Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus.

Identifieur interne : 000842 ( PubMed/Corpus ); précédent : 000841; suivant : 000843

Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus.

Auteurs : Michael Worobey ; Guan-Zhu Han ; Andrew Rambaut

Source :

RBID : pubmed:24778238

English descriptors

Abstract

The source, timing, and geographical origin of the 1918-1920 pandemic influenza A virus have remained tenaciously obscure for nearly a century, as have the reasons for its unusual severity among young adults. Here, we reconstruct the origins of the pandemic virus and the classic swine influenza and (postpandemic) seasonal H1N1 lineages using a host-specific molecular clock approach that is demonstrably more accurate than previous methods. Our results suggest that the 1918 pandemic virus originated shortly before 1918 when a human H1 virus, which we infer emerged before ∼1907, acquired avian N1 neuraminidase and internal protein genes. We find that the resulting pandemic virus jumped directly to swine but was likely displaced in humans by ∼1922 by a reassortant with an antigenically distinct H1 HA. Hence, although the swine lineage was a direct descendent of the pandemic virus, the post-1918 seasonal H1N1 lineage evidently was not, at least for HA. These findings help resolve several seemingly disparate observations from 20th century influenza epidemiology, seroarcheology, and immunology. The phylogenetic results, combined with these other lines of evidence, suggest that the high mortality in 1918 among adults aged ∼20 to ∼40 y may have been due primarily to their childhood exposure to a doubly heterosubtypic putative H3N8 virus, which we estimate circulated from ∼1889-1900. All other age groups (except immunologically naive infants) were likely partially protected by childhood exposure to N1 and/or H1-related antigens. Similar processes may underlie age-specific mortality differences between seasonal H1N1 vs. H3N2 and human H5N1 vs. H7N9 infections.

