Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Early Characterization of the Severity and Transmissibility of Pandemic Influenza Using Clinical Episode Data from Multiple Populations.

Identifieur interne : 000600 ( PubMed/Corpus ); précédent : 000599; suivant : 000601

Early Characterization of the Severity and Transmissibility of Pandemic Influenza Using Clinical Episode Data from Multiple Populations.

Auteurs : Pete Riley ; Michal Ben-Nun ; Jon A. Linker ; Angelia A. Cost ; Jose L. Sanchez ; Dylan George ; David P. Bacon ; Steven Riley

Source :

RBID : pubmed:26402446

English descriptors

Abstract

The potential rapid availability of large-scale clinical episode data during the next influenza pandemic suggests an opportunity for increasing the speed with which novel respiratory pathogens can be characterized. Key intervention decisions will be determined by both the transmissibility of the novel strain (measured by the basic reproductive number R0) and its individual-level severity. The 2009 pandemic illustrated that estimating individual-level severity, as described by the proportion pC of infections that result in clinical cases, can remain uncertain for a prolonged period of time. Here, we use 50 distinct US military populations during 2009 as a retrospective cohort to test the hypothesis that real-time encounter data combined with disease dynamic models can be used to bridge this uncertainty gap. Effectively, we estimated the total number of infections in multiple early-affected communities using the model and divided that number by the known number of clinical cases. Joint estimates of severity and transmissibility clustered within a relatively small region of parameter space, with 40 of the 50 populations bounded by: pC, 0.0133-0.150 and R0, 1.09-2.16. These fits were obtained despite widely varying incidence profiles: some with spring waves, some with fall waves and some with both. To illustrate the benefit of specific pairing of rapidly available data and infectious disease models, we simulated a future moderate pandemic strain with pC approximately ×10 that of 2009; the results demonstrating that even before the peak had passed in the first affected population, R0 and pC could be well estimated. This study provides a clear reference in this two-dimensional space against which future novel respiratory pathogens can be rapidly assessed and compared with previous pandemics.

