Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Cloacal Microbiome of Five Wild Duck Species Varies by Species and Influenza A Virus Infection Status.

Identifieur interne : 000207 ( PubMed/Corpus ); précédent : 000206; suivant : 000208

The Cloacal Microbiome of Five Wild Duck Species Varies by Species and Influenza A Virus Infection Status.

Auteurs : Sarah M. Hird ; Holly Ganz ; Jonathan A. Eisen ; Walter M. Boyce

Source :

RBID : pubmed:30355662

English descriptors

Abstract

Waterfowl, especially ducks of the genus Anas, are natural reservoir species for influenza A virus (IAV). Duck populations contain nearly all the known diversity of IAVs, and the birds are asymptomatic to infection. Previous work established that IAV infection status is correlated with changes in the cloacal microbiome in juvenile mallards. Here, we analyze five Anas species to determine whether these duck species have similar IAV+ and IAV- cloacal microbiomes, or if the relationships among a host, influenza virus, and the microbiome are species specific. We assessed taxonomic composition of the microbiome, alpha diversity, and beta diversity and found very few patterns related to microbiome and infection status across species, while detecting strong differences within species. A host species-specific signal was stronger in IAV- ducks than IAV+ ducks, and the effect size of host species on the microbiome was three times higher in IAV- birds than IAV+ birds. The mallards and the northern shovelers, the species with highest sample sizes but also with differing feeding ecology, showed especially contrasting patterns in microbiome composition, alpha diversity, and beta diversity. Our results indicate that the microbiome may have a unique relationship with influenza virus infection at the species level.IMPORTANCE Waterfowl are natural reservoir species for influenza A virus (IAV). Thus, they maintain high levels of pathogen diversity, are asymptomatic to the infection, and also contribute to the risk of a global influenza pandemic. An individual's microbiome is a critical part in how a vertebrate manages pathogens and illness. Here, we describe the cloacal microbiome of 300 wild ducks, from five species (four with previously undescribed microbiomes), including both IAV-negative and IAV-positive individuals. We demonstrate that there is not one consistent "flu-like" microbiome or response to flu across species. Individual duck species appear to have unique relationships between their microbiomes and IAV, and IAV-negative birds have a stronger tie to host species than the IAV-positive birds. In a broad context, understanding the role of the microbiome in IAV reservoir species may have future implications for avian disease management.