DOI: 10.1073/pnas.1324197111
PubMed: 24778238

Links to Exploration step

pubmed:24778238

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus.</title>
<author>
<name sortKey="Worobey, Michael" sort="Worobey, Michael" uniqKey="Worobey M" first="Michael" last="Worobey">Michael Worobey</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721; worobey@email.arizona.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Han, Guan Zhu" sort="Han, Guan Zhu" uniqKey="Han G" first="Guan-Zhu" last="Han">Guan-Zhu Han</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rambaut, Andrew" sort="Rambaut, Andrew" uniqKey="Rambaut A" first="Andrew" last="Rambaut">Andrew Rambaut</name>
<affiliation>
<nlm:affiliation>Institute of Evolutionary Biology andCentre for Infection, Immunity, and Evolution, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; andFogarty International Center, National Institutes of Health, Bethesda, MD 20892.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24778238</idno>
<idno type="pmid">24778238</idno>
<idno type="doi">10.1073/pnas.1324197111</idno>
<idno type="wicri:Area/PubMed/Corpus">000842</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000842</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus.</title>
<author>
<name sortKey="Worobey, Michael" sort="Worobey, Michael" uniqKey="Worobey M" first="Michael" last="Worobey">Michael Worobey</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721; worobey@email.arizona.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Han, Guan Zhu" sort="Han, Guan Zhu" uniqKey="Han G" first="Guan-Zhu" last="Han">Guan-Zhu Han</name>
<affiliation>
<nlm:affiliation>Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rambaut, Andrew" sort="Rambaut, Andrew" uniqKey="Rambaut A" first="Andrew" last="Rambaut">Andrew Rambaut</name>
<affiliation>
<nlm:affiliation>Institute of Evolutionary Biology andCentre for Infection, Immunity, and Evolution, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; andFogarty International Center, National Institutes of Health, Bethesda, MD 20892.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Aged</term>
<term>Animals</term>
<term>Biological Evolution</term>
<term>Birds</term>
<term>Child</term>
<term>Disease Resistance (immunology)</term>
<term>Genetic Variation</term>
<term>Humans</term>
<term>Influenza A Virus, H1N1 Subtype (genetics)</term>
<term>Influenza A Virus, H1N1 Subtype (immunology)</term>
<term>Influenza A Virus, H1N1 Subtype (pathogenicity)</term>
<term>Influenza A Virus, H3N2 Subtype (genetics)</term>
<term>Influenza A Virus, H3N2 Subtype (immunology)</term>
<term>Influenza A Virus, H3N2 Subtype (pathogenicity)</term>
<term>Influenza A Virus, H3N8 Subtype (genetics)</term>
<term>Influenza A Virus, H3N8 Subtype (immunology)</term>
<term>Influenza A Virus, H3N8 Subtype (pathogenicity)</term>
<term>Influenza A Virus, H5N1 Subtype (genetics)</term>
<term>Influenza A Virus, H5N1 Subtype (immunology)</term>
<term>Influenza A Virus, H5N1 Subtype (pathogenicity)</term>
<term>Influenza A Virus, H7N9 Subtype (genetics)</term>
<term>Influenza A Virus, H7N9 Subtype (immunology)</term>
<term>Influenza A Virus, H7N9 Subtype (pathogenicity)</term>
<term>Influenza A virus (genetics)</term>
<term>Influenza A virus (immunology)</term>
<term>Influenza A virus (pathogenicity)</term>
<term>Influenza Pandemic, 1918-1919 (mortality)</term>
<term>Influenza, Human (mortality)</term>
<term>Influenza, Human (virology)</term>
<term>Phylogeny</term>
<term>Reassortant Viruses (genetics)</term>
<term>Reassortant Viruses (immunology)</term>
<term>Reassortant Viruses (pathogenicity)</term>
<term>Swine</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Influenza A Virus, H3N2 Subtype</term>
<term>Influenza A Virus, H3N8 Subtype</term>
<term>Influenza A Virus, H5N1 Subtype</term>
<term>Influenza A Virus, H7N9 Subtype</term>
<term>Influenza A virus</term>
<term>Reassortant Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Disease Resistance</term>
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Influenza A Virus, H3N2 Subtype</term>
<term>Influenza A Virus, H3N8 Subtype</term>
<term>Influenza A Virus, H5N1 Subtype</term>
<term>Influenza A Virus, H7N9 Subtype</term>
<term>Influenza A virus</term>
<term>Reassortant Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="mortality" xml:lang="en">
<term>Influenza Pandemic, 1918-1919</term>
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Influenza A Virus, H3N2 Subtype</term>
<term>Influenza A Virus, H3N8 Subtype</term>
<term>Influenza A Virus, H5N1 Subtype</term>
<term>Influenza A Virus, H7N9 Subtype</term>
<term>Influenza A virus</term>
<term>Reassortant Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Aged</term>
<term>Animals</term>
<term>Biological Evolution</term>
<term>Birds</term>
<term>Child</term>
<term>Genetic Variation</term>
<term>Humans</term>
<term>Phylogeny</term>
<term>Swine</term>
<term>Virulence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The source, timing, and geographical origin of the 1918-1920 pandemic influenza A virus have remained tenaciously obscure for nearly a century, as have the reasons for its unusual severity among young adults. Here, we reconstruct the origins of the pandemic virus and the classic swine influenza and (postpandemic) seasonal H1N1 lineages using a host-specific molecular clock approach that is demonstrably more accurate than previous methods. Our results suggest that the 1918 pandemic virus originated shortly before 1918 when a human H1 virus, which we infer emerged before ∼1907, acquired avian N1 neuraminidase and internal protein genes. We find that the resulting pandemic virus jumped directly to swine but was likely displaced in humans by ∼1922 by a reassortant with an antigenically distinct H1 HA. Hence, although the swine lineage was a direct descendent of the pandemic virus, the post-1918 seasonal H1N1 lineage evidently was not, at least for HA. These findings help resolve several seemingly disparate observations from 20th century influenza epidemiology, seroarcheology, and immunology. The phylogenetic results, combined with these other lines of evidence, suggest that the high mortality in 1918 among adults aged ∼20 to ∼40 y may have been due primarily to their childhood exposure to a doubly heterosubtypic putative H3N8 virus, which we estimate circulated from ∼1889-1900. All other age groups (except immunologically naive infants) were likely partially protected by childhood exposure to N1 and/or H1-related antigens. Similar processes may underlie age-specific mortality differences between seasonal H1N1 vs. H3N2 and human H5N1 vs. H7N9 infections. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24778238</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>08</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>111</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jun</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus.</ArticleTitle>
<Pagination>
<MedlinePgn>8107-12</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1324197111</ELocationID>
<Abstract>
<AbstractText>The source, timing, and geographical origin of the 1918-1920 pandemic influenza A virus have remained tenaciously obscure for nearly a century, as have the reasons for its unusual severity among young adults. Here, we reconstruct the origins of the pandemic virus and the classic swine influenza and (postpandemic) seasonal H1N1 lineages using a host-specific molecular clock approach that is demonstrably more accurate than previous methods. Our results suggest that the 1918 pandemic virus originated shortly before 1918 when a human H1 virus, which we infer emerged before ∼1907, acquired avian N1 neuraminidase and internal protein genes. We find that the resulting pandemic virus jumped directly to swine but was likely displaced in humans by ∼1922 by a reassortant with an antigenically distinct H1 HA. Hence, although the swine lineage was a direct descendent of the pandemic virus, the post-1918 seasonal H1N1 lineage evidently was not, at least for HA. These findings help resolve several seemingly disparate observations from 20th century influenza epidemiology, seroarcheology, and immunology. The phylogenetic results, combined with these other lines of evidence, suggest that the high mortality in 1918 among adults aged ∼20 to ∼40 y may have been due primarily to their childhood exposure to a doubly heterosubtypic putative H3N8 virus, which we estimate circulated from ∼1889-1900. All other age groups (except immunologically naive infants) were likely partially protected by childhood exposure to N1 and/or H1-related antigens. Similar processes may underlie age-specific mortality differences between seasonal H1N1 vs. H3N2 and human H5N1 vs. H7N9 infections. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Worobey</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721; worobey@email.arizona.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Guan-Zhu</ForeName>
