Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Determining the Mutation Bias of Favipiravir in Influenza Virus Using Next-Generation Sequencing.

Identifieur interne : 000205 ( PubMed/Corpus ); précédent : 000204; suivant : 000206

Determining the Mutation Bias of Favipiravir in Influenza Virus Using Next-Generation Sequencing.

Auteurs : Daniel H. Goldhill ; Pinky Langat ; Hongyao Xie ; Monica Galiano ; Shahjahan Miah ; Paul Kellam ; Maria Zambon ; Angie Lackenby ; Wendy S. Barclay

Source :

RBID : pubmed:30381482

English descriptors

Abstract

Favipiravir is a broad-spectrum antiviral drug that may be used to treat influenza. Previous research has identified that favipiravir likely acts as a mutagen, but the precise mutation bias that favipiravir induces in influenza virus RNAs has not been described. Here, we use next-generation sequencing (NGS) with barcoding of individual RNA molecules to accurately and quantitatively detect favipiravir-induced mutations and to sample orders of magnitude more mutations than would be possible through Sanger sequencing. We demonstrate that favipiravir causes mutations and show that favipiravir primarily acts as a guanine analogue and secondarily as an adenine analogue resulting in the accumulation of transition mutations. We also use a standard NGS pipeline to show that the mutagenic effect of favipiravir can be measured by whole-genome sequencing of virus.IMPORTANCE New antiviral drugs are needed as a first line of defense in the event of a novel influenza pandemic. Favipiravir is a broad-spectrum antiviral which is effective against influenza. The exact mechanism of how favipiravir works to inhibit influenza is still unclear. We used next-generation sequencing (NGS) to demonstrate that favipiravir causes mutations in influenza RNA. The greater depth of NGS sequence information over traditional sequencing methods allowed us to precisely determine the bias of particular mutations caused by favipiravir. NGS can also be used in a standard diagnostic pipeline to show that favipiravir is acting on the virus by revealing the mutation bias pattern typical to the drug. Our work will aid in testing whether viruses are resistant to favipiravir and may help demonstrate the effect of favipiravir on viruses in a clinical setting. This will be important if favipiravir is used during a future influenza pandemic.