DOI: 10.1371/journal.pcbi.1004392
PubMed: 26402446

Links to Exploration step

pubmed:26402446

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Early Characterization of the Severity and Transmissibility of Pandemic Influenza Using Clinical Episode Data from Multiple Populations.</title>
<author>
<name sortKey="Riley, Pete" sort="Riley, Pete" uniqKey="Riley P" first="Pete" last="Riley">Pete Riley</name>
<affiliation>
<nlm:affiliation>Predictive Science Inc., San Diego, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ben Nun, Michal" sort="Ben Nun, Michal" uniqKey="Ben Nun M" first="Michal" last="Ben-Nun">Michal Ben-Nun</name>
<affiliation>
<nlm:affiliation>Predictive Science Inc., San Diego, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Linker, Jon A" sort="Linker, Jon A" uniqKey="Linker J" first="Jon A" last="Linker">Jon A. Linker</name>
<affiliation>
<nlm:affiliation>Predictive Science Inc., San Diego, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cost, Angelia A" sort="Cost, Angelia A" uniqKey="Cost A" first="Angelia A" last="Cost">Angelia A. Cost</name>
<affiliation>
<nlm:affiliation>Armed Forces Health Surveillance Center, Silver Spring, Maryland, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sanchez, Jose L" sort="Sanchez, Jose L" uniqKey="Sanchez J" first="Jose L" last="Sanchez">Jose L. Sanchez</name>
<affiliation>
<nlm:affiliation>Armed Forces Health Surveillance Center, Silver Spring, Maryland, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="George, Dylan" sort="George, Dylan" uniqKey="George D" first="Dylan" last="George">Dylan George</name>
<affiliation>
<nlm:affiliation>Biomedical Advanced Research and Development Authority (BARDA), Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, D.C., United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bacon, David P" sort="Bacon, David P" uniqKey="Bacon D" first="David P" last="Bacon">David P. Bacon</name>
<affiliation>
<nlm:affiliation>Leidos, McLean, Virginia, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Riley, Steven" sort="Riley, Steven" uniqKey="Riley S" first="Steven" last="Riley">Steven Riley</name>
<affiliation>
<nlm:affiliation>Predictive Science Inc., San Diego, California, United States of America; MRC Centre for Outbreak Analysis and Modelling, Imperial College London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26402446</idno>
<idno type="pmid">26402446</idno>
<idno type="doi">10.1371/journal.pcbi.1004392</idno>
<idno type="wicri:Area/PubMed/Corpus">000600</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000600</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Early Characterization of the Severity and Transmissibility of Pandemic Influenza Using Clinical Episode Data from Multiple Populations.</title>
<author>
<name sortKey="Riley, Pete" sort="Riley, Pete" uniqKey="Riley P" first="Pete" last="Riley">Pete Riley</name>
<affiliation>
<nlm:affiliation>Predictive Science Inc., San Diego, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ben Nun, Michal" sort="Ben Nun, Michal" uniqKey="Ben Nun M" first="Michal" last="Ben-Nun">Michal Ben-Nun</name>
<affiliation>
<nlm:affiliation>Predictive Science Inc., San Diego, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Linker, Jon A" sort="Linker, Jon A" uniqKey="Linker J" first="Jon A" last="Linker">Jon A. Linker</name>
<affiliation>
<nlm:affiliation>Predictive Science Inc., San Diego, California, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cost, Angelia A" sort="Cost, Angelia A" uniqKey="Cost A" first="Angelia A" last="Cost">Angelia A. Cost</name>
<affiliation>
<nlm:affiliation>Armed Forces Health Surveillance Center, Silver Spring, Maryland, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sanchez, Jose L" sort="Sanchez, Jose L" uniqKey="Sanchez J" first="Jose L" last="Sanchez">Jose L. Sanchez</name>
<affiliation>
<nlm:affiliation>Armed Forces Health Surveillance Center, Silver Spring, Maryland, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="George, Dylan" sort="George, Dylan" uniqKey="George D" first="Dylan" last="George">Dylan George</name>
<affiliation>
<nlm:affiliation>Biomedical Advanced Research and Development Authority (BARDA), Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, D.C., United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bacon, David P" sort="Bacon, David P" uniqKey="Bacon D" first="David P" last="Bacon">David P. Bacon</name>
<affiliation>
<nlm:affiliation>Leidos, McLean, Virginia, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Riley, Steven" sort="Riley, Steven" uniqKey="Riley S" first="Steven" last="Riley">Steven Riley</name>
<affiliation>
<nlm:affiliation>Predictive Science Inc., San Diego, California, United States of America; MRC Centre for Outbreak Analysis and Modelling, Imperial College London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS computational biology</title>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computational Biology (methods)</term>
<term>Databases, Factual</term>
<term>Humans</term>
<term>Influenza, Human (epidemiology)</term>
<term>Influenza, Human (transmission)</term>
<term>Models, Biological</term>
<term>Pandemics (prevention & control)</term>
<term>Pandemics (statistics & numerical data)</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Pandemics</term>
</keywords>
<keywords scheme="MESH" qualifier="statistics & numerical data" xml:lang="en">
<term>Pandemics</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Databases, Factual</term>
<term>Humans</term>
<term>Models, Biological</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The potential rapid availability of large-scale clinical episode data during the next influenza pandemic suggests an opportunity for increasing the speed with which novel respiratory pathogens can be characterized. Key intervention decisions will be determined by both the transmissibility of the novel strain (measured by the basic reproductive number R0) and its individual-level severity. The 2009 pandemic illustrated that estimating individual-level severity, as described by the proportion pC of infections that result in clinical cases, can remain uncertain for a prolonged period of time. Here, we use 50 distinct US military populations during 2009 as a retrospective cohort to test the hypothesis that real-time encounter data combined with disease dynamic models can be used to bridge this uncertainty gap. Effectively, we estimated the total number of infections in multiple early-affected communities using the model and divided that number by the known number of clinical cases. Joint estimates of severity and transmissibility clustered within a relatively small region of parameter space, with 40 of the 50 populations bounded by: pC, 0.0133-0.150 and R0, 1.09-2.16. These fits were obtained despite widely varying incidence profiles: some with spring waves, some with fall waves and some with both. To illustrate the benefit of specific pairing of rapidly available data and infectious disease models, we simulated a future moderate pandemic strain with pC approximately ×10 that of 2009; the results demonstrating that even before the peak had passed in the first affected population, R0 and pC could be well estimated. This study provides a clear reference in this two-dimensional space against which future novel respiratory pathogens can be rapidly assessed and compared with previous pandemics. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26402446</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>03</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7358</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2015</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>PLoS computational biology</Title>
<ISOAbbreviation>PLoS Comput. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Early Characterization of the Severity and Transmissibility of Pandemic Influenza Using Clinical Episode Data from Multiple Populations.</ArticleTitle>
<Pagination>
<MedlinePgn>e1004392</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pcbi.1004392</ELocationID>
<Abstract>