DOI: 10.1128/mSphere.00382-18
PubMed: 30355662

Links to Exploration step

pubmed:30355662

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Cloacal Microbiome of Five Wild Duck Species Varies by Species and Influenza A Virus Infection Status.</title>
<author>
<name sortKey="Hird, Sarah M" sort="Hird, Sarah M" uniqKey="Hird S" first="Sarah M" last="Hird">Sarah M. Hird</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA sarah.hird@uconn.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ganz, Holly" sort="Ganz, Holly" uniqKey="Ganz H" first="Holly" last="Ganz">Holly Ganz</name>
<affiliation>
<nlm:affiliation>AnimalBiome, Oakland, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Eisen, Jonathan A" sort="Eisen, Jonathan A" uniqKey="Eisen J" first="Jonathan A" last="Eisen">Jonathan A. Eisen</name>
<affiliation>
<nlm:affiliation>Genome Center, University of California, Davis, Davis, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boyce, Walter M" sort="Boyce, Walter M" uniqKey="Boyce W" first="Walter M" last="Boyce">Walter M. Boyce</name>
<affiliation>
<nlm:affiliation>Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30355662</idno>
<idno type="pmid">30355662</idno>
<idno type="doi">10.1128/mSphere.00382-18</idno>
<idno type="wicri:Area/PubMed/Corpus">000207</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000207</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Cloacal Microbiome of Five Wild Duck Species Varies by Species and Influenza A Virus Infection Status.</title>
<author>
<name sortKey="Hird, Sarah M" sort="Hird, Sarah M" uniqKey="Hird S" first="Sarah M" last="Hird">Sarah M. Hird</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA sarah.hird@uconn.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ganz, Holly" sort="Ganz, Holly" uniqKey="Ganz H" first="Holly" last="Ganz">Holly Ganz</name>
<affiliation>
<nlm:affiliation>AnimalBiome, Oakland, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Eisen, Jonathan A" sort="Eisen, Jonathan A" uniqKey="Eisen J" first="Jonathan A" last="Eisen">Jonathan A. Eisen</name>
<affiliation>
<nlm:affiliation>Genome Center, University of California, Davis, Davis, California, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boyce, Walter M" sort="Boyce, Walter M" uniqKey="Boyce W" first="Walter M" last="Boyce">Walter M. Boyce</name>
<affiliation>
<nlm:affiliation>Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mSphere</title>
<idno type="eISSN">2379-5042</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Bird Diseases (virology)</term>
<term>Cloaca (microbiology)</term>
<term>Disease Reservoirs</term>
<term>Ducks (microbiology)</term>
<term>Ducks (virology)</term>
<term>Influenza A virus</term>
<term>Influenza in Birds (microbiology)</term>
<term>Influenza in Birds (virology)</term>
<term>Microbiota</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Cloaca</term>
<term>Ducks</term>
<term>Influenza in Birds</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Bird Diseases</term>
<term>Ducks</term>
<term>Influenza in Birds</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Disease Reservoirs</term>
<term>Influenza A virus</term>
<term>Microbiota</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Waterfowl, especially ducks of the genus
<i>Anas</i>
, are natural reservoir species for influenza A virus (IAV). Duck populations contain nearly all the known diversity of IAVs, and the birds are asymptomatic to infection. Previous work established that IAV infection status is correlated with changes in the cloacal microbiome in juvenile mallards. Here, we analyze five
<i>Anas</i>
species to determine whether these duck species have similar IAV
<sup>+</sup>
and IAV
<sup>-</sup>
cloacal microbiomes, or if the relationships among a host, influenza virus, and the microbiome are species specific. We assessed taxonomic composition of the microbiome, alpha diversity, and beta diversity and found very few patterns related to microbiome and infection status across species, while detecting strong differences within species. A host species-specific signal was stronger in IAV
<sup>-</sup>
ducks than IAV
<sup>+</sup>
ducks, and the effect size of host species on the microbiome was three times higher in IAV
<sup>-</sup>
birds than IAV
<sup>+</sup>
birds. The mallards and the northern shovelers, the species with highest sample sizes but also with differing feeding ecology, showed especially contrasting patterns in microbiome composition, alpha diversity, and beta diversity. Our results indicate that the microbiome may have a unique relationship with influenza virus infection at the species level.
<b>IMPORTANCE</b>
Waterfowl are natural reservoir species for influenza A virus (IAV). Thus, they maintain high levels of pathogen diversity, are asymptomatic to the infection, and also contribute to the risk of a global influenza pandemic. An individual's microbiome is a critical part in how a vertebrate manages pathogens and illness. Here, we describe the cloacal microbiome of 300 wild ducks, from five species (four with previously undescribed microbiomes), including both IAV-negative and IAV-positive individuals. We demonstrate that there is not one consistent "flu-like" microbiome or response to flu across species. Individual duck species appear to have unique relationships between their microbiomes and IAV, and IAV-negative birds have a stronger tie to host species than the IAV-positive birds. In a broad context, understanding the role of the microbiome in IAV reservoir species may have future implications for avian disease management.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30355662</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2379-5042</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>3</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2018</Year>
<Month>10</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>mSphere</Title>
<ISOAbbreviation>mSphere</ISOAbbreviation>
</Journal>
<ArticleTitle>The Cloacal Microbiome of Five Wild Duck Species Varies by Species and Influenza A Virus Infection Status.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00382-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mSphere.00382-18</ELocationID>
<Abstract>
<AbstractText>Waterfowl, especially ducks of the genus
<i>Anas</i>
, are natural reservoir species for influenza A virus (IAV). Duck populations contain nearly all the known diversity of IAVs, and the birds are asymptomatic to infection. Previous work established that IAV infection status is correlated with changes in the cloacal microbiome in juvenile mallards. Here, we analyze five
<i>Anas</i>
species to determine whether these duck species have similar IAV
<sup>+</sup>
and IAV
<sup>-</sup>
cloacal microbiomes, or if the relationships among a host, influenza virus, and the microbiome are species specific. We assessed taxonomic composition of the microbiome, alpha diversity, and beta diversity and found very few patterns related to microbiome and infection status across species, while detecting strong differences within species. A host species-specific signal was stronger in IAV
<sup>-</sup>
ducks than IAV
<sup>+</sup>
ducks, and the effect size of host species on the microbiome was three times higher in IAV
<sup>-</sup>
birds than IAV
<sup>+</sup>
birds. The mallards and the northern shovelers, the species with highest sample sizes but also with differing feeding ecology, showed especially contrasting patterns in microbiome composition, alpha diversity, and beta diversity. Our results indicate that the microbiome may have a unique relationship with influenza virus infection at the species level.
<b>IMPORTANCE</b>
Waterfowl are natural reservoir species for influenza A virus (IAV). Thus, they maintain high levels of pathogen diversity, are asymptomatic to the infection, and also contribute to the risk of a global influenza pandemic. An individual's microbiome is a critical part in how a vertebrate manages pathogens and illness. Here, we describe the cloacal microbiome of 300 wild ducks, from five species (four with previously undescribed microbiomes), including both IAV-negative and IAV-positive individuals. We demonstrate that there is not one consistent "flu-like" microbiome or response to flu across species. Individual duck species appear to have unique relationships between their microbiomes and IAV, and IAV-negative birds have a stronger tie to host species than the IAV-positive birds. In a broad context, understanding the role of the microbiome in IAV reservoir species may have future implications for avian disease management.</AbstractText>
<CopyrightInformation>Copyright © 2018 Hird et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hird</LastName>
<ForeName>Sarah M</ForeName>
<Initials>SM</Initials>
<Identifier Source="ORCID">0000-0002-1998-9387</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA sarah.hird@uconn.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ganz</LastName>
<ForeName>Holly</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>AnimalBiome, Oakland, California, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Genome Center, University of California, Davis, Davis, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Eisen</LastName>