DOI: 10.1128/JVI.01217-18
PubMed: 30381482

Links to Exploration step

pubmed:30381482

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Determining the Mutation Bias of Favipiravir in Influenza Virus Using Next-Generation Sequencing.</title>
<author>
<name sortKey="Goldhill, Daniel H" sort="Goldhill, Daniel H" uniqKey="Goldhill D" first="Daniel H" last="Goldhill">Daniel H. Goldhill</name>
<affiliation>
<nlm:affiliation>Public Health England, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Langat, Pinky" sort="Langat, Pinky" uniqKey="Langat P" first="Pinky" last="Langat">Pinky Langat</name>
<affiliation>
<nlm:affiliation>Department of Virology, Faculty of Medicine, Imperial College, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xie, Hongyao" sort="Xie, Hongyao" uniqKey="Xie H" first="Hongyao" last="Xie">Hongyao Xie</name>
<affiliation>
<nlm:affiliation>Department of Virology, Faculty of Medicine, Imperial College, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Galiano, Monica" sort="Galiano, Monica" uniqKey="Galiano M" first="Monica" last="Galiano">Monica Galiano</name>
<affiliation>
<nlm:affiliation>Public Health England, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Miah, Shahjahan" sort="Miah, Shahjahan" uniqKey="Miah S" first="Shahjahan" last="Miah">Shahjahan Miah</name>
<affiliation>
<nlm:affiliation>Public Health England, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kellam, Paul" sort="Kellam, Paul" uniqKey="Kellam P" first="Paul" last="Kellam">Paul Kellam</name>
<affiliation>
<nlm:affiliation>Department of Virology, Faculty of Medicine, Imperial College, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zambon, Maria" sort="Zambon, Maria" uniqKey="Zambon M" first="Maria" last="Zambon">Maria Zambon</name>
<affiliation>
<nlm:affiliation>Public Health England, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lackenby, Angie" sort="Lackenby, Angie" uniqKey="Lackenby A" first="Angie" last="Lackenby">Angie Lackenby</name>
<affiliation>
<nlm:affiliation>Public Health England, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barclay, Wendy S" sort="Barclay, Wendy S" uniqKey="Barclay W" first="Wendy S" last="Barclay">Wendy S. Barclay</name>
<affiliation>
<nlm:affiliation>Department of Virology, Faculty of Medicine, Imperial College, London, United Kingdom w.barclay@imperial.ac.uk.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30381482</idno>
<idno type="pmid">30381482</idno>
<idno type="doi">10.1128/JVI.01217-18</idno>
<idno type="wicri:Area/PubMed/Corpus">000205</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000205</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Determining the Mutation Bias of Favipiravir in Influenza Virus Using Next-Generation Sequencing.</title>
<author>
<name sortKey="Goldhill, Daniel H" sort="Goldhill, Daniel H" uniqKey="Goldhill D" first="Daniel H" last="Goldhill">Daniel H. Goldhill</name>
<affiliation>
<nlm:affiliation>Public Health England, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Langat, Pinky" sort="Langat, Pinky" uniqKey="Langat P" first="Pinky" last="Langat">Pinky Langat</name>
<affiliation>
<nlm:affiliation>Department of Virology, Faculty of Medicine, Imperial College, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xie, Hongyao" sort="Xie, Hongyao" uniqKey="Xie H" first="Hongyao" last="Xie">Hongyao Xie</name>
<affiliation>
<nlm:affiliation>Department of Virology, Faculty of Medicine, Imperial College, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Galiano, Monica" sort="Galiano, Monica" uniqKey="Galiano M" first="Monica" last="Galiano">Monica Galiano</name>
<affiliation>
<nlm:affiliation>Public Health England, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Miah, Shahjahan" sort="Miah, Shahjahan" uniqKey="Miah S" first="Shahjahan" last="Miah">Shahjahan Miah</name>
<affiliation>
<nlm:affiliation>Public Health England, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kellam, Paul" sort="Kellam, Paul" uniqKey="Kellam P" first="Paul" last="Kellam">Paul Kellam</name>
<affiliation>
<nlm:affiliation>Department of Virology, Faculty of Medicine, Imperial College, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zambon, Maria" sort="Zambon, Maria" uniqKey="Zambon M" first="Maria" last="Zambon">Maria Zambon</name>
<affiliation>
<nlm:affiliation>Public Health England, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lackenby, Angie" sort="Lackenby, Angie" uniqKey="Lackenby A" first="Angie" last="Lackenby">Angie Lackenby</name>
<affiliation>
<nlm:affiliation>Public Health England, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barclay, Wendy S" sort="Barclay, Wendy S" uniqKey="Barclay W" first="Wendy S" last="Barclay">Wendy S. Barclay</name>
<affiliation>
<nlm:affiliation>Department of Virology, Faculty of Medicine, Imperial College, London, United Kingdom w.barclay@imperial.ac.uk.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amides (pharmacology)</term>
<term>Animals</term>
<term>Bias</term>
<term>DNA Primers (genetics)</term>
<term>Dogs</term>
<term>HEK293 Cells</term>
<term>High-Throughput Nucleotide Sequencing (methods)</term>
<term>Humans</term>
<term>Influenza A virus (drug effects)</term>
<term>Influenza A virus (genetics)</term>
<term>Madin Darby Canine Kidney Cells</term>
<term>Mutation</term>
<term>Pyrazines (pharmacology)</term>
<term>Sequence Analysis, RNA</term>
<term>Whole Genome Sequencing</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA Primers</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Amides</term>
<term>Pyrazines</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Influenza A virus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Influenza A virus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>High-Throughput Nucleotide Sequencing</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Bias</term>
<term>Dogs</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Madin Darby Canine Kidney Cells</term>
<term>Mutation</term>
<term>Sequence Analysis, RNA</term>
<term>Whole Genome Sequencing</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Favipiravir is a broad-spectrum antiviral drug that may be used to treat influenza. Previous research has identified that favipiravir likely acts as a mutagen, but the precise mutation bias that favipiravir induces in influenza virus RNAs has not been described. Here, we use next-generation sequencing (NGS) with barcoding of individual RNA molecules to accurately and quantitatively detect favipiravir-induced mutations and to sample orders of magnitude more mutations than would be possible through Sanger sequencing. We demonstrate that favipiravir causes mutations and show that favipiravir primarily acts as a guanine analogue and secondarily as an adenine analogue resulting in the accumulation of transition mutations. We also use a standard NGS pipeline to show that the mutagenic effect of favipiravir can be measured by whole-genome sequencing of virus.