<AbstractText>The potential rapid availability of large-scale clinical episode data during the next influenza pandemic suggests an opportunity for increasing the speed with which novel respiratory pathogens can be characterized. Key intervention decisions will be determined by both the transmissibility of the novel strain (measured by the basic reproductive number R0) and its individual-level severity. The 2009 pandemic illustrated that estimating individual-level severity, as described by the proportion pC of infections that result in clinical cases, can remain uncertain for a prolonged period of time. Here, we use 50 distinct US military populations during 2009 as a retrospective cohort to test the hypothesis that real-time encounter data combined with disease dynamic models can be used to bridge this uncertainty gap. Effectively, we estimated the total number of infections in multiple early-affected communities using the model and divided that number by the known number of clinical cases. Joint estimates of severity and transmissibility clustered within a relatively small region of parameter space, with 40 of the 50 populations bounded by: pC, 0.0133-0.150 and R0, 1.09-2.16. These fits were obtained despite widely varying incidence profiles: some with spring waves, some with fall waves and some with both. To illustrate the benefit of specific pairing of rapidly available data and infectious disease models, we simulated a future moderate pandemic strain with pC approximately ×10 that of 2009; the results demonstrating that even before the peak had passed in the first affected population, R0 and pC could be well estimated. This study provides a clear reference in this two-dimensional space against which future novel respiratory pathogens can be rapidly assessed and compared with previous pandemics. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Riley</LastName>
<ForeName>Pete</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Predictive Science Inc., San Diego, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ben-Nun</LastName>
<ForeName>Michal</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Predictive Science Inc., San Diego, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Linker</LastName>
<ForeName>Jon A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Predictive Science Inc., San Diego, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cost</LastName>
<ForeName>Angelia A</ForeName>
<Initials>AA</Initials>
<AffiliationInfo>
<Affiliation>Armed Forces Health Surveillance Center, Silver Spring, Maryland, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sanchez</LastName>
<ForeName>Jose L</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Armed Forces Health Surveillance Center, Silver Spring, Maryland, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>George</LastName>
<ForeName>Dylan</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Biomedical Advanced Research and Development Authority (BARDA), Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, D.C., United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bacon</LastName>
<ForeName>David P</ForeName>
<Initials>DP</Initials>
<AffiliationInfo>
<Affiliation>Leidos, McLean, Virginia, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Riley</LastName>
<ForeName>Steven</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Predictive Science Inc., San Diego, California, United States of America; MRC Centre for Outbreak Analysis and Modelling, Imperial College London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>MR/K010174/1</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>U01 GM110721</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>09</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Comput Biol</MedlineTA>
<NlmUniqueID>101238922</NlmUniqueID>
<ISSNLinking>1553-734X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016208" MajorTopicYN="Y">Databases, Factual</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="Y">Influenza, Human</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="Y">Pandemics</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
<QualifierName UI="Q000706" MajorTopicYN="N">statistics & numerical data</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>01</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>06</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>3</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26402446</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pcbi.1004392</ArticleId>
<ArticleId IdType="pii">PCOMPBIOL-D-15-00065</ArticleId>
<ArticleId IdType="pmc">PMC4581836</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>MMWR Morb Mortal Wkly Rep. 1997 Dec 19;46(50):1204-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9414153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Dec 16;432(7019):904-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15602562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11059-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16046546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Aug 12;309(5737):1083-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16079251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Sep 8;437(7056):209-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16079797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Sep;3(9):e361</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16881729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2006 Nov 1;194 Suppl 2:S111-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17163383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2007 Feb;13(2):207-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17479881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2007 Jun;13(6):681-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17554335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Infect. 2008 Jul;136(7):866-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18047750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Sep 4;455(7209):47-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18769432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Morb Mortal Wkly Rep. 2009 Apr 24;58(15):400-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19390508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jun 19;324(5934):1557-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19433588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2009 Jul 9;361(2):112-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19474417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wkly Epidemiol Rec. 2009 Aug 21;84(34):341-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19702014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2009 Dec;15(12):2004-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19961687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2010 Feb;16(2):224-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20113551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2010 Jun;7(6):e1000275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20532237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosecur Bioterror. 2011 Jun;9(2):89-115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21612363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2011 Jun;8(6):e1000442</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21713000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 22;336(6088):1506; author reply 1506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22723396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20425-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23184969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2013 Jan;19(1):85-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23260039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2013;10(4):e1001413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23565065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2013 Apr 15;177(8):834-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23459950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 May 16;368(20):1888-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23577628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2013;9(5):e1003064</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23696723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2013 Nov;10(11):e1001558</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24302890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2014 Jan 18;383(9913):189-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24439726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2014 Jul 19;384(9939):249-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25042235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2723-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25730851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biotheor. 2002;50(3):189-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12211331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 May;10(5):858-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15200820</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000600 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000600 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26402446
   |texte=   Early Characterization of the Severity and Transmissibility of Pandemic Influenza Using Clinical Episode Data from Multiple Populations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26402446" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021