<ForeName>Jonathan A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Genome Center, University of California, Davis, Davis, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boyce</LastName>
<ForeName>Walter M</ForeName>
<Initials>WM</Initials>
<AffiliationInfo>
<Affiliation>Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HHSN266200700010C</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HHSN272201400008C</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mSphere</MedlineTA>
<NlmUniqueID>101674533</NlmUniqueID>
<ISSNLinking>2379-5042</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001715" MajorTopicYN="N">Bird Diseases</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002988" MajorTopicYN="N">Cloaca</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004197" MajorTopicYN="N">Disease Reservoirs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004372" MajorTopicYN="N">Ducks</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009980" MajorTopicYN="N">Influenza A virus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005585" MajorTopicYN="N">Influenza in Birds</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064307" MajorTopicYN="Y">Microbiota</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">avian microbiome</Keyword>
<Keyword MajorTopicYN="Y">ducks</Keyword>
<Keyword MajorTopicYN="Y">evolutionary biology</Keyword>
<Keyword MajorTopicYN="Y">microbial ecology</Keyword>
<Keyword MajorTopicYN="Y">microbiome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30355662</ArticleId>
<ArticleId IdType="pii">3/5/e00382-18</ArticleId>
<ArticleId IdType="doi">10.1128/mSphere.00382-18</ArticleId>
<ArticleId IdType="pmc">PMC6200988</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Microbiol Rev. 1992 Mar;56(1):152-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1579108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mSystems. 2017 Feb 28;2(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28293681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vector Borne Zoonotic Dis. 2004 Fall;4(3):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15631061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Dec 21;6:1403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26733954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013;9(6):e1003443</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23818849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Dis. 2010 Mar;54(1 Suppl):581-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20521698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Apr 23;8(4):e61201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23637797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Sep 24;5:14354</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26400374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Aug;76(16):5496-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20581177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2014 Dec 02;5:653</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25520707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2013 Aug 05;5(8):1964-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23921843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Genet Evol. 2011 Dec;11(8):2004-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21964597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2017 Dec 1;93(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29069418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jul 8;430(6996):209-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15241415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Apr;74(8):2461-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18296538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1994 Oct;44(4):812-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7981107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2015 May 13;17(5):704-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25865368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014 May 13;5(3):e00070-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24825008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 2009 Apr 14;136(1-2):20-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19081209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1980 Nov;30(2):547-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7439994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jul 14;436(7048):191-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16007072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2009 Mar 22;276(1659):1029-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 2000 May 22;74(1-2):3-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10799774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Pathol. 2011 Apr;40(2):119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21500030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Aug 19;309(5738):1206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16000410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 8;336(6086):1268-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22674334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 May 11;3(5):e61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17500589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2018 Jan 1;94(1):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29228270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiologyopen. 2013 Feb;2(1):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23349094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2014 Dec 09;2:e659</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25538865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Apr 21;312(5772):384-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Oct 13;11(10):e0161929</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27736884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e35679</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22536424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2005 Aug;150(8):1685-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15883657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>One Health. 2015 Dec 1;1:1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26309905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2018 Jan 10;6(1):9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29321057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10682-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16030144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2017 Mar 21;9(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28335562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Apr 22;8(4):e61217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23630581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2014 Mar 20;2:e321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24711971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Ecol. 2018 Mar;87(2):428-437</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29111601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Dis. 1990 Apr-Jun;34(2):412-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2142421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Sep;75(18):5919-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19633110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2008 Aug;14(8):1303-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18680663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Dec;71(12):8228-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16332807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Mar;79(5):2814-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15709000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007 Jan 31;2(1):e184</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17264886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Jan 16;279(5349):393-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9430591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Nov 1;27(21):2957-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21903629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2010 Jun 5;401(2):179-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20227102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Med. 2016 Jun 03;14(1):83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27256449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2011 Mar;20(5):1015-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21073586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 May 06;7:635</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27199961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20534432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2010 Jul;90(3):859-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20664075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Parasitol. 2011 Nov;27(11):514-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21697014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000207 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000207 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30355662
   |texte=   The Cloacal Microbiome of Five Wild Duck Species Varies by Species and Influenza A Virus Infection Status.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:30355662" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021