<b>IMPORTANCE</b>
New antiviral drugs are needed as a first line of defense in the event of a novel influenza pandemic. Favipiravir is a broad-spectrum antiviral which is effective against influenza. The exact mechanism of how favipiravir works to inhibit influenza is still unclear. We used next-generation sequencing (NGS) to demonstrate that favipiravir causes mutations in influenza RNA. The greater depth of NGS sequence information over traditional sequencing methods allowed us to precisely determine the bias of particular mutations caused by favipiravir. NGS can also be used in a standard diagnostic pipeline to show that favipiravir is acting on the virus by revealing the mutation bias pattern typical to the drug. Our work will aid in testing whether viruses are resistant to favipiravir and may help demonstrate the effect of favipiravir on viruses in a clinical setting. This will be important if favipiravir is used during a future influenza pandemic.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30381482</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>10</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>93</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2019</Year>
<Month>01</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Determining the Mutation Bias of Favipiravir in Influenza Virus Using Next-Generation Sequencing.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01217-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01217-18</ELocationID>
<Abstract>
<AbstractText>Favipiravir is a broad-spectrum antiviral drug that may be used to treat influenza. Previous research has identified that favipiravir likely acts as a mutagen, but the precise mutation bias that favipiravir induces in influenza virus RNAs has not been described. Here, we use next-generation sequencing (NGS) with barcoding of individual RNA molecules to accurately and quantitatively detect favipiravir-induced mutations and to sample orders of magnitude more mutations than would be possible through Sanger sequencing. We demonstrate that favipiravir causes mutations and show that favipiravir primarily acts as a guanine analogue and secondarily as an adenine analogue resulting in the accumulation of transition mutations. We also use a standard NGS pipeline to show that the mutagenic effect of favipiravir can be measured by whole-genome sequencing of virus.
<b>IMPORTANCE</b>
New antiviral drugs are needed as a first line of defense in the event of a novel influenza pandemic. Favipiravir is a broad-spectrum antiviral which is effective against influenza. The exact mechanism of how favipiravir works to inhibit influenza is still unclear. We used next-generation sequencing (NGS) to demonstrate that favipiravir causes mutations in influenza RNA. The greater depth of NGS sequence information over traditional sequencing methods allowed us to precisely determine the bias of particular mutations caused by favipiravir. NGS can also be used in a standard diagnostic pipeline to show that favipiravir is acting on the virus by revealing the mutation bias pattern typical to the drug. Our work will aid in testing whether viruses are resistant to favipiravir and may help demonstrate the effect of favipiravir on viruses in a clinical setting. This will be important if favipiravir is used during a future influenza pandemic.</AbstractText>
<CopyrightInformation>Copyright © 2019 Goldhill et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Goldhill</LastName>
<ForeName>Daniel H</ForeName>
<Initials>DH</Initials>
<Identifier Source="ORCID">0000-0003-4597-5963</Identifier>
<AffiliationInfo>
<Affiliation>Public Health England, London, United Kingdom.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Virology, Faculty of Medicine, Imperial College, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Langat</LastName>
<ForeName>Pinky</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Virology, Faculty of Medicine, Imperial College, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xie</LastName>
<ForeName>Hongyao</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Virology, Faculty of Medicine, Imperial College, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Galiano</LastName>
<ForeName>Monica</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Public Health England, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Miah</LastName>
<ForeName>Shahjahan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Public Health England, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kellam</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Virology, Faculty of Medicine, Imperial College, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zambon</LastName>
<ForeName>Maria</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Public Health England, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lackenby</LastName>
<ForeName>Angie</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Public Health England, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barclay</LastName>
<ForeName>Wendy S</ForeName>
<Initials>WS</Initials>
<AffiliationInfo>
<Affiliation>Department of Virology, Faculty of Medicine, Imperial College, London, United Kingdom w.barclay@imperial.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>200187/Z/15/Z</GrantID>
<Acronym>WT_</Acronym>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>01</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000577">Amides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011719">Pyrazines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EW5GL2X7E0</RegistryNumber>
<NameOfSubstance UI="C462182">favipiravir</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000577" MajorTopicYN="N">Amides</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015982" MajorTopicYN="N">Bias</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004285" MajorTopicYN="N">Dogs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009980" MajorTopicYN="N">Influenza A virus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061985" MajorTopicYN="N">Madin Darby Canine Kidney Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="Y">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011719" MajorTopicYN="N">Pyrazines</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017423" MajorTopicYN="N">Sequence Analysis, RNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073336" MajorTopicYN="N">Whole Genome Sequencing</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Primer ID</Keyword>
<Keyword MajorTopicYN="Y">favipiravir</Keyword>
<Keyword MajorTopicYN="Y">influenza</Keyword>
<Keyword MajorTopicYN="Y">mutation bias</Keyword>
