Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influenza, evolution, and the next pandemic.

Identifieur interne : 000199 ( PubMed/Corpus ); précédent : 000198; suivant : 000200

Influenza, evolution, and the next pandemic.

Auteurs : David S. Fedson

Source :

RBID : pubmed:30455951

Abstract

Mortality rates in influenza appear to have been shaped by evolution. During the 1918 pandemic, mortality rates were lower in children compared with adults. This mortality difference occurs in a wide variety of infectious diseases. It has been replicated in mice and might be due to greater tolerance of infection, not greater resistance. Importantly, combination treatment with inexpensive and widely available generic drugs (e.g. statins and angiotensin receptor blockers) might change the damaging host response in adults to a more tolerant response in children. These drugs might work by modifying endothelial dysfunction, mitochondrial biogenesis and immunometabolism. Treating the host response might be the only practical way to reduce global mortality during the next influenza pandemic. It might also help reduce mortality due to seasonal influenza and other forms of acute critical illness. To realize these benefits, we need laboratory and clinical studies of host response treatment before and after puberty.

DOI: 10.1093/emph/eoy027
PubMed: 30455951

Links to Exploration step

pubmed:30455951

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Influenza, evolution, and the next pandemic.</title>
<author>
<name sortKey="Fedson, David S" sort="Fedson, David S" uniqKey="Fedson D" first="David S" last="Fedson">David S. Fedson</name>
<affiliation>
<nlm:affiliation>57, chemin du Lavoir, Sergy Haut, France.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30455951</idno>
<idno type="pmid">30455951</idno>
<idno type="doi">10.1093/emph/eoy027</idno>
<idno type="wicri:Area/PubMed/Corpus">000199</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000199</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Influenza, evolution, and the next pandemic.</title>
<author>
<name sortKey="Fedson, David S" sort="Fedson, David S" uniqKey="Fedson D" first="David S" last="Fedson">David S. Fedson</name>
<affiliation>
<nlm:affiliation>57, chemin du Lavoir, Sergy Haut, France.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Evolution, medicine, and public health</title>
<idno type="ISSN">2050-6201</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mortality rates in influenza appear to have been shaped by evolution. During the 1918 pandemic, mortality rates were lower in children compared with adults. This mortality difference occurs in a wide variety of infectious diseases. It has been replicated in mice and might be due to greater tolerance of infection, not greater resistance. Importantly, combination treatment with inexpensive and widely available generic drugs (e.g. statins and angiotensin receptor blockers) might change the damaging host response in adults to a more tolerant response in children. These drugs might work by modifying endothelial dysfunction, mitochondrial biogenesis and immunometabolism. Treating the host response might be the only practical way to reduce global mortality during the next influenza pandemic. It might also help reduce mortality due to seasonal influenza and other forms of acute critical illness. To realize these benefits, we need laboratory and clinical studies of host response treatment before and after puberty.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30455951</PMID>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2050-6201</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>2018</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Evolution, medicine, and public health</Title>
<ISOAbbreviation>Evol Med Public Health</ISOAbbreviation>
</Journal>
<ArticleTitle>Influenza, evolution, and the next pandemic.</ArticleTitle>
<Pagination>
<MedlinePgn>260-269</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/emph/eoy027</ELocationID>
<Abstract>
<AbstractText>Mortality rates in influenza appear to have been shaped by evolution. During the 1918 pandemic, mortality rates were lower in children compared with adults. This mortality difference occurs in a wide variety of infectious diseases. It has been replicated in mice and might be due to greater tolerance of infection, not greater resistance. Importantly, combination treatment with inexpensive and widely available generic drugs (e.g. statins and angiotensin receptor blockers) might change the damaging host response in adults to a more tolerant response in children. These drugs might work by modifying endothelial dysfunction, mitochondrial biogenesis and immunometabolism. Treating the host response might be the only practical way to reduce global mortality during the next influenza pandemic. It might also help reduce mortality due to seasonal influenza and other forms of acute critical illness. To realize these benefits, we need laboratory and clinical studies of host response treatment before and after puberty.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fedson</LastName>
<ForeName>David S</ForeName>
<Initials>DS</Initials>
<AffiliationInfo>
<Affiliation>57, chemin du Lavoir, Sergy Haut, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Evol Med Public Health</MedlineTA>
<NlmUniqueID>101616698</NlmUniqueID>
<ISSNLinking>2050-6201</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">generic drugs </Keyword>
<Keyword MajorTopicYN="N">global public health</Keyword>
<Keyword MajorTopicYN="N">immunomodulatory treatment</Keyword>
<Keyword MajorTopicYN="N">mortality in children and adults</Keyword>
<Keyword MajorTopicYN="N">pandemic influenza</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>02</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>11</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>11</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>11</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30455951</ArticleId>
<ArticleId IdType="doi">10.1093/emph/eoy027</ArticleId>
<ArticleId IdType="pii">eoy027</ArticleId>
<ArticleId IdType="pmc">PMC6234328</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Clin Infect Dis. 2014 Jan;58(2):233-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24145877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Dec;86(24):13187-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23055557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Respir Crit Care Med. 2016 Aug;37(4):487-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27486731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jan 27;112(4):1167-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25092317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2017 Oct 17;47(4):599-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29045889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 05;8(8):e69586</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23940526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Jul 28;166(3):609-623</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27453470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2009 Mar;15(3):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19239746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Apr 18;133(2):235-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Horm Behav. 2017 May;91:97-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27650355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Pharm Des. 2012;18(28):4385-413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22283779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocr Dev. 2016;29:1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26680569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Nov 6;7(1):14614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29097696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):E488-E497</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29282317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2012 Feb 21;5(212):ra16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Transl Med. 2016 Nov;4(21):421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27942512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2015 Jul;87(7):1104-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25802122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatr Surg Int. 2004 Apr;20(4):238-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15103492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Nov 11;354(6313):722-726</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27846599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2018 Jan 23;9(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29362240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2006 Dec 23;368(9554):2211-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17189032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2018 Mar 1;200(5):1865-1875</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29374078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Surg Res. 2008 Jun 15;147(2):200-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18498870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2018 Mar 31;391(10127):1285-1300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29248255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2016 Mar 01;7(2):e00158</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26933052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18210-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23071331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2017 Dec 1;313(6):L1087-L1095</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28882815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2017 Feb 1;215(3):484-485</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27932610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Influenza Other Respir Viruses. 