influenza A virus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007252" MajorTopicYN="N">Influenza Vaccines</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007271" MajorTopicYN="N">Injections, Intradermal</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009976" MajorTopicYN="N">Orthomyxoviridae Infections</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016019" MajorTopicYN="N">Survival Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018417" MajorTopicYN="N">Th1 Cells</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014611" MajorTopicYN="N">Vaccination</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022223" MajorTopicYN="N">Vaccines, Subunit</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014614" MajorTopicYN="N">Vaccines, Synthetic</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019562" MajorTopicYN="N">Viral Load</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>2</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>2</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>7</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21288996</ArticleId>
<ArticleId IdType="pii">CVI.00435-10</ArticleId>
<ArticleId IdType="doi">10.1128/CVI.00435-10</ArticleId>
<ArticleId IdType="pmc">PMC3122571</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2010;5(5):e10645</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20498717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Invest Dermatol. 2010 May;130(5):1345-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20107482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Aug;84(15):7760-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20484519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2010 Aug;16(8):915-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20639891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(9). pii: e12466. doi: 10.1371/journal.pone.0012466</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20824188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 May;74(10):4746-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10775613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Jun;74(11):4999-5005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10799573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharm Res. 2002 Jan;19(1):63-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11837701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2002 Aug 5;196(3):303-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12163559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Feb 20;421(6925):852-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12594515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2003 Jun 20;21(21-22):2830-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12798624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2004 Feb;75(2):163-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14525967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Kidney Dis. 2004 May;43(5):910-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15112182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2004 Aug 1;173(3):1978-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15265932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hyg (Lond). 1972 Dec;70(4):767-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4509641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Invest Dermatol. 1983 Jun;80 Suppl:12s-16s</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6602189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 1999 Apr;37(4):937-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10074505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2004 Nov 25;351(22):2295-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15525714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Immunol. 1989 Sep;1(1):55-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15630959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2005 Apr 8;23(20):2565-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15780438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Immunol. 2005 Aug;17(4):273-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15953735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jan 5;439(7072):38-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16397490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2006 Aug 28;24(35-36):6110-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16766095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Control Release. 2007 Feb 12;117(2):227-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17169459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Vaccine Immunol. 2007 Apr;14(4):375-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17329444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Immunopathol. 2007 Apr;29(1):15-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17621951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 25;283(17):11382-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18252707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Immunol. 2001 May;Chapter 19:Unit 19.11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18432752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin J Pain. 2008 Sep;24(7):585-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18716497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Nov;26(11):1261-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18997767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(3):e4773</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19274084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2009 Apr;10(4):385-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19252490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2009 May 18;27(23):3063-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19428920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 May 12;106(19):7968-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(9):e7152</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19779615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2009 Oct;9(10):679-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19763149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2009 Nov 16;27(49):6932-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19761836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2009 Nov 27;27(51):7214-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19925956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(2):e9161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20161790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drugs Aging. 2010 Jul 1;27(7):597-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20583853</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001119 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001119 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21288996
   |texte=   Microneedle vaccination with stabilized recombinant influenza virus hemagglutinin induces improved protective immunity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:21288996" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021