<Keyword MajorTopicYN="Y">next-generation sequencing</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>10</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>11</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>11</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30381482</ArticleId>
<ArticleId IdType="pii">JVI.01217-18</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01217-18</ArticleId>
<ArticleId IdType="pmc">PMC6321902</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Antiviral Res. 2018 May;153:85-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29524445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2005 Mar;49(3):981-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2014 Oct;8:22-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24866471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2016 Jul;29(3):695-747</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27281742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Sep 26;501(7468):551-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23842494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2014 May;105:17-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24583123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2006 Nov 1;194 Suppl 2:S73-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17163392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Jan 7;529(7584):101-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26738596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 May 25;6:26742</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27221530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2016 Oct 21;60(11):6679-6691</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27572398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2009 Jun;82(3):95-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19428599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Oct 11;12(10):e0185998</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29020100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22135472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2011 Feb;55(2):782-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21115797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Jul 12;341(6142):183-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23704376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Oct;83(19):10309-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19605485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Influenza Other Respir Viruses. 2017 May;11(3):240-246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28146320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2010 Jun;54(6):2517-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20350949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2007 Mar;51(3):845-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17194832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):882-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2017 Nov 8;22(5):615-626.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29056430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2013 Nov;57(11):5202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23917318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2013 Feb 04;368(1614):20120205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23382427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2016 Jun 03;8(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27271655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 Nov;100(2):446-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24084488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mSphere. 2016 Jan 06;1(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27303697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Aug;89(16):8540-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26041299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 May 13;4:4942</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24820965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014 Oct 21;3:e03679</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25333492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Apr;87(7):3741-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23325689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2007 Jul 15;196(2):249-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17570112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jul 27;442(7101):448-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16642006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 May 22;109(21):E1330; author reply E1331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22517746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Oct 18;11(10):e0164691</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27755573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(7):449-463</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28769016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2016 Mar 15;213(6):934-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26531247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Aug 29;12(8):e1005856</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27571422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2018 Mar 27;15(3):e1002535</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29584730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2018 Jan 18;14(1):e1006796</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29346435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2002 Apr;46(4):977-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11897578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2017 Jul;143:151-161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28412183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Negl Trop Dis. 2011 Oct;5(10):e1342</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22022624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jul 10;8(7):e68347</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23874596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Apr;89(7):3584-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25589650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2014 Oct;69(10):2770-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24951535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Oct 12;5:14775</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26456301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2009 Mar 5;360(10):953-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19258250</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000205 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000205 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30381482
   |texte=   Determining the Mutation Bias of Favipiravir in Influenza Virus Using Next-Generation Sequencing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:30381482" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021