<Initials>GZ</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rambaut</LastName>
<ForeName>Andrew</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Institute of Evolutionary Biology andCentre for Infection, Immunity, and Evolution, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; andFogarty International Center, National Institutes of Health, Bethesda, MD 20892.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>095831</GrantID>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>260864</GrantID>
<Agency>European Research Council</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>R01 AI084691</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>092807</GrantID>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>04</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):7892-3</RefSource>
<PMID Version="1">24911006</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="N">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001717" MajorTopicYN="N">Birds</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002648" MajorTopicYN="N">Child</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053118" MajorTopicYN="N">Influenza A Virus, H1N1 Subtype</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053122" MajorTopicYN="N">Influenza A Virus, H3N2 Subtype</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053123" MajorTopicYN="N">Influenza A Virus, H3N8 Subtype</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053124" MajorTopicYN="N">Influenza A Virus, H5N1 Subtype</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064766" MajorTopicYN="N">Influenza A Virus, H7N9 Subtype</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009980" MajorTopicYN="N">Influenza A virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064149" MajorTopicYN="N">Influenza Pandemic, 1918-1919</DescriptorName>
<QualifierName UI="Q000401" MajorTopicYN="Y">mortality</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000401" MajorTopicYN="Y">mortality</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016865" MajorTopicYN="N">Reassortant Viruses</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">cohort immunity</Keyword>
<Keyword MajorTopicYN="N">pathogenicity</Keyword>
<Keyword MajorTopicYN="N">phylogeny</Keyword>
<Keyword MajorTopicYN="N">reassortment</Keyword>
<Keyword MajorTopicYN="N">virulence</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24778238</ArticleId>
<ArticleId IdType="pii">1324197111</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1324197111</ArticleId>
<ArticleId IdType="pmc">PMC4050607</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Med. 1964 Dec 1;120:1087-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14238927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2004 Aug 13;22(23-24):2993-3003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15297047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1976 Jul 31;2(7979):244-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">59252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Vaccine Immunol. 2011 Mar;18(3):469-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16416-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21930918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2012 Feb;18(2):332-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22304897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2004 Sep 15;292(11):1333-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15367555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2012 Feb;18(2):201-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22306191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull World Health Organ. 1972;47(4):449-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4540994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull World Health Organ. 1999;77(10):820-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10593030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2001 Oct 15;33(8):1375-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11565078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1989 Nov;63(11):4603-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2795713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Sep 1;183(5):3294-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19648276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(8):e69586</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23940526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Dec;80(23):11887-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16987977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Jun 28;25(27):5086-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17544181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1965 Jan;89:170-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14255658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1936 Apr 30;63(5):655-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19870495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1936 Apr 30;63(5):669-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19870496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hyg (Lond). 1983 Jun;90(3):397-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6863911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2012 Nov 15;189(10):4921-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23028058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1969 May 3;1(7601):907-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4180894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1958 Apr 19;1(7025):810-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13526279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2010 Jun;16(6):1028-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull World Health Organ. 1969;41(3):453-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5309455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2010 May 18;1(1):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20689752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 Apr 1;186(7):3823-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21422252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Influenza Other Respir Viruses. 2012 Nov;6(6):417-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22226378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 Feb 15;4(2):e1000012</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18463694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 1982 Apr;115(4):587-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7072705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11709-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19597152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Apr 10;508(7495):254-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24531761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Nov;28(11):3033-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21670087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Am Philos Soc. 1982 Apr 8;126(2):91-121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11620766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1976 Jul;134(1):48-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">59787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2007 Apr 1;195(7):1018-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17330793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2008 Oct 1;198(7):962-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18710327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 1976 Feb;103(2):166-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1251831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1956 Jul 1;104(1):85-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13332182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2003 Jan 8;289(2):179-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12517228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 1973 Aug;98(2):96-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4125129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Apr 27;440(7088):E9; discussion E9-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16641950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2006 Jan;12(1):15-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16494711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull World Health Organ. 1966;34(6):885-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5296537</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000842 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000842 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24778238
   |texte=   Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24778238" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021