2009 Jul;3(4):129-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19627370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2018 May 31;378(22):2057-2060</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29847763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2018 Feb 1;36(6):794-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29306503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8107-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24778238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Aug;7(8):e1002234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21901105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Immunol. 2015 Apr;294(2):63-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25682174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Immunol. 2016 Mar;183(3):441-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26506932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Vaccin Immunother. 2018 Mar 4;14(3):790-795</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29058516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 2017 Feb 10;79:495-515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27959621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Nov 29;7(1):16541</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29185479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Nov 11;354(6313):706-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27846592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2017 Jun;27(6):453-463</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28274652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gen Comp Endocrinol. 2014 Nov 1;208:21-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25125082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2007 Nov;8(11):1188-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17952044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocr Metab Immune Disord Drug Targets. 2015;15(3):196-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25772174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Feb 24;335(6071):936-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22363001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2015 Aug;26(8):411-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26126705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2017 Feb;17(2):83-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28044057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2017 Dec;27(12):1409-1421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29151586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Sep 16;146(6):980-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21925319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Intern Med. 2006 Jul 18;145(2):138-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16801626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2016 Sep;16(9):553-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27396447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2017 Apr;31(4):1273-1288</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28087575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pediatr Surg. 2004 Jun;39(6):912-5; discussion 912-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15185224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 Sep;99(3):417-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23831494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2006 Jul 15;43(2):199-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16779747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2009 May 1;199(9):1408-9; author reply 1409-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19358675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Mar 05;11(3):e1004615</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25742615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Mol Med. 2017 Dec;21(12):3705-3717</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28714586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Tissue Res. 2017 Mar;367(3):525-536</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28168323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2017 Jun 15;215(12):1782-1788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28398521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2018 Apr 05;378(14):1323-1334</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29617578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemics. 2011 Mar;3(1):46-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21420659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 Aug 22;4(8):e1000133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18725925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2017 Jan 6;120(1):229-243</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28057795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2017 Apr;187(4):851-863</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28193481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2008 Oct 1;198(7):962-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18710327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):E7118-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26621739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 Aug;99(2):113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23685311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Regul Integr Comp Physiol. 2016 Nov 1;311(5):R906-R916</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27558316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Public Health Policy. 2007;28(3):322-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17717543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2017 Aug;102(2):221-235</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28626046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:10033-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19528662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e42328</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22876316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2018 Jun 22;9:1421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29988424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jul 3;154(1):213-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23827684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2018 Feb;150:202-216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29325970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2018 Jan 16;9(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29339427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2015 Dec;98(6):945-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26034205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2015 Jun 15;191(12):1422-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25844934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2018 Jan;39(1):6-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28923365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Microbiol. 2017 Apr;66(4):536-541</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28463668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2017 Jul 29;390(10093):500-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28792412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2015 Aug;16(8):902-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26169390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Jul;7(7):e1002149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21829352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2017 Aug;17(8):822-832</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28583578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2013 Mar 1;207(5):721-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23230061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2018 Oct 30;67(10):1523-1532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29672713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2017 Dec;19(12):580-586</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28918004</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000199 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000199 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30455951
   |texte=   Influenza, evolution, and the next pandemic.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:30